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This paper describes the chaos shift keying method based on the second derivative desynchro-
nization error and provides its security analysis, especially against the attacks by power and
return map analysis. Desynchronization chaos shift keying method (DECSK) uses methods to
detect the correct bit by detecting the wrong bit. Various modifications are possible, here the
method using sharp increase of error in the second derivative of synchronizing signal is used.
The proposed method requires very reasonable amount of data to encrypt and time to decrypt
one bit. Basically, to encrypt one bit, only one iteration (i.e. only one real number of six valid
digits) is needed. At the same time, thanks to the desynchronization detection based on the
synchronization error second derivative, almost 100% of the carrying chaotic signal can be used.
The security of the proposed method can be systematically investigated showing its good resis-
tance against typical decryption attacks. More detailed analysis is devoted to its analysis via
power and return map analysis. Conclusion is that the DECSK method cannot be broken by
the above two methods which together with other arguments developed there serves as a good
basis for the DECSK security.

Keywords : Nonlinear system; desynchronization; chaos shift keying; generalized Lorenz system.

1. Introduction

It is quite well-known fact that many chaotic com-
munication schemes based on chaotic dynamics has
been proposed during the past 20 years. As a mat-
ter of fact, the well-known features of the chaotic
systems like strong dependence on the initial data,
topological transitivity, wide spread spectrum of its
signal, etc., directly suggest the idea to use suitable

chaos generators to build a new generation of secure
encryption methods. Nevertheless, methods using
continuous time chaos usually consider analogue
communication while discrete time chaotic systems
are used for digital data encryption. Unfortunately,
the use of the continuous time chaotic systems for
the encryption of the digital data and both its prac-
tical aspects and security analysis have been studied
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much less [Alvarez & Li, 2006; Dachselt & Schwarz,
2001; Kocarev, 2001] due to prevalently used ana-
logue chaotic masking [Lian & Liu, 2000; Alvarez-
Ramirez et al., 2002]. One of the possible exceptions
is the so-called chaos shift keying (CSK) method,
which uses time segments of chaotic signals corre-
sponding to two different chaotic systems to encrypt
a single bit. Originally, the CSK was introduced
(under different name) in [Cuomo et al., 1993] for
analogue implementation of the Lorenz system and
its synchronized copy and actually again for possi-
ble analogue circuit implementation, though meant
to encrypt and modulate binary symbols directly
into an analogue signal. Therefore, the length of
the time segment was not such an issue. Neverthe-
less, when using computer digital implementation
also for chaos generator, such a method is becom-
ing almost ridiculous due to huge amount of data to
encrypt a single bit. Moreover, the excessive length
of the pieces of signals corresponding to “0” and “1”
also enables various statistically based attacks, e.g.
the correlation analysis. Summarizing, the classical
CSK method leads to weak and slow ciphers.

The first attempt to overcome the above
drawbacks was the so-called Desynchronization
Chaos Shift Keying (DECSK) method proposed in
[Čelikovský et al., 2006a, 2006b], called initially
with a slight abuse of notation as the anti-
synchronization chaos shift keying method. Desyn-
chronization basically means that, rather than
detecting the correct bit via synchronizing one of
two unsynchronized slaves, the wrong bit is deter-
mined via desynchronizing one of the perfectly syn-
chronized slaves. This method significantly reduced
the amount of data needed to encrypt a single bit
up to 4–13 iterations. This amount, though no more
ridiculous, was still practically useless. Later on,
in [Lynnyk & Čelikovský, 2010], thanks to desyn-
chronization detection of the wrong bit based on
the error derivative evaluation, the above charac-
teristic has been further reduced up to one iter-
ation per bit. Nevertheless, the desynchronization
effect was shown to be dependent on the absolute
value of the synchronizing signal, therefore only a
smaller percentage of the carrying signal could be
used. All the above results were implemented and
tested for the so-called Generalized Lorenz System
(GLS) [Čelikovský & Vaněček, 1994; Vaněček &
Čelikovský, 1996], and [Čelikovský & Chen, 2005]
and its special parametrization [Čelikovský & Chen,
2002].

The purpose of this paper is to provide further
detailed analysis of the desynchronization estimates
of yet another improvement [Čelikovský & Lyn-
nyk, 2009b] of the just mentioned DECSK secure
encryption scheme based on the GLS and presented
in [Čelikovský et al., 2006a, 2006b; Čelikovský &
Lynnyk, 2009a; Lynnyk & Čelikovský, 2010]. This
improvement [Čelikovský & Lynnyk, 2009b] consists
in keeping the rate of one iteration per bit for about
95% of the carrying chaotic signal. This is made
possible thanks to evaluation of the second deriva-
tive of the synchronizing error, rather than the first
derivative in [Lynnyk & Čelikovský, 2010]. As a
matter of fact, while the former reacts on param-
eter mismatch for small t as o(1), the latter reacts
only as o(t). As in [Lynnyk & Čelikovský, 2010],
the benefit is taken from the fact that one can
easily numerically differentiate signals given dig-
itally with no bias. Therefore, the security anal-
ysis of the method from [Čelikovský & Lynnyk,
2009b] is of great interest as well. Such an analysis
will be provided based on the power analysis and
return map methods. Additional analysis based on
the derived desynchronization estimates will be also
carried out.

The paper is organized as follows. In the next
section, we briefly repeat and complete some known
facts about GLS, including the known estimates
of the desynchronization effect. Section 3 describes
the modification of DECSK method to be ana-
lyzed, namely the one based on the detection of the
second derivative of the error and provides mathe-
matical analysis of the desynchronization estimates
being its basis. Section 4 provides the security anal-
ysis of this method against attack using return
map [Perez & Cerdeira, 1995; Li et al., 2006] and
power analysis methods [Alvarez et al., 2004], as
well as its key analysis. The final section gives some
conclusions.

2. Generalized Lorenz System,
Its Synchronization and
Desynchronization

Despite its name, DECSK encryption scheme, intro-
duced later on, relies, similarly as the majority of
the chaos based schemes, on the synchronization
of two, or more chaotic systems. Therefore, before
describing the DECSK scheme, both the synchro-
nization and the desynchronization effects for the
GLS system will be studied in detail. More pre-
cisely, the estimates for the synchronization level
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of two GLSs with mismatched parameters will be
estimated in this section both from the bottom
and the above. First, let us recall some previous
results on generalized Lorenz system classification
and synchronization. Further details may be found
in [Čelikovský & Chen, 2005].

Definition 2.1. The following general nonlinear
system of ordinary differential equations in R

3 is
called a Generalized Lorenz System (GLS):

ẋ =
[
A 0
0 λ3

]
x +




0
−x1x3

x1x2


, A =

[
a11 a12

a21 a22

]

(1)

where x = [x1 x2 x3]�, λ3 ∈ R, and A has eigen-
values λ1, λ2 ∈ R, such that

− λ2 > λ1 > −λ3 > 0. (2)

The inequality (2) goes back to the well-known
Shilnikov’s chaos analysis near the homoclinicity
and can be viewed as the necessary condition for
the chaos existence, see more detailed discussion in
[Čelikovský & Chen, 2002; Vaněček & Čelikovský,
1996]. GLS is said to be nontrivial if it has at least
one solution that goes neither to zero nor to infinity
nor to a limit cycle. The following result, enabling
efficient synthesis of a rich variety of chaotic behav-
iors for GLS, has been obtained in [Čelikovský &
Chen, 2002]:

Theorem 2.2. For the nontrivial generalized
Lorenz system (1)–(2), there exists a nonsingu-
lar linear change of coordinates, z = Tx , which
takes (1) into the following generalized Lorenz
canonical form:

ż =



λ1 0 0
0 λ2 0
0 0 λ3


z + cz




0 0 −1
0 0 −1
1 τ 0


z, (3)

where z = [z1, z2, z3]�, c = [1,−1, 0] and parameter
τ ∈ (−1,∞).

Actually, the parameter τ plays an important role of
single scalar bifurcation parameter, while remaining
parameters only have qualitative influence, being
eigenvalues of the approximate linearization of GLS
at the origin. These qualitative parameters are just
required to satisfy robust condition (2), so that
fine tuning may be done using the single scalar
parameter τ only.

Synchronization of GLS is based on yet another
canonical form, the so-called observer canonical
form of GLS provided by the following

Theorem 2.3. Both nontrivial GLS (1) and its
canonical form (3) are state equivalent to the fol-
lowing form:

dη

dt
=




(λ1 + λ2)η1 + η2

−η1

[
λ1λ2 + (λ1 − λ2)η3 +

(τ + 1)η2
1

2

]

λ3η3 + K1(τ)η2
1



(4)

K1(τ) =
λ3(τ + 1) − 2τλ1 − 2λ2

2(λ1 − λ2)
, (5)

where η = [η1, η2, η3]�, which is referred to in the
sequel as the observer canonical form. The corre-
sponding smooth coordinate change and its inverse
are

η =
[
z1 − z2, λ1z2 − λ2z1, z3 − (τ + 1)(z1 − z2)2

2(λ1 − λ2)

]�
(6)

z =
[
λ1η1 + η2

λ1 − λ2
,
λ2η1 + η2

λ1 − λ2
, η3 +

(τ + 1)η2
1

2(λ1 − λ2)

]�
.

(7)

Indeed, the above observer canonical form, when
viewing η1 = x1 = z1 − z2 as the output, is almost
in the form linearizable by output injection. This
leads to following observer-based synchronization of
two copies of GLS.

Theorem 2.4. Let (2) hold. Consider system (4)–
(5), with the output η1 and its uniformly bounded
trajectory η(t), t ≥ t0. Further, consider the system
having input η1 and the state η̂ = (η̂1, η̂2, η̂3)�, being
affected by (4)–(5) output η1 injection as follows:

dη̂

dt
=




l1 1 0
l2 0 0
0 0 λ3


η̂ +




λ1 + λ2 − l1

−λ1λ2 − l2

0


η1

+




0

−(λ1 − λ2)η1η̂3 −
(

1
2

)
(τ + 1)(η1)3

K1(τ)(η1)2


,

(8)
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where l1,2 < 0. Then there exist C1 ≥ 1, C2 > 0
such that

‖η(t) − η̂(t)‖ ≤ C1 exp(−C2t)‖η(0) − η̂(0)‖,

i.e. system (8) is a global exponential observer
(4)–(5).

Proofs of all previous theorems may be found
in [Čelikovský & Chen, 2002]. In the sequel, the
system (4)–(5) will be often called as the master
while (8) as the slave.

The following two propositions analyze the
influence of mismatching the parameter τ in the
master and slave, where system (4)–(5) with
chaotic behavior is considered. First of them shows
upper estimate, i.e. synchronization speed while the
second one gives lower estimate, i.e. desynchroniza-
tion speed.

Proposition 2.5. Let (2) hold. Consider system (8)
with τ = τsl(t), l1,2 < 0 and system (4)–(5) with
τ = τmast(t), where τsl(t), τm(t) are uniformly
bounded measurable functions. Further, suppose
that for the corresponding state trajectories of (8)
and (4)–(5), the Euclidean norm of both η1(t) and
η̂1(t) is uniformly bounded by a constant R. Then,
for sufficiently small

Θ := max
τ∈R+

|τmast(t) − τsl(t)|

it holds

lim
t→∞ ‖η(t) − η̂(t)‖ ≤ CΘ,

where C > 0 is a suitable constant. Moreover, for
all values of l1,2, it holds that

d(η3 − η̂3)
dt

= λ3(η3 − η̂3)

+
λ3 − 2λ1

2(λ1 − λ2)
Θ(t)η2

1 , (9)

Θ(t) := (τmast(t) − τsl(t)). (10)

The proof of this proposition and a more specific
estimation of the constant C may be found in
[Čelikovský et al., 2006b].

Proposition 2.6. Let (2) hold. Consider system (8)
with τ = τsl, l1,2 < −1 and system (4)–(5) with
τ = τmast, where τsl, τm are constants. Further, let

it hold for some state trajectory η(t) = [η1(t), η2(t),
η3(t)]� of (4)–(5)

0 < E < |η1(t)| < R, ∀ t ∈ [0, T ∗],

T ∗ := min
(

E2

3R2(2λ1 − λ3)
,

∣∣∣∣ 1
2l1

∣∣∣∣ ,
∣∣∣∣ 1
2l2

∣∣∣∣
)

.

Then it holds for all t ∈ [0, T ∗]

|η̂1(t) − η1(t)| ≥ E3

12
|Θ|t2,

|η̂2(t) − η2(t)| ≥ E3

6
|Θ|t,

where Θ := τmast − τsl and η̂(t) is any trajectory
of (8) with η̂(0) = η(0).

The proof of this proposition may be found in [Lyn-
nyk & Čelikovský, 2010].

3. Desynchronization Chaos Shift
Keying Scheme Based on the
Second Derivative Detection

As already mentioned, to construct our encryp-
tion and decryption algorithms, we aim to fur-
ther improve the DECSK scheme introduced in
[Čelikovský et al., 2006a, 2006b] and improved in
[Lynnyk & Čelikovský, 2010]. This improvement is
based on the following proposition.

Proposition 3.1. Let (2) hold. Consider system (8)
with τ = τsl, l1 < l2 ≤ −1 and system (4)–(5) with
τ = τmast, where τsl, τm are constants. Further, let
it hold for some state trajectory η(t) = [η1(t), η2(t),
η3(t)]� of (4)–(5) that

0 < E < |η1(t)| < R, ∀ t ∈ [0, T ∗],

T ∗ := min
(

1
2λ1 − λ3

,

∣∣∣∣ 1
2l1

∣∣∣∣ ,
∣∣∣∣ 1
2l2

∣∣∣∣
)

.

Then it holds for all t ∈ [0, T ∗]

|ë1(t)| ≥ |Θ|
2

[
E3 − R3

[
2(l21 + l2)t2

+ (2λ1 − λ3 − 4l1)t
]]
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where Θ := τmast − τsl, e1(t) := η̂1(t) − η1(t) and
η̂(t) is any trajectory of (8) with η̂(0) = η(0).

Proof. Obviously, the following error dynamics
holds:

ė =




l1 1 0
l2 0 (λ2 − λ1)η1

0 0 λ3


e +




0

Θη3
1

2

− λ3 − 2λ1

2(λ1 − λ2)
Θη2

1




,

where e(t) :≡ η̂(t)−η(t). Recall that by the assump-
tion of the proposition being proved, we get e(0) =
η̂(0) − η(0) = 0. Then

e3(t) =
λ3 − 2λ1

2(λ1 − λ2)
Θ

∫ t

0
exp(λ3(t − s))η2

1(s)ds,

Recall, that λ2 < 0, λ3 < 0, λ1 > 0, therefore it
holds

|e3(t)| =
2λ1 − λ3

2(λ1 − λ2)
|Θ|

∫ t

0
exp(λ3(t − s))η2

1(s)ds,

and by virtue of the assumption |η1(t)| < R, ∀ t ∈
[0, T ∗]

|e3(t)| ≤ 2λ1 − λ3

2(λ1 − λ2)
|Θ|R2

∫ t

0
exp(λ3(t − s))ds

≤ 2λ1 − λ3

2(λ1 − λ2)
|Θ|R2t.

Further, let

Ã =

[
l1 1
l2 0

]
, (11)

then[
e1(t)

e2(t)

]
=

∫ t

0
exp(Ã(t − s))

[
0

α(s)

]
ds, α(s) = (λ2 − λ1)η1(s)e3(s) − Θη3

1(s)
2

,

|α(s)| =
∣∣∣∣(λ2 − λ1)e3(s) − Θη2

1(s)
2

∣∣∣∣ |η1(s)| ≤ |Θ|R3

2
+ |(λ1 − λ2)e3(s)|R ≤ R3|Θ|1 + (2λ1 − λ3)s

2
,

i.e.

|α(s)| ≤ |Θ|R3, ∀ s ∈ [0, (2λ1 − λ3)−1],

e1(t) =
∫ t

0
α(t − s)

[
s +

l1s
2

2
+

(l21 + l2)s3

6
+ · · ·

]
ds, e2(t) =

∫ t

0
α(t − s)

[
1 +

l2s
2

2
+

(l1l2)s3

6
+ · · ·

]
ds,

|e1(t)| = |Θ|R3

[
t2

2
+

l1t
3

6
+

(l21 + l2)t4

24
+ · · ·

]
ds ≤ 1

2
|Θ|R3t2

[
1 +

l1t

6
+

(l21 + l2)t2

24
+ · · ·

]
≤ |Θ|R3t2,

|e2(t)| = |Θ|R3

[
t +

l1t
3

6
+

(l1l2)t4

24
+ · · ·

]
ds ≤ |Θ|R3t

[
1 +

l2t
2

6
+

(l1l2)t3

24
+ · · ·

]

≤ 2|Θ|R3t, t ∈ [0, T ∗], T ∗ := min
[
(2λ1 − λ3)−1,

−1
l1

,
−1
l2

]
.

In other words, it holds

|e1(t)| ≤ R3|Θ|t2, |e2(t)| ≤ 2R3|Θ|t,
∀ t ∈ [0, T ∗].

Now, using the derived upper estimates of |e1,2,3(t)|
and both the lower and upper estimates of |η1(t)|,
assumed in the proposition statement, one can fin-
ish this proof as follows

ë1 = l1ė1 + ė2

= (l21 + l2)e1 + l1e2

+ (λ2 − λ1)η1(t)e3(t) − Θη3
1(t)
2

,

|ë1(t)| ≥
∣∣∣∣Θη3

1(t)
2

∣∣∣∣ − |(l21 + l2)e1 + l1e2

+ (λ2 − λ1)η1(t)e3(t)|.
Therefore, taking into the account all those previ-
ously derived estimates of e1,2,3(t) ∀ t ∈ [0, T ∗] and
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Fig. 1. DECSK digital communication system with desynchronization-error-based demodulator.

l1 ≤ l2 ≤ −1, −λ2 > λ1 > −λ3 > 0 from the
proposition assumption, we get

|ë1(t)| ≥ |Θ|E3

2
− (l21 + l2)R3|Θ|t2 + 2l1R3|Θ|t

− (λ2 − λ1)R
2λ1 − λ3

2(λ1 − λ2)
|Θ|R2t,

|ë1(t)| ≥ |Θ|
2

[
E3 − R3

[
2(l21 + l2)t2

+ (2λ1 − λ3 − 4l1)t
]]

,

which completes the proof. �
Remark 3.2. Typical length of the single iteration
used during desynchronization detection is 0.001.
Therefore, practically, the desynchronization speed
of the second derivative of the synchronizing signal
error may be taken as

|ë1(t)| ≥ |Θ|E3

2
. (12)

As a matter of fact, during this very short time
interval, one can assume that R/E ≈ 1 (i.e. mini-
mum and maximum values of synchronizing signal
are practically the same). Therefore, the claim of
the current remark follows from the fact that

1 − 2(l21 + l2)t2 − (2λ1 − λ3 − 4l1)t ≈ 1

for t = 0.001.

One can therefore see that DECSK based on
the second derivative detection has much better
potential for the encryption. This scheme is clearly
described in Fig. 1.

On the transmitter side, there is the signal
generator being the GLS (4)–(5) depending on cru-
cial bifurcation parameter τ [Čelikovský & Chen,

2002; Čelikovský & Vaněček, 1994; Vaněček &
Čelikovský, 1996]. To encrypt digital information,
one chooses “for a while” τ = τ0 for bit “0” while for
the bit “1” one chooses τ = τ1, where τ0, τ1 are suit-
ably selected GLS bifurcation parameters from its
known chaotic range, cf. [Čelikovský & Chen, 2002;
Čelikovský & Vaněček, 1994; Vaněček & Čelikovský,
1996; Čelikovský & Chen, 2005]. Then, only the first
component of a chaotic signal η1 = x1 = z1 − z2

will be transmitted through the communication
channel.

On the receiver side, signal η1 = x1 = z1−z2

is fed into two synchronized copies of GLS (the so-
called slaves), the first one, with parameter τ0, while
the second one with parameter τ1. Now, the cru-
cial idea of desynchronization based decryption
uses the fact that both slaves are kept synchronized
to the numerically best possible level (the so-called
numerical zero, in most simulations1 equal to
10−4). Therefore, one can detect almost immedi-
ately “the wrong” slave due to the fact that it
produces fast increasing error of its first component
compared to the slowly varying error in “the cor-
rect” slave. In such a way, the bit value is decrypted,
moreover, the state value of the “wrong” slave is
overwritten by the value from the “correct” slave,
so that prior to receiving the next piece of cipher
text (i.e. the synchronizing signal η1(t)) both slaves
are again synchronized to the same best possible
level of the “numerical zero” 10−4.

This idea was developed in [Čelikovský et al.,
2006b, 2006a] by comparing error values e1(t) =
η1 − η̂1 in both slaves. The drawback was need for
more iterations to wait for sufficiently safe large

1MATLAB-SIMULINK ode4 Runge–Kutta procedure with a fixed step size 0.001 is being used throughout the paper.

1250231-6

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

2.
22

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 I
N

ST
IT

U
T

E
 O

F 
IN

FO
R

M
A

T
IO

N
 T

H
E

O
R

Y
 &

 A
U

T
O

M
A

T
IO

N
 o

n 
10

/2
5/

12
. F

or
 p

er
so

na
l u

se
 o

nl
y.



October 3, 2012 22:28 WSPC/S0218-1274 1250231

Desynchronization Chaos Shift Keying Method

Table 1. Here, P (E) =
meas(A(E))

Tmax
· 100, where A(E) = {t ∈ [0, Tmax] : |η1(t)| ≥ E} and Tmax is maximal time available

during simulation.

E 4.0 3.0 2.0 1.5 1 0.8 0.6 0.5 0.4 0.3 0.25 0.1

P(E) 19.92 28.14 38.18 47.51 64.76 71.45 78.32 81.25 84.44 87.44 89.08 95.07

error. Typically, (∼4–13) iterations were needed,
moreover, only a small percentage of signal carrier
could be used. Later on, in [Lynnyk & Čelikovský,
2010], the method was improved by considering the
second component detection.

The current method uses Proposition 3.1 and
computes numerically the second derivative ë1 in
both slaves. As expected by Proposition 3.1 and
confirmed by the simulations presented in detail
later on, it is possible to detect the wrong slave
immediately for the higher percentage of synchro-
nizing signal — being, in fact, the cipher text
carrier.

As a matter of fact, as shown by all Proposi-
tions 2.5, 2.6, 3.1, for the fixed parameter mismatch
Θ = |τmast − τsl| the desynchronization effect cru-
cially depends on the absolute value of the synchro-
nizing signal η1, namely, on E3, where E is minimal
value of η1(t) over the time interval where desyn-
chronization is to be detected. This crucial value
has been experimentally analyzed thoroughly and
their percentual summary is given in Table 1.

To demonstrate a huge progress made by
the current approach, consider Table 1. DECSK
method of [Čelikovský et al., 2006a, 2006b] needed
E ≥ 4 to detect binary signals after 13 itera-
tions (i.e. ≈20% of signal carrier could be used),
DECSK presented in [Lynnyk & Čelikovský, 2010]

requires single iteration provided E ≥ 2. The cur-
rent method requires single iteration for E ≥ 0.33
(i.e. for 86.44% of signal carrier), and two iter-
ations for E ≥ 0.1 (95.07%). Summarizing, the
current method can encrypt/decrypt efficiently 920
bits/1000 iterations, comparing to just 15 bits/1000
iterations for the very first method in [Čelikovský
et al., 2006a, 2006b] and 370 bits/1000 iterations
for the method in [Lynnyk & Čelikovský, 2010].

Example of the application of the current
DECSK method is shown in Fig. 2. It shows an
example of a transmitted baseband signal for the
message “0001011101” encoded by means of two dif-
ferent, but close to each other chaotic GLS genera-
tors with different parameters τ0 = 0.1 and τ1 = 0.2.
Only the ciphertext is available to potential intruder
with no clue of encrypted signal. This ciphertext is
the synchronizing signal sent by either GLS with
τ0 = 0.1 or τ1 = 0.2, depending on an encrypted
value of the current bit. For easy mutual comparison
of all scopes in Fig. 2, their time axes are identical
and indicates number of iterations, not a real time.
Here, one can clearly see the influence of parameter
mismatch on the second derivative (see the second
graph from the bottom), easily detectable even by
single iteration, while comparison of the errors only
(see the middle graph) by no means may detect the
correct value.
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Fig. 2. Time histories related with the encryption and decryption of the plaintext “0001011101” using DECSK method. From
up to down: plaintext time signal; ciphertext; e1(t); ë1(t) and the reconstructed plaintext.
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Fig. 2. (Continued)

Finally, notice that previously presented Chaos
Shift Keying method [Parlitz et al., 1992; Dedieu
et al., 1993] typically needs up to a second piece
of synchronizing signal to encrypt and decrypt a

single bit which corresponds usually to thousands
of real numbers (iterations). So, the message expan-
sion and speed of encryption–decryption for CSK
method are simply unrealistic. For our DECSK,
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the message expansion is still much bigger than in
methods based on discrete time chaos, nevertheless,
it is becoming realistic and might be justified if it
provides some extra security.

4. Security Analysis of DECSK
Method

4.1. Power analysis attack

First, to investigate the security of the DECSK
scheme, the famous power analysis attack proposed
in [Alvarez et al., 2004] is considered. The proce-
dure to analyze the ciphertext of chaos-based secu-
rity communication scheme proposed there is as
follows. Figure 3 plots the result of power analy-
sis attack against DECSK scheme. This attack at
first computes the square of the ciphertext signal
(the transmitted signal) η1. Next, this signal η2

1 is
filtered by a low-pass filter, and then the plain-
text is recovered using a binary quantizer. Figure 3
plots the result of the power analysis attack for
DECSK scheme. From Fig. 3(c) it is obvious that
the intruder cannot recover the binary sequence as
the signal energy is not changed depending on “0”
or “1” being encrypted. Actually, signal in Fig. 3
represents about 12 000 bits (one bit per itera-
tion), and change of energy is affected only globally,
by carrying signal time change, not by bits being
encrypted.

4.2. Return map attack

As described in [Perez & Cerdeira, 1995], a small
change of the parameters of the transmitter affects
the attractor of the chaotic system. Assuming that
Xn and Yn are the nth maxima and n-minima of
the transmitted signal, respectively, define the fol-
lowing modified return maps by An = Xn+Yn

2 , and
Bn = Xn − Yn. In Fig. 4, the plot of the return
map limit attractor shows that there are no clear
attractor clusters corresponding to different values
of parameter τ . Again, the reasons are expectable
by the fact that values of τ0 and τ1 are close to
each other and that changes are made usually each
iteration, so that there is actually no two separate
attractors. Therefore, the intruder cannot decrypt
the plaintext by return map analysis.

4.3. Key analysis

The above described decryption scheme in the
DECSK method requires initial synchronization of
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Fig. 3. Time histories related with the decryption of the
plaintext “0011011100010001110001101100” repeated 400
times using power analysis attack. From up to down: (a) the
ciphertext, η1; (b) squared ciphertext signal, η2

1 ; (c) low pass
filtered squared ciphertext signal.

the master on the transmitter side and both slaves
on the receiver side, up to the best available numer-
ical precision, called in the sequel as the “numerical
zero”. Therefore, the initial condition is the immedi-
ate candidate for the secret key. As our “numerical
zero” is 10−4, this key space is naturally discretized
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Fig. 4. Return map analysis of DECSK scheme.

in the sense that two initial conditions closer to each
other than numerical zero should be represented by
the same key. Assuming the size of the initial con-
ditions interval of η3(t) being 10 gives 105 different
keys, as only the third component η3(t) is unknown,
while the first one η1(t) is transmitted through the
public channel and the second one η2(t) is easily
obtained from the first component η1(t) using the
first equation in (4).

To analyze the security of the key based on
the initial condition, assume for simplicity at first
that both τ0 and τ1 are publicly known. Proposi-
tion 2.5 implies that at least ten thousands of itera-
tions of the correct signal are needed to synchronize
the slaves if the initial conditions of the master are
unknown. Therefore, the initial condition key can
be broken only in three ways:

• Attack based on the known plaintext and the
corresponding ciphertext, but both should be at
least as of 10 000 bits. Moreover, such a knowl-
edge should be used only for the attack to decrypt
some unknown ciphertext following right after
the above known sequence of both plaintext and
the corresponding ciphertext.

• Trying 210 000 possible combinations of all 10 000
bits long plaintexts and comparing them with
ciphertext at hand.

• Trying all possible keys — 105 initial conditions.

Furthermore, the parameters τ0, τ1 can be con-
sidered as an additional source for the secret keys.
In this case, the current method presents impor-
tant improvement due to the fact that changes

of the parameter may occur during a single itera-
tion. Therefore, one cannot see any clue of changing
parameter when analyzing signal η1. Nevertheless,
the difference |τ0 − τ1| cannot be arbitrarily small,
as the desynchronization effect depends on this dif-
ference as well, see Propositions 2.5, 2.6, 3.1. Still,
this difference was experimentally shown to be pos-
sible up to 10−3. Therefore, there are 106 possibil-
ities, if values τ ∈ [−0.5, 0.5] are considered. As a
matter of fact, chaotic range for τ is even broader
that the previous interval, see [Čelikovský, 2004].
Finally, notice that secret key based on parameter
τ is equally resistant even in the case of the known
plaintext and the corresponding sequence of cipher-
text. In all kinds of attacks, one has to check all 106

possibilities of pairs τ0, τ1 and one needs to know
the initial condition, treated before.

Therefore, combining both the initial condition
and parameter τ , one has up to 1011 possibilities
for the secret key. When checking all possibilities
for the secret key trying to perform the brute force
attack, one has to take into the account that the
amount of computing efforts to be done for each
key choice is far from being negligible. Basically, one
needs to evaluate error in both slaves during several
iterations and compute its second derivative to see
if it stays significantly smaller in one of the slaves
than in the other. This leads to a conclusion that
brute force attack is unrealistic as well.

Here, an independent use of the τ based key
and the initial condition η3(0) based key is guar-
anteed by the estimates in Proposition 3.1. Indeed,
τ mismatch level Θ and initial error e3(0) influence
are mixed on the right-hand side, and nonzero value
of any of them spoils a possible detection.

5. Conclusion

Desynchronization estimates for yet another mod-
ification of the DECSK scheme has been derived
and further security analysis provided. This method
is based on the evaluation of the second derivative
of the error, which is numerically possible for digi-
tal implementations where no noise is present. The
security has been analyzed using return map and
power analysis method, moreover, desynchroniza-
tion estimates has been used for the security anal-
ysis of possible secret keys.
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Čelikovský, S. & Chen, G. [2002] “On a generalized
Lorenz canonical form of chaotic systems,” Int. J.
Bifurcation and Chaos 12, 1789–1812.
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Čelikovský, S. & Chen, G. [2005] “Secure synchroniza-
tion of a class of chaotic systems from a nonlinear
observer approach,” IEEE Trans. Automat. Contr.
50, 76–82.
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