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a b s t r a c t

Repetitive processes are a distinct class of 2D systems of both theoretical and practical interest. This paper
develops algorithms for control law design to ensure stabilization and a prescribed level of disturbance
attenuation as measured by an H∞ norm.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Repetitive processes make a series of sweeps, termed passes,
through a set of dynamics defined over a finite interval known as
the pass duration or length. At the end of each pass the process is
reset to the starting position and the next pass begins. The output
of a repetitive process is known as the pass profile and the unique
feature of these processes is that the previous pass profile acts
as a forcing function on, and hence contributes to, the dynamics
produced on the current pass [1]. The result can be oscillations in
the sequence of pass profiles that increase in amplitude in the pass-
to-pass direction.

To introduce a formal definition, letα < ∞be a natural number
that denote the pass length. Then in a repetitive process the pass
profile yk(p), 0 ≤ p ≤ α − 1, where k ∈ N, p ∈ N and N is the set
of natural numbers, generated on pass k acts as a forcing function
on, and hence contributes to, the dynamics of the next pass profile
yk+1(p), 0 ≤ p ≤ α − 1.

Repetitive processes have their origins in the coal mining and
metal rolling industries [1]. Also there are areas where adopting
a repetitive process setting for analysis can be used to effect.
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Examples include classes of iterative learning control schemes
with experimental verification [2]. In the coal mining example, the
pass profile is the height of the stone/coal interface above some
datum line and the cutting machine rests on the previous pass
profile during the production of the current one. The result can be
severe undulations/oscillations in the pass profiles that have to be
removed after only a few passes and the downtime involved is lost
production.

Recognizing the unique control problem, the stability theory
for linear repetitive processes is of the bounded-input bounded-
output (BIBO) form, that is, a bounded initial pass profile is required
to produce a bounded sequence of pass profiles. The stability
theory [1] has been developed in terms of an abstract model in a
Banach space setting that includesmany examples as special cases.
Asymptotic stability in the pass-to-pass direction demands this
BIBO stability property over the finite and fixed pass length, that
is, over (k, p) ∈ [0, ∞] × [0, α], and if this property holds then
the sequence of pass profiles generated converges strongly to the
limit profile that in some cases, including the processes considered
here, is described by a standard discrete linear systems state-space
model. The finite pass length does, however, mean that this limit
profile can have unacceptable along-the-pass dynamics, including
the case when it is unstable.

The most obvious way to exclude this last possibility is to
demand the BIBO stability property uniformly with respect to the
pass length, that is, over (k, p) ∈ [0, ∞] × [0, ∞], and this
is termed stability along-the-pass. Moreover, for the processes
considered here, the abstract model based stability conditions can
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be transformed into conditions that can be checked by standard
discrete linear systems stability tests. In the case of asymptotic
stability in the pass-to-pass direction, the condition reduces to
computing the eigenvalues of a matrix and for stability along-
the-pass the extra conditions are an eigenvalue computation for
a matrix plus, in the single-input single-output (SISO) case for
simplicity, a condition interpreted in terms of the frequency
content of the initial pass profile, that is, all of its frequency content
must be attenuated from pass-to-pass. In control law design terms
this is a very stringent condition to meet and in recent work [3]
strong practical stability has been developed as an alternative
where in the SISO case the frequency attenuation is no longer
imposed over the complete frequency range. The approach used
is to relax the requirement for the BIBO property to hold when
k → ∞ and p → ∞ simultaneously, where this combination of k
and p cannot arise in a physical application.

Previous work [3] has shown that for discrete linear repetitive
processes, necessary and sufficient conditions for this property can
be formulated in terms of Linear Matrix Inequalities (LMIs) that
also give algorithms for the design of a stabilizing control law. In
this paper we develop substantial new LMI based results to design
control laws for strong practical stability with H∞ disturbance
attenuation.

Throughout this paper, the null and identity matrices with the
required dimensions are denoted by 0 and I respectively and ρ(X)
denotes a spectral radius of the matrix or operator X . Moreover,
M > 0 (<0) denotes a real symmetric positive (negative) definite
matrix.

2. Background

The state-space model of a discrete linear repetitive process [1]
has the following form over 0 ≤ p ≤ α − 1, k ≥ 0,

xk+1(p + 1) = Axk+1(p) + Buk+1(p) + B0yk(p),
yk+1(p) = Cxk+1(p) + Duk+1(p) + D0yk(p),

(1)

where α < ∞ denotes the number of samples along the pass
and on pass k xk(p) ∈ Rn is the state vector, yk(p) ∈ Rm is the
pass profile vector, and uk(p) ∈ Rr is the vector of control inputs.
The boundary conditions are xk+1(0) = dk+1, k ≥ 0, where the
entries in dk+1 are known constants and the initial pass profile
vector y0(p) = f (p), where the entries in f (p) are known functions
of p ∈ [0, α − 1]. Also it is assumed throughout this paper that the
pair {A, B0} is controllable and the pair {C, A} observable.

In this model the state updating is in the p direction and the
pass profile updating is in the k direction. The terms B0yk(p) and
D0yk(p), respectively, represent the contribution from the previous
pass profile. See [1] for cases where other representations for
the contribution from the previous pass profile are required. As
expected, these previous pass terms are critical to the stability
analysis for these processes.

The stability theory [1] for linear repetitive processes is based
on an abstractmodel in a Banach space setting that includes awide
range of such processes as special cases, including those described
by (1). Let Eα be a Banach space, Wα a linear subspace of Eα , and
Lα a bounded linear operator mapping Eα into itself. Then the
dynamics of a linear repetitive process with constant pass length
are described by linear recursion relations of the form

yk+1 = Lαyk + bk+1, k ≥ 0, (2)

where yk is the pass profile on pass k, and bk+1 ∈ Wα, k ≥ 0. The
term Lαyk represents the contribution of pass k to pass k + 1 and
bk+1 represents initial conditions, disturbances and control input
effects that enter on pass k + 1.

In the case of processes described by (1), take Eα = ℓm
2 [0, α],

that is, the space of realm× 1 vectors {yk(1), . . . , yk(α)} and then

(Lαy)(p) =

p−1
i=0

CAp−1−iB0y(i) + D0y(p),

and

bk+1 = CApdk+1 +

p−1
i=0

CAp−1−iBuk+1(i) + Duk+1(p).

Given the unique control problem, the natural approach to
a definition of stability for these processes is to ask that given
any initial profile y0 and any disturbance sequence {bk+1}k≥1 that
converges strongly to b∞ as k → ∞, the sequence of pass
profiles generated {yk}k≥1 converges strongly to y∞ as k → ∞.
This property is termed asymptotic stability in the pass-to-pass
direction, or asymptotic stability for short, of (2) and for the given
finite pass length α is equivalent [1] the existence of finite real
scalars Mα > 0 and λα ∈ (0, 1) such that ∥Lkα∥ ≤ Mαλk

α , where
∥ · ∥ denotes both the norm on Eα and the induced operator norm
as appropriate. This property holds [1] if and only if the spectral
radius of Lα, ρ(Lα), satisfies ρ(Lα) < 1 and also y∞, termed the
limit profile, is given by

y∞ = (I − Lα)−1b∞,

where I denotes the identity operator in Eα .
For processes described by (1) it has been shown [1] that

asymptotic stability holds if and only if ρ(D0) < 1. Also if (1) is
asymptotically stable and the input sequence applied {uk}k+1 con-
verges strongly as k → ∞ to u∞, the resulting limit profile is de-
scribed by a discrete linear systems state-space model with state
matrix Alp = (A + B0(I − D0)

−1C).
Asymptotic stability does not guarantee that the limit profile

has acceptable along-the-pass dynamics. A simple example is A =

−0.5, B = 1, B0 = 0.5 + β, C = 1,D = 0,D0 = 0, where β is a
real scalar. In this case Alp = β and ρ(Alp) ≥ 1 for |β| ≥ 1.

The problem highlighted by this example can be overcome
by demanding the BIBO property for any possible value of the
pass length, where mathematically this can be analyzed by letting
α → ∞. This is the stability along-the-pass property which [1] is
equivalent to the existence of finite real scalarsM∞ > 0 and λ∞ ∈

(0, 1), which are independent α, such that ∥Lkα∥ ≤ M∞λk
∞

, k ≥ 0,
For the processes described by (1), with the controllability and
observability assumptions stated above, this property [1] holds if
and only if (i) ρ(D0) < 1 (asymptotic stability), (ii) ρ(A) < 1,
and (iii) all eigenvalues of the transfer-function matrix G(z) =

C(zI − A)−1B0 + D0 must lie inside the unit circle in the complex
plane for all |z| = 1. In the case of the example above it is this last
condition which fails when |β| ≥ 1.

To give a physically based interpretation of asymptotic stability
and stability along the pass and the differences between them, sup-
pose that no control input term is present and xk+1(0) = 0, k ≥ 0.
Then yk(0) = Dk

0y0, k ≥ 1 and in the SISO case for simplicity,
asymptotic stability ensures that the sequence {yk(0)}, k ≥ 0,
does not become unbounded as k → ∞. This places no restric-
tion on the along the pass (state) dynamics and condition (ii) is to
be expected but as the example above shows this is not enough to
ensure stability along the pass. In the case of condition (iii), again
in the SISO case for simplicity, the transfer-function involved de-
scribes the contribution of the previous pass profile to the cur-
rent one [1] and reduces to |G(z)| < 1 for all |z| = 1. Hence
this condition is equivalent to requiring that each frequency com-
ponent of the initial pass profile is attenuated from pass-to-pass,
whereas asymptotic stability alone restricts this requirement to
p = 0.
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Condition (iii) for processes described by (1) is very strict and,
by analogy with the standard linear systems case, this would
make control law design to force the pass profile vector to track a
reference very difficult. Motivated by this last fact, strong practical
stability [3] relaxes this BIBO stability property by removing the
uniform boundedness requirement as both k → ∞ and α → ∞

but still demands it when (a) both k and α are finite, (b) the pass
index k → ∞ and the pass lengthα is finite and (c) the pass index k
is finite and the pass lengthα → ∞. Cases (a) and (b) have obvious
practical motivation and Case (c) is the mathematical formulation
of an application where the process completes a finite number of
passes but the pass length is very long, and there is a requirement
to control the along the pass dynamics. In particular, in control law
design to force the pass profile to track a reference attenuation
at each frequency component is relaxed to that of requiring this
property at a subset of frequencies.

In line with the developments in [3], the repetitive process
model (1) is said to have the strong practical stability property if
the following conditions hold: [a] ρ(D0) < 1; [b] ρ(A) < 1; [c]
ρ(A + B0(I − D0)

−1C) < 1; and [d] ρ(C(I − A)−1B0 + D0) < 1.
The matrix inverse in [c], respectively, [d] holds whenever [a],
respectively, [b] holds. A numerical example of a process that
has the strong practical stability property but is not stable along
the pass can be found in the literature [3]. The implications of
this property are explored in the subsequent section, from the
perspective of limit profile existence and corresponding measures
of performance.

3. Strong practical stability and H∞ disturbance attenuation

Previous research [3] on strong practical stability for discrete
linear repetitive processes assumed that the example under con-
sideration was disturbance free. This paper starts from the follow-
ing process state-space model over 0 ≤ p ≤ α − 1, k ≥ 0,

xk+1(p + 1) = Axk+1(p) + Buk+1(p)
+ B0yk(p) + B1ωk+1(p),

yk+1(p) = Cxk+1(p) + Duk+1(p)
+D0yk(p) + D1ωk+1(p),

(3)

where, on pass k, ωk(p) ∈ Rs is a disturbance vector on both the
state and pass profile vectors. The remainder of the notation is the
same as the disturbance-free model.

To formulate H∞ disturbance attenuation for this model, one
way would be to use stability along the pass and the norm on
2-D signals defined over (k, p) ∈ [0, ∞] × [0, ∞], considered in,
for example, [4] for 2-D discrete linear systems. This approach for
control law design would have the same implications in terms of
frequency attenuation detailed in the previous section for stability
along the pass. Instead, this paper uses strong practical stability
and measures of disturbance attenuation defined in terms of the
evolution over one independent variable with the other fixed; that
is, with p fixed and k ranging over [0, ∞] and also k fixed and p
ranging over [0, ∞].

Consider an asymptotically stable process described by (3) with
zero input vector (uk(p) = 0) with a sequence {ωk}k≥1 that
converges strongly to ω∞ as k → ∞. Then (following the analysis
for the input only case in [1]) the repetitive process dynamics
converge as k → ∞ to the limit profile

x∞(p + 1) = (A + B0(I − D0)
−1C)x∞(p) + (B1

+ B0(I − D0)
−1D1)ω∞(p),

y∞(p) = (I − D0)
−1Cx∞(p) + (I − D0)

−1D1ω∞(p), (4)

(where (I − D0)
−1 exists since ρ(D0) < 1). This is a discrete linear

systems state-space model with indeterminate p and condition [c]

is the requirement for this model to be stable. Furthermore, under
condition [b] for strong practical stability the dynamics as p → ∞

for any finite k are (again following the analysis for the input only
case in [1]) described by

yk+1(∞) =

C(I − A)−1B0 + D0


yk(∞)

+

C(I − A)−1B1 + D1


ωk+1(∞)

xk+1(∞) = (I − A)−1B0yk(∞) + (I − A)−1B1ωk+1(∞) (5)

where (I−A)−1 exists sinceρ(A) < 1. This a discrete linear systems
state-space model with indeterminate k and condition [d] is the
requirement for this model to be stable. In what follows, the initial
pass profile at p = 0 with zero state initial vector sequence and
control input vector, respectively, is used, that is,

yk+1(0) = D0yk(0) + D1ωk+1(0). (6)

Consider againH∞ disturbance attenuation for these processes,
where the 2-D systems formulation would consider this property
over (k, p) ∈ [0, ∞] × [0, ∞]. Under strong practical stability,
this requirement is relaxed to the ‘boundaries’ of this domain,
that is, is imposed on (a) yk(0) for all values of the variable k,
(b) yk(∞) for all values of k and (c) y∞(p) for all values of p. These
disturbance attenuation measures are practically relevant since
control design for applications should aim to reach a limit profile,
that is, produce the same output of each passwith acceptable along
the pass dynamics and ensure that each pass completed also has
acceptable along the pass dynamics. The required conditions can
be formulated in terms of the standard linear systems H∞ norm as
detailed next.

Definition 1 (Performance). Suppose that the repetitive process
(3) with zero boundary conditions xk(0) = 0 for k ≥ 1 and zero
input uk(p) = 0 for k, p ≥ 0, has the strong practical stability
property. Given any 2-D disturbance sequence w = {wk}k≥0,
of p-indexed sequences {wk(p)}p≥0, that has the 1-D strong limit
w̄ := {w∞(p)}p≥0 in k and/or 1-D strong limit ŵ := {wk(∞)}k≥0
in p, define the corresponding 1-D sequences ȳ := {y∞(p)}p≥0
and/or ŷ := {yk(∞)}k≥0 according to (4) and/or (5). Moreover,
let w̃ := {wk(0)}k≥0 and define the corresponding 1-D sequence
ỹ := {yk(0)}k≥0 according to (6). Then the process (3) is said to
achieve H∞ strong practical performance at the level of γ1 > 0 in
k if

sup
0≠w̃∈ℓ2

∥ỹ∥2

∥w̃∥2
< γ1 and sup

0≠ŵ∈ℓ2

∥ŷ∥2

∥ŵ∥2
< γ1

and/or at the level of γ2 > 0 in p if

sup
0≠w̄∈ℓ2

∥ȳ∥2

∥w̄∥2
< γ2

where ℓ2 denotes the Hilbert space of square summable 1-D se-

quences with norm ∥{uk}k≥0∥2 =


k≥0 u

T
kuk (or ∥{u(p)}p≥0∥2 =

p≥0 uT (p)u(p)).

Define the along the pass and pass-to-pass shift operators as
z1 and z2 respectively, applied, for example, to xk(p) and yk(p) as
z1xk(p) = xk(p + 1) and z2yk(p) = yk+1(p), respectively. Also let
∥T (z)∥∞ denote the H∞ norm of the transfer-function matrix T (z)
in one indeterminate z.

Next, the conditions for H∞ disturbance attenuation under
strong practical stability, that is, conditions [a]–[d] in the previous
section hold, are developed, where disturbance attenuation in the
sense of Definition 1 for p = 0 in direction k holds when

∥Ga(z2)∥∞ < γ1,
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using condition [a] for strong practical stability and Ga(z2) is ob-
tained by applying the z2 transform to (6).

By condition [c] for strong practical stability, (4) is a stable
discrete linear system and disturbance attenuation in the sense of
Definition 1 in the direction p holds when
∥Gb(z1)∥∞ < γ2,

where Gb(z1) is obtained by applying the z1 transform to (4).
By condition [d] for strong practical stability, (5) is a stable

discrete linear system and hence disturbance attenuation in the
sense of Definition 1 for p = ∞ in direction k holds when
∥Gc(z2)∥∞ < γ1 where Gc(z2) is obtained by applying the z2
transform to (5).

Finally, strong practical stability with H∞ disturbance attenu-
ation for processes described by (1) holds when
[e] ρ(D0) < 1 with ∥Ga(z2)∥∞ < γ1,
[f] ρ(A) < 1,
[g] ρ(A + B0(I − D0)

−1C) < 1 with ∥Gb(z1)∥∞ < γ2 and
[h] ρ(C(I − A)−1B0 + D0) < 1 with ∥Gc(z2)∥∞ < γ1.

Conditions [e] and [f] are standard in the theory of standard dis-
crete linear systemswhere [e] is the stability withH∞ disturbance
attenuation problem. The remaining two conditions are somewhat
more involved, especially in terms of control law design and, as a
preliminary step in the derivation of computable control law de-
sign algorithms. The next section develops them into LMI based
conditions using results from the analysis of standard discrete lin-
ear nonsingular descriptor systems.

3.1. Stability tests with disturbance attenuation

Suppose that the example under consideration is asymptoti-
cally stable and hence ρ(D0) < 1. Then as k → ∞ the resulting
limit profile state-space model (4) can be rewritten as
x∞(p + 1) − B0y∞(p) = Ax∞(p) + B1ω∞(p),
(I − D0)y∞(p) = Cx∞(p) + D1ω∞(p).
Moreover, condition [g] is equivalent to the requirement that the
standard discrete linear nonsingular descriptor system

Ē1z(h + 1) = Ā1z(h) +Bω(h),
y(h) = C̄z(h),

(7)

where

z(h) =


x∞(h)

y∞(h − 1)


, Ā1 =


A 0
C 0


,

Ē1 =


I −B0
0 I − D0

 B =


B1
D1


, C̄ =


0 I


,

is stable and the H∞-norm of the transfer-function matrix cou-
pling ω(h) to y(h) has value less than γ2.

In the case when ρ(A) < 1, k finite, and p → ∞, rewrite (5) as
(I − A)xk+1(∞) = B0yk(∞) + B1ωk+1(∞),

−Cxk+1(∞) + yk+1(∞) = D0yk(∞) + D1ωk+1(∞).

Then condition [h] is equivalent to the requirement that the stan-
dard discrete linear nonsingular descriptor system
Ē2ẑ(o + 1) = Ā2ẑ(o) +Bω(o),
ŷ(o) = C̄ ẑ(o),
where

ω(o) = ω(o + 1), ẑ(o) =


xo−1(∞)
yo(∞)


,

Ā2 =


0 B0
0 D0


,

Ē2 =


I − A 0
−C I


, C̄ =


0 I


,

is stable and the H∞-norm of the transfer-function matrix cou-
pling ω̂(o) to ŷ(o) has value less than γ1.

The following from the analysis of standard discrete linear sys-
tems are used in the proofs of the new results in this paper.

Lemma 1 ([5]). Given a scalar γ > 0, the standard discrete linear
system

x(t + 1) = Âx(t) + B̂1ω(t),

z(t) = Ĉx(t) + D̂1ω(t), (8)

where the pair {Â, B̂} is controllable and the pair {Â, Ĉ} observable is
stable and its transfer-function matrix G(z) satisfies ∥G(z)∥∞ < γ if
and only if there exists a matrix P > 0 such that following LMI holds:
ÂTPÂ − P + ĈT Ĉ ÂTPB̂1 + ĈT D̂1

B̂T
1PÂ + D̂T

1 Ĉ B̂T
1PB̂1 + D̂T

1 D̂1 − γ 2I


< 0.

Lemma 2 ([5]). Given compatibly dimensioned real matrices B, C,
and Q = QT , the following statements are equivalent

(i) There exists a compatibly dimensioned matrix X satisfying

BXC + (BXC)T + Q < 0,

(ii) the following two conditions hold
(a) B⊥Q(B⊥)T < 0 or BBT > 0,
(b) (CT )⊥Q((CT )⊥)T < 0 or CTC > 0,

where M⊥ denotes the orthogonal complement, that is, a full rank
matrix such that MM⊥ = 0 or span(M⊥) = Ker(M).

The following is the firstmajor result of this paper and gives LMI
based conditions for the existence of strong practical stability with
H∞ disturbance attenuation.

Theorem 1. A discrete linear repetitive process described by (3) is
strongly practically stable and hasH∞ disturbance attenuation in the
sense of Definition 1 if and only if there exist compatibly dimensioned
matrices W1 > 0,W2 > 0,Q1 > 0,Q2 > 0, and nonsingular
matrices G1,G2, and S2, such that the following set of LMIs is feasible

−W2 0 ST2D
T
0 ST2D

T
0

0 −γ 2
1 I DT

1 DT
1

D0S2 D1 −I 0
D0S2 D1 0 W2 − S2 − ST2

 < 0, (9)


−W1 W1AT

AW1 −W1


< 0, (10)

−Q1 0 GT
1 Ā

T
1 GT

1 C̄
T

0 −γ 2
2

BT 0

Ā1G1 B Q1 − Ē1G1 − GT
1 Ē

T
1 0

C̄G1 0 0 −I

 < 0, (11)


−Q2 0 GT

2 Ā
T
2 GT

2 C̄
T

0 −γ 2
1

BT 0

Ā2G2 B Q2 − Ē2G2 − GT
2 Ē

T
2 0

C̄G2 0 0 −I

 < 0,

C̄ =

0 I


.

(12)

Proof. • The first part of the proof is to show that the LMI (9) is
equivalent to the requirement [e], that is, asymptotic stability
with H∞ attenuation γ1.
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Introduce the substitution ζk+1 = yk to write (6) in the form (8)
as

ζk+2 = D0ζk+1 + D1ωk+1,

yk+1 = D0ζk+1 + D1ωk+1,

with Â = Ĉ = D0 and B̂1 = D̂1 = D1. Applying the result of
Lemma 1 to this last state-space model gives
DT
0 P̂2D0 − P̂2 + DT

0D0 DT
0 P̂2D1 + DT

0D1

DT
1 P̂2D0 + DT

1D0 DT
1 P̂2D1 + DT

1D1 − γ 2
1 I


< 0,

or, on application of the Schur’s complement formula,DT
0 P̂2D0 − P̂2 DT

0 P̂2D1 DT
0

DT
1 P̂2D0 DT

1 P̂2D1 − γ 2
1 I DT

1
D0 D1 −I

 < 0. (13)

The LMI (13) is a special case of condition (ii)(b) of Lemma 2

with (CT )⊥ =

 I 0 0 DT
0

0 I 0 DT
1

0 0 I 0

 andQ =

−P̂2 0 DT
0 0

0 −γ 2
1 I DT

1 0

D0 D1 −I 0
0 0 0 P̂2

.

Also for B⊥ =


I 0 0 0
0 I 0 0
0 0 I 0

T

and this Q, application of (13)

gives−P̂2 0 DT
0

0 −γ 2
1 I DT

1

D0 D1 −I

 < 0.

Hence (ii)(a) of Lemma 2 holds and by (i) of Lemma 2 there exist

X satisfying BXC + (BXC)T + Q < 0 with B =

0
0
0
I

T

, C =
D0 D1 0 −I


,or

−P̂2 0 DT
0 DT

0X
0 −γ 2

1 I DT
1 DT

1X
D0 D1 −I 0

XTD0 XTD1 0 P̂2 − X − XT

 < 0. (14)

Also P̂2 − X − XT < 0, which implies that X is full rank. (If this
claim were not true then there exists a vector q ≠ 0 such that
Xq = 0 and qT (P̂2 − X − XT )q > 0.) Hence X−1 exists and is
denoted by S2.
Introduce the matrix Z = diag(ST2 , I, I, S2) and left and right
multiply (14) by Z and ZT , respectively, to obtain (9) and this
part of the proof is complete.

• The LMI (10) is a well known condition for stability of 1D dis-
crete linear systems and corresponds to condition [f].

• This part of the proof shows that the LMI (11) is equivalent to
condition [g]. As a preliminary step, this condition can be equiv-
alently expressed in terms of the standard discrete linear sys-
tem (7). By Lemma 1 applied to the resulting standard discrete
linear system, there exists a P1 > 0 such that

−P1 + C̄T C̄ + ĀT
1 Ē

−T
1 P1Ē−1

1 Ā1 ĀT
1 Ē

−T
1 P1Ē−1

1 B̃

B̃T Ē−T
1 P1Ē−1

1 Ā1 B̃T Ē−T
1 P1Ē−1

1 B̃ − γ 2
2 I


< 0, (15)

with Â = Ē−1
1 Ā1, B̂1 = Ē−1

1
B, Ĉ = C̄ =


0 I


and D̂1 = 0.

Hence it is now required to prove that the LMIs of (15) and (11)
are equivalent.
To prove sufficiency, consider the (3, 3)-block of (11), that is,

Q1 − Ē1G1 − (Ē1G1)
T < 0,

or, since Q1 > 0,

H = −Ē1G1 − (Ē1G1)
T < 0.

Assume also that G1 is singular, and hence there exists a non-
zero vector z such thatG1z = 0.However, zTHz = 0,which con-
tradicts the previous inequality and therefore G1 is nonsingular.
Left and right-multiplying the LMI of (11) by diag(G−T

1 , I,
G−T
1 , I) and its transpose, respectively, gives

−G−T
1 Q1G−1

1 0 ĀT
1G

−1
1 C̄T

0 −γ 2
2 I BTG−1

1 0

G−T
1 Ā1 G−T

1
B G−T

1 Q1G−1
1 − G−T

1 Ē1 − ĒT
1G

−1
1 0

C̄ 0 0 −I

 < 0.

Also introducing P1 = G−T
1 Q1G−1

1 > 0 and applying the Schur’s
complement formula to this last inequality gives −P1 + C̄T C̄ 0 ĀT

1G
−1
1

0 −γ 2
2 I BTG−1

1

G−T
1 Ā1 G−T

1
B P1 − G−T

1 Ē1 − ĒT
1G

−1
1

 < 0, (16)

which is condition (i) of Lemma 2 for this case with
X = G−1

1 , B =

Ā1 B̃ −Ē1

T
, C =


0 0 I


and

Q = diag(−P1 + C̄T C̄, −γ 2
2 I, P1).

Equivalently, applying conditions (ii)(a) and (b) of Lemma 2
gives

−P1 + C̄T C̄ + ĀT
1 Ē

−T
1 P1Ē−1

1 Ā1 ĀT
1 Ē

−T
1 P1Ē−1

1 B̃

B̃T Ē−T
1 P1Ē−1

1 Ā1 B̃T Ē−T
1 P1Ē−1

1 B̃ − γ 2
2 I


< 0, (17)

B⊥ =


I 0 ĀT

1 Ē
−T
1

0 I B̃T Ē−T
1


,

and
−P1 + C̄T C̄ 0

0 − γ 2
2 I


< 0, C⊥ =

 I 0
0 I
0 0


, (18)

respectively. Also the condition of (18) is redundant in this case
since it is the requirement that block (1, 1) of (17) is negative
definite, and this part of the proof is complete.
To prove necessity, it follows immediately that, with the nota-
tion used, (15) is the result of interpreting (ii)(a) and (ii)(b) of
Lemma2 for this particular case. Hence by (i) of this result, there
exists X such that

Q + BXC + (BXC)T < 0, (19)

where the matrices Q, B, and C are defined in the previous part
of the proof. Moreover, the LMI (19) can also be written as −P1 + C̄T C̄ 0 ĀT

1X
0 −γ 2

2
BTX

XT Ā1 XTB P1 − XT Ē1 − ĒT
1X

 < 0, (20)

and from block (3, 3)

P1 − XT Ē1 − ĒT
1X < 0.

Hence, since P1 > 0,

H = −XT Ē1 − ĒT
1X < 0.

Also X is nonsingular since if this were not the case then there
would exist a non-zero vector z such thatXz = 0 and zTHz = 0,
which contradicts the previous inequality. Replacing X by G−1

1
in (20) gives (16), and hence the equivalence of (11) and (16)
has been shown.

• The proof of the equivalence between the LMI of (12) and con-
dition [f] follows a similar reasoning to that of the previous part
and hence the details are omitted. �
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4. Stabilization with disturbance attenuation

The problem considered in this section is stabilizationwithH∞

disturbance attenuation in the sense of Definition 1 for processes
described by (3) through application of the control law

uk+1(p) = K1xk+1(p) + K2yk(p), (21)

which is the weighted sum of current pass state feedback (xk+1(p))
and feedforward (in the k direction) from the previous pass profile.
Moreover, the current pass state vector in this control law must
be estimated using an observer if not all entries are available for
measurement. Also a reference vector can be added to define a
tracking problem.

Iterative learning control is an application area for repetitive
process systems theory where once a pass or trial is completed
all data is available and hence available for control law design. In
particular, the control law (21) can be augmented by non-causal
terms to, for example,

uk+1(p) = K1xk+1(p) + K2yk(p) + K3yk(p + 1),

or, more generally, have contributions for more than one or all
sampled points along the previous pass and this is a very strong
feature in some applications. The results in [2], with experimental
verification, show that the repetitive process model considered
in this paper can be used to design non-causal iterative learning
control lawswhen there are no disturbances present. The results in
this paper can therefore be extended to the design of such control
laws in the presence of disturbances.

On applying (21) to (3) the matrices A, B0, C,D0 are mapped
to A + BK1, B0 + BK2, C + DK1, and D0 + DK2, respectively.
Strong practical stability with H∞ disturbance attenuation for the
controlled process holds when

[i] ρ(D0 + DK2) < 1 with ∥Ĝa(z2)∥∞ < γ1,
[j] ρ(A + BK1) < 1,
[k] ρ[(B0 + BK2)(Im − D0 − DK2)

−1(C + DK1) + (A + BK1)] < 1
with ∥Ĝb(z1)∥∞ < γ2 and

[l] ρ[(C +DK1)(In −A−BK1)
−1(B0 +BK2)+ (D0 +DK2)] < 1with

∥Ĝc(z2)∥∞ < γ1,

where Ĝa(z2), Ĝb(z1) and Ĝc(z2) denote the transfer-function ma-
trices Ga(z2),Gb(z1) and Gc(z2), respectively, when applied to the
controlled process. The next result gives sufficient conditions to
solve this problem with LMI based computation of the control law
matrices.

Theorem 2. Suppose that a control law of the form (21) is applied
to a discrete linear repetitive process described by (3). Then the
resulting controlled process is strongly practically stable and has H∞

disturbance attenuation in the sense of Definition 1 if there exist
compatibly dimensioned matrices W1 > 0,W2 > 0,Q1 > 0,Q2 >

0, a nonsingular matrix G = diag(Ḡ1, Ḡ2) and rectangular matricesN1 =

N1 0


andN2 =


0 N2


such that the following set of LMIs

is feasible
−W2 0 ḠT

2D
T
0 + NT

2 D
T ḠT

2D
T
0 + NT

2 D
T

0 −γ 2
1 I DT

1 DT
1

D0Ḡ2 + DN2 D1 −I 0
D0Ḡ2 + DN2 D1 0 W2 − Ḡ2 − ḠT

2

 < 0, (22)


−W1 ḠT

1A
T

+ NT
1 B

T

AḠ1 + BN1 W1 − Ḡ1 − ḠT
1


< 0, (23)


−Q1 0 GT ĀT

1 + NT
1 Π T GT C̄T

0 −γ 2
2

BT 0
Ā1G + ΠN1 B Q1 − Ē1G + ΠN2 − GT ĒT

1 + NT
2 Π T 0

C̄G 0 0 −I

 < 0, (24)


−Q2 0 GT ĀT

2 + NT
2 Π T GT C̄T

0 −γ 2
1

BT 0
Ā2G + ΠN2 B Q2 − Ē2G + ΠN1 − GT ĒT

2 + NT
1 Π T 0

C̄G 0 0 −I

 < 0. (25)

If this set of LMIs hold, stabilizing control law matrices are given by

K1 = N1Ḡ−1
1 , K2 = N2Ḡ−1

2 . (26)

Proof. • To show that the LMI (22) guarantees that condition [i]
holds, first replace D0 by D0 + DK2 in the LMI (9) of Theorem 1.
Then introduce new variables S2 = Ḡ2 and N2 = K2Ḡ2 to obtain
(22).

• The LMI (23) is a known condition for state feedback stabiliza-
tion of 1D discrete linear systems (see, for example, [6]), and
corresponds to condition [j].

• The LMIs (24) and (25) guarantee that conditions [k] and [l],
respectively, hold. To prove these claims, apply Theorem 1with
Ā1 replaced by Ā1new = Ā1 + Π


K1 0


, and Ē1 by Ē1new =

Ē1 − Π

0 K2


in the case of (24), and Ā2 by Ā2new = Ā2 +

Π

0 K2


and Ē2 by Ē2new = Ē2−Π


K1 0


in the case of (25),

respectively. Introducing the additional variables N1 = K1Ḡ1
and N2 = K2Ḡ2 now completes the proof of this part.

• To prove that the matrix G is nonsingular, (22) gives
W2 − Ḡ2 − ḠT

2 < 0

and assume that Ḡ2 is singular. Then there exists q such that
Ḡ2q = 0 and hence
qT (Ḡ2 − ḠT

2)q = qTW2q < 0,

which cannot hold since W2 > 0. Hence Ḡ2 must be nonsingu-
lar. In similar manner, (23) leads to the conclusion that Ḡ1 must
be nonsingular and hence Gmust be nonsingular. �

Remark 1. To find stabilizing K1 and K2 it is necessary to impose a
structure on G in Theorem 2, that is, G = diag(Ḡ1, Ḡ2). This induces
conservativeness but is required to obtain K1 and K2 fromG,N1 and
N2. Otherwise if G is a full block matrix (26) does not hold.

Theorem 2 gives a sufficient condition for the solvability of H∞

control law design problem. A desired control law (26) can be de-
termined by solving the following convex optimization problem:
min σ = α1µ1 + α2µ2 subject to (22)–(25)

(where µi = γ 2
i , i = 1, 2) (27)

for selected 0 ≤ α1 ≤ 1, 0 ≤ α2 ≤ 1 such that α1 +α2 = 1. Also it
is possible to select α1 = 0 or α2 = 0 and optimize over the other.

As a numerical example, consider the case of (3) when α =

50, k ≥ 0 and
A B0 B B1
C D0 D D1



=

 2.19 −1.83 0.78 0.52 1.56
0.16 0.71 −1.18 −1.54 −1.47
0.2 0.99 −1.3 −0.75 −1.25


and boundary conditions

xk+1(0) =

0 0

T
, k ≥ 0,

y0(p) = 20 + sin

2p
α

π


, 0 ≤ p ≤ α − 1.

This example is not strongly practically stable and solving (27)
of Theorem 2 yields the stabilizing control law matrices K1 =
−1.755 1.770


, K2 = −0.978 with associated minimum H∞

disturbance attenuation γ1 = 4.29 and γ2 = 4.96 for α1 = 0.6
and α2 = 0.4. The maximum values of the H∞ norms of Ĝa(z2),
Ĝb(z1) and Ĝc(z2) are 2.8842, 3.3031 and 4.0013, respectively,
which confirms that theminimumH∞ attenuation is not very con-
servative in this case, see also Fig. 1.
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Fig. 1. The H∞ norms of Ĝa(z2), Ĝb(z1) and Ĝc(z2) versus the minimum achieved
γ1 and γ2 for α1 = 0.6 and α2 = 0.4.

5. Conclusions

This paper has developed new results on the stabilization and
control of discrete linear repetitive processeswithH∞ disturbance
attenuation that are easily extended to the case where a reference
signal is added to the control law. The results given extend in
a natural manner to allow design when there is uncertainty
associated with the process model. Future research should include

the extension of these results to the use of a control law that does
not require current pass state information.
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