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–Brief Paper–

ALTERNATIVE METHOD OF SOLUTION OF THE REGULATOR

EQUATION: L2-SPACE APPROACH

B. Rehák

ABSTRACT

An alternative method for the proof of solvability of the differential
equation that is a part of the regulator equation which arises from the solution
of the output regulation problem. The proof uses the L2-space based theory
of solutions of partial differential equations for the case of the linear output
regulation problem. In the nonlinear case, a sequence of linear equations is
defined so that their solutions converge to the solution of the nonlinear problem.
This is proved using the Banach Contraction Theorem.
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I. INTRODUCTION

First, the Output regulation problem is briefly
presented. Let the following systems be defined as

ẋ = F(x)+G(x)u, x(0)= x(0), y=h(x) (1)

v̇ = Sv, v(0)=v0, reference=Qv. (2)

where x(t)∈ Rn;u(t), y(t)∈ R, S∈ R�×�, Q∈ R1×�.
Functions F,G : Rn → Rn , F(0)=0, h : Rn → R,
h(0)=0 are supposed to be sufficiently smooth. The
system (1) is the controlled system (the plant) while
(2) represents the exosystem.

The plant can be defined in a more general way,
[1]. However, the restriction made above allows to
significantly simplify the notation, especially those
following the equation (10). As the case considered
here covers a fairly large number of practical appli-
cations this assumption might be seen as not overly
restrictive.
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A crucial role in the theory is played by the zero-
error manifold. It is a �-dimensional manifold in the
n+1-dimensional Euclidean space. It can be described
as the graph of functions x : R� → Rn , c : R� → R
solving the regulator equation:

�x(v)

�v
Sv = F(x(v))+G(x(v))c(v) (3)

0= h(x(v))−Qv. (4)

If the state of the exosystem at the time t equals v(t)
then the tracking error is zero provided the equalities
x(t)=x(v(t)),u(t)=c(v(t)) hold.

The regulator equation consists of two parts: a
system of partial differential equations (PDE) (3) and
the algebraic equation (4). The equation (3) exhibits
some features that can be considered ‘nonstandard’ in
the common theory of PDE: It is a first-order PDE.
Its solution is sought on the whole domain R�. This
implies no boundary condition is given, it is replaced
by the condition x(0)=0. There are several methods
to solve the regulator equation (3), (4). One is based
on undetermined Taylor series, see [1] and references
therein. For the MIMO case results, see also [2], robust
case is treated in the recent paper [3], neural networks
solution of the regulator equation is described in [4]. A
finite elements-based method appeared [5–7]. An algo-
rithm is described in [5, 6]: the plant (1) is stabilized
using a state feedback, then feedforward c is fixed, the
differential equation (3) is solved, which in general does
not guarantee validity of the algebraic equation (4).
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Therefore, the error made in (4) is measured using a cost
functional. This value is used to find another feedfor-
ward to decrease this error. In the sequel, it is assumed
(1) has already been stabilized.

The papers [5, 6] present a condition of conver-
gence of the above iterative algorithm, however, they
do not deal with the question of solvability of (3) in the
setting suitable for the iterative algorithm as the asymp-
totic expansion-based local estimates are not sufficient
for this goal. The purpose of this paper (which is based
on the conference paper [8]) is to fill this gap - to prove
existence of its solution. In other words, the result of
[6] was ‘provided the equation (3) has a solution for
each c on a domain �, the output regulation problem is
solvable’. This paper adds ‘there exists a domain� such
that (3) has a solution for each c on �’. This together
constitutes an alternative proof of existence of a solution
of the output regulation problem to the one presented in
[1]. Moreover, it has advantages as [6] provides useful
global error estimates and serves as a base for modern
numerical methods like the finite-element method. This
paper also uncovers a strong link between the modern
(L p-based) PDE theory and output regulation theory as
conditions for existence of a solution of a first-order
PDE ([9]) are naturally satisfied by stability of the plant
and neutral stability of the exosystem. For the sake of
clarity, the linear case is treated first in the next section,
these results are used while studying the nonlinear case
later on.

Another approach to solve the regulator equation
is presented in [4]. It is based on a design of neural
networks that approximate the solution.

Notation used: L2(�) is the space of scalar
square-integrable functions defined on the domain �,
It is equipped with the usual norm (denoted by ‖.‖).
The space (L2(�))n ={(�1, . . .,�n)|�i ∈ L2(�)∀i =
1, . . .,n}. For a more detailed description, see [10] and
references therein. All equalities between functions
are considered in the ‘almost everywhere’ sense, all
functions are supposed to be measurable. The gradient

of the function f (v) is denoted by ∇ f (v) or � f
�v
.

II. LINEAR CASE

In this case, the plant is described by the equation
ẋ= Ax+Bu, y=Hx with matrices A, B,H having
suitable dimensions. (As noted in the Introduction,
the plant is stabilized by a state feedback, thus A is
supposed to be Hurwitz with real eigenvalues. Under
usual controllability assumptions, this can be achieved.
The eigenvalues of the matrix A are also considered to

be design parameters.) In this case, the equations (3),
(4) attain the form

�x(v)

�v
Sv = Ax(v)+Bc(v), (5)

0= Hx(v)−Qv. (6)

To solve the above equation numerically, one has to
restrict oneself to the solution on a bounded domain
which will be denoted by �. The question that arises
now is the following: Exists there a bounded domain
0∈�⊂ R� and functions x∈ (L2(�))n , c∈ L2(�) such
that the equation (5) is satisfied? Is the condition x(0)=
0 satisfied; if so, in what sense? To give the answer
the following assumptions are essential and are thus
supposed throughout the following text:

• L1: the matrix A has real negative eigenvalues.
• L2: there exist a diagonal matrix D and a regular

matrix T such that A=T−1DT .
• L3: all eigenvalues of S are simple, have zero real

part and there exists a smooth Lyapunov function
V : R� →[0,+∞) such that V (0)=0, V (v)>0 for
v 	=0, ∇V (v).Sv=0.

The equation (5) can be rewritten as T �x
�v
Sv=

DT x(v)+T Bc(v). Having changed the variables

�(v)=Tx(v) one observes that T �x
�v

= ��(v)

�v
. To sum

up, (5) is transformed into ��
�v
Sv=D�(v)+T Bc(v).

Considering the function c to be fixed, the above system
is composed of n equations such that the unknown
function �i appears only in the i-th equation which then
reads (denote the i-th diagonal element of D by dii ):

��i
�v

Sv=dii�i (v)+(T Bc(v))i (7)

A theorem guaranteeing existence of a solution of a
PDE of this type can be found in [9], Lemma 1.6. Before
citing it one has to deal with boundary conditions.

Assume for now a domain �⊂ R� as described
above is given. Denote the element of the matrix S on
the i, j position by Si j . Moreover, let � : R� → R� be
defined as

�(v)=
( �∑
k=1

S1kvk, . . .,
�∑

k=1
S�kvk

)
= Sv.

Note that for every i ∈{1, . . .,n}: ��i
�v

Sv=�(v)∇�i . For
each v∈�� let n(v) denote the outward normal to the
domain � at the point v. As in [9], denote also �− =
{v∈��|�(v).n(v)<0}.
Remark II.1. With the assumptions, div�(v)=0.
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Proof. From the definition of � one has div�(v)=∑�
j=1

�
�v j

(
∑�

k=1 S jkvk)=∑�
j=1 S j j =Trace S. Thanks

to L3 one has Trace S=0. �

The lemma guaranteeing existence of a solution
of (7) is cited here without proof (see [9], Lemma 1.6.):

Lemma II.1. Let �⊂ R� be a domain with smooth
boundary and let the functions b : �̄→ R�, � : �̄→ R be
from C1(�̄) and let �∈ L2(�). Assume there exists a
constant �>0 such that

�(v)− 1
2div b(v)≥� ∀v∈�. (8)

Let �0∈ L2(�−). Then there is a function �∈ L2(�)

such that ∇�(v) exists that solves the equation

b(v)∇�(v)+�(v)�(v) = �(v) in �,

�(v) = 0 on �̄−.

Remark II.2. Lemma II.1 is applied to the equation
(7) as follows: the function b, resp. � in Lemma II.1
correspond to the function �, resp. dii as defined above.
Hence, (8) now reads −dii − 1

2div�(v)≥� ∀v∈�. This
holds thanks to Remark II.1 and due to dii<0.

Lemma II.2. Under L3, there exists a set of domains
with smooth boundary ��, �>0 such that

0 ∈ �� ∀�>0

�� ⊂ �� if �<�

n(v).�(v) = 0 ∀v∈���.

Hence, �− =∅ for every ��. Consequently, the
boundary condition is not needed for the solution of (7).

Proof. Let �>0, �� ={v∈ R�|V (v)=�},�� ={v∈ R� :
V (v)<�}. Then the normal vector n(v) is parallel to
the vector ∇V (v) for every v∈��. On the other hand,
∇V (v).�(v)=0 thus also �− =∅. �� is smooth due to
the implicit function theorem. �

Let us multiply the equation (7) by �i , integrate
it over the domain �� and use the Stokes theorem on
the term containing the derivatives of �i . Taking into
account that n(v).�(v)=0 on ��� and div�=0 in ��
as shown above, one arrives at∫

��

−dii�
2dv=

∫
��

�i (T B)i cdv. (9)

Using the Schwarz inequality ‖�i‖≤ ‖(T B)i‖−dii
‖c‖ on ��.

As the function x is a linear combination of the functions

�i , one has ‖x‖≤C‖c‖ for some C>0. Note that C→0
if |dii |→+∞ for all i =1, . . .,n and also, the smaller
measure of ��, the smaller value of C.

Theorem II.1. There exists an open bounded domain
�⊂ R� with smooth boundary such that 0∈� such that
for every function c∈ L2(�) there exists a uniquely
determined function x∈ L2(�) satisfying (3) in � while
no boundary condition is to be defined on ��. More-
over, there exists a constant C>0 (independent of c)
such that ‖x‖≤C‖c‖.
Uniqueness follows from the above estimate combined
with linearity, the remaining part was proved above.

The next task is to verify the condition x(0)=0.
As all the involved functions are elements of the space
L2(�) one cannot speak about their function values.
Instead of it one can use the expression

L(x,0) = lim
t→0+ L(x, t),

L(x, t) = 1

measBt

∫
Bt
x(v)dv

where the symbol Bt denotes the �-dimensional open
ball with radius t and the center at the origin. Hence:

Lemma II.3. Assume there exists M>0 such that for
every t> there exists �t>0 such that Bt ⊂��t ⊂ BMt .
Let L(c2,0)=0. Then L(x,0)=0.

Denote L̃(x,�)= 1
meas��

∫
��

|x|dv. Then L(x, t)≤(L

(|x|2, t) 1
2 ≤(

meas��t
measBt

)
1
2 (L̃(|x|2,�t ) 1

2≤C(
meas��t
measBt

)
1
2 (L̃(c2,

�t )
1
2 ≤C(

measBMt
measBt

)
1
2 (L(c2,Mt))

1
2 . The latter converges

to 0 with t→0. (The first inequality is the Jensen’s
inequality.)

Remark II.3. Let the functions c, x be continuous with
c(0)=0. Then �(0)=0. Consequently x(0)=0.

If a function � is continuous at 0 L(�,0)=�(0) holds.

III. NONLINEAR CASE

It is assumed the equation (3) is solved on the
domain � satisfying properties in Lemma II.2.

Originating in (1), denote byA the Jacobi matrix of
the functionF (evaluated at the origin) and let B=G(0).
Define also the functions f : Rn → Rn and g : Rn → Rn

by f (x)= F(x)−Ax,g(x)=G(x)−B.
The equation (3) can be written in form

�x
�v

Sv= Ax+Bc+ f (x)+g(x)c. (10)
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The following assumption will be assumed in the
following text.

Assumption N1. There exist positive constants
K f ,Kg, K̃g such that for every x1, x2∈ Rn the condi-
tions (a) and either (b1) or (b2) hold.

(a) ‖ f (x1)− f (x2)‖≤K f ‖x1−x2‖,
(b1) ‖g(x1)−g(x2)‖≤Kg‖x1−x2‖, ‖g(x)‖≤ K̃g,
(b2) ‖g(x1)−g(x2)‖≤Kg‖x1−x2‖,‖g(x)‖≤K̃g‖x‖.

Remark III.1. Let x ∈ L2(�). The condition (a)
implies f (x)∈ L2(�). Similarly, (b1) and c∈ L2(�)

imply g(x)c(x)∈ L2(�). Finally, the same holds under
(b2) and c∈ L∞(�). See [10] for details.
Proposition III.1. There exists a domain � such as
in Theorem II.1 such that for every x̃∈ (L2(�))n , c∈
L2(�) there exists a function x∈ (L2(�))n solving

�x
�v

Sv= Ax+Bc+ f (x̃)+g(x̃)c. (11)

Lemma III.1. Let x̃1, x̃2∈ (L2(�))n,c∈ L2(�) be
given. Denote by xi , i ∈{1,2} the solution of the
equation (11) with x̃ replaced by x̃i . Then, there exist
positive constants K1=CK f ,K2=CKg such that
‖x1−x2‖≤(K1+K2‖c‖)‖x̃1− x̃2‖.
Proposition III.1 with Theorem III.1 yield the proof.

Theorem III.1. If K1+K2‖c‖<1 holds then a unique
solution of (3) exists.

Proof. Let c∈ L2(�). Lemma III.1 and (N) imply
the mapping � : L2(�)→ L2(�) defined by �(x̃)=x
where x solves (11) is a contraction. Let x0 solve
(5). Moreover, let xi solve (11) with x̃ replaced by
xi−1, i =1,2, . . .. Then, the sequence xi converges to a
function x strongly in L2(�). It remains to prove that
the function x solves (3). Note that there exists the solu-
tion z of the equation �z

�v
Sv= Az+Bc+ f (x)+g(x)c.

To prove that z=x, subtract this from (11) with x̃
replaced by xi−1:

�(z−xi )
�v

Sv = A(z−xi )+( f (x)− f (xi−1))

+(g(x)−g(xi−1))c.

This implies ‖z−xi‖≤(K1+K2‖c‖)‖x−xi−1‖, the
limit for i →+∞ here gives z=x. �

Example. Let �(t)=exp(−1/t2) if t 	=0, �(0)=0.
Consider the system ẋ1=−x1+(1−�(x2))c, ẋ2=

Fig. 1. Accuracy of approximations of (3).

�(x1)−x2 with the exosystem defined as v̇1=v2,
v̇2=−v1, we aim v1= x1. Then, the Taylor series-based
method yields c=v1+v2 as if no nonlinearities are
present which leads to a significant error in the solution
of the regulator equation. The figure below shows the
residua (differences in the left- and right hand sides) in
the second equation of (3) if first v1 and, second, the
finite-element solution of (3) is substituted for x. In the
Taylor expansion-based method, the residua are much
higher than those of caused by the finite elements,
moreover, they exhibit a clear pattern showing how
precision decreases with increasing distance from the
origin. Note that to apply the finite elements, estimates
of the solution derived here are necessary. More can be
found in [6].

IV. CONCLUSIONS

A proof of solvability of the differential part of the
regulator equation suitable for the optimization-based
iterative method [6, 5] was presented (Fig. 1).
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