Assessment of Time-Lapse in Visible and Thermal Face Recognition

Sajad Farokhi, Siti Mariyam Shamsuddin, Jan Flusser, Usman Ullah Sheikh

Abstract—Although face recognition seems as an easy task for human, automatic face recognition is a much more challenging task due to variations in time, illumination and pose. In this paper, the influence of time-lapse on visible and thermal images is examined. Orthogonal moment invariants are used as a feature extractor to analyze the effect of time-lapse on thermal and visible images and the results are compared with conventional Principal Component Analysis (PCA). A new triangle square ratio criterion is employed instead of Euclidean distance to enhance the performance of nearest neighbor classifier. The results of this study indicate that the ideal feature vectors can be represented with high discrimination power due to the global characteristic of orthogonal moment invariants. Moreover, the effect of time-lapse has been decreasing and enhancing the accuracy of face recognition considerably in comparison with PCA. Furthermore, our experimental results based on moment invariant and triangle square ratio criterion show that the proposed approach achieves on average 13.6% higher in recognition rate than PCA.

Keywords—Infrared Face recognition, Time-lapse, Zernike moment invariants

I. INTRODUCTION

HUMAN face recognition is a biometric approach which is employed to recognize or verify the identity of a living person based on his/her physiological characteristics by means of automatic methods. It plays an important role in many application areas such as security systems, authentication, intelligent machines and surveillance. Despite considerable progress and some practical successes, face recognition is still a challenging task in the field of computer vision and pattern recognition. The wide-range variations of human face, due to time-lapse, expression, pose and illumination, lead to highly complicated distribution which decreases the accuracy of recognition greatly. Face recognition based on visible spectrum is gaining acceptance as a superior biometric in face recognition systems due to high resolution of acquired samples which are formed due to reflectance. Because of three-dimensional structure of face, external light and angle of incident of light play a significant role in identifying the face in different applications [1]-[2].

On the other hand, face recognition based on thermal infrared spectrum has received much more attention, because they are entirely free from the influence of external variable light and they can be employed even in total darkness [3]. However, thermal images have their own deficiencies such as, physical activity, stress, time-lapse and health conditions [4]-[5]. Experimental results in [6] show that the accuracy of IR face systems degrades sharply when time-lapse occurs, i.e., there is delay between acquisition of testing and training samples. The time interval can be few weeks, months or even a year. In [7] the comparative study between visible and infrared imagery for face recognition is conducted. It is shown that temperature variation in thermal images affects the accuracy of system as the external light do on visible images. In [8] thermal face recognition over time, has been studied and the effect of time-lapse has been investigated and reported. It has been indicated that the accuracy of face recognition in thermal domain degrades dramatically in comparison with visible images and fusion of both spectrums, could be the best one. A novel method for reducing the effect of time lapse is reported in [9]. Its idea is based on using block-PCA as a feature extractor. In spite of good results in all aforementioned techniques which have used PCA as a superior feature extractor, we will show in section II that the applicability of PCA is limited. Thus to overcome the shortcomings of aforementioned methods, a new research based on moment invariants [10] and nearest neighbor classifier is conducted to study the effect of time-lapse on both modalities and enhance the performance of face recognition system. To the best of our knowledge such a moment based study for time-lapse investigation has not been reported yet. The reminder of paper is organized as follows: Section II introduces principal component analysis, Zernike moments are studied in section III. Feature selection is expressed in section IV. Nearest neighbor classifier is discussed in section V. Proposed system and experimental results are given in section VI. Performance analysis is expressed in section VII. Final conclusion is presented in section VIII.

II. PRINCIPAL COMPONENT ANALYSIS

Principal component analysis (PCA) is one of the most prevalent and successful methods which has been employed widely in the field of computer vision and pattern recognition. It was introduced by Sirovich and Kirby [11] to represent images of human faces. In 1991, the famous Eigenfaces method was presented by Turk [12] and Petland and implemented in face recognition tasks. Its main procedure is to decompose face images into a small set of feature vectors called eigenfaces(Fig. 1) and compare the position of new face images with those of known faces. Although PCA represents
an efficient, simple and accurate face recognition model, there are several weaknesses in this concept as follows:
1) It may have small discriminability.
2) It needs a lot of samples in training phase which leads to large computational load.
3) It is very sensitive to facial expression and noise.

\[R_{pq} = \sum_{k=0}^{p+1} (-1)^k \frac{(p-k)!}{k! \left(\frac{p+1}{2} - k \right)! \left(\frac{p+1}{2} + k \right)!} f^{p-2k} \]

Where \(p \leq q \) and \(p \mid q \) is even [18]. The coefficients of \(R_{pq} \) up to the 10th degree are presented in Fig. 2.

![Fig. 2 Zernike Polynomials up to 10th degree](image)

IV. FEATURE SELECTION

The feature selection, also called Feature Subset Selection (FSS) has been widely used in pattern recognition systems to reduce dimensionality and enhance the performance, speed and accuracy of classifiers [20]-[21]. As a matter of fact, the aim of feature selection is to select a number of evaluated features from extracted feature set which gives minimum classification error. The evaluation of features is performed by an objective function. The general procedure of feature selection is shown in Fig. 3. Sequential Forward Selection (SFS) is the simplest greedy search algorithm which is based on bottom-up search procedure. The procedure is started by an empty set and selected features which are evaluated by objective function are added respectively to the empty set based on their mean square error which is calculated by...
objective function. Hence an enhanced subset with high discrimination power can be selected by SFS.

![Diagram of feature selection]

Fig. 3 General procedure of feature selection [22]

V. NEAREST NEIGHBOR CLASSIFIER

The nearest neighbor (NN) classifier is one of the most popular, powerful and simple classifiers which has been employed in many applications [23]. This classifier can be implemented by some different criterions such as cosine and Euclidean distance. Euclidean distance is the most prevalent one which has been used extensively as a superior criterion. Despite its much strength, it ignores the correlation which plays an important role for measuring the similarity of two feature vectors. On the other hand, cosine criterion considers correlation but ignores the distance between two feature vectors. As a result, triangle square ratio is used to compensate the deficiencies of aforementioned criterions and consider both distance and correlation between two feature vectors. This criterion is introduced in [24] for classification of facial images in wavelet domain. Let \(V_1 \) and \(V_2 \) be two vectors and \(\theta \) be the include angle of them, the triangle square ratio is defined as:

\[
\text{TSR}(V_1, V_2) = \frac{\|V_1 - V_2\|^2}{\|V_1\|^2 + \|V_2\|^2 - 1 - \frac{1}{2\|V_1\|^2 + \|V_2\|^2} \cos(\theta) \quad (8)
\]

As proven in [24],\(\text{TSR}(V_1, V_2) \to 0 \) if and only if \(\|V_1\| \to \|V_2\| \) and \(\theta \to 0 \), which shows the correlation between \(V_1 \) and \(V_2 \) should approach 1. As a result, the TSR measures the similarity of \(V_1 \) and \(V_2 \) based on argument and modulus of each vector. Based on our results in section VI, the superiority and efficiency of TRS in comparison with Euclidean distance is obvious.

VI. PROPOSED SYSTEM AND EXPERIMENTAL RESULTS

The proposed face recognition system is composed of four main parts as shown in Fig. 4. The most important objectives of this study are as follows:

1) Evaluate the performance of orthogonal moment invariants in time-lapse face recognition and compare the results with PCA.

2) Evaluate the performance of nearest neighbor classifier with new criterion and compare the results with Euclidean distance as a traditional criterion for NN classifier. This section consists of five subsections as follows: in section A, data collection is studied, in section B, preprocessing stage is described, section C and D present two different experiments.

![Diagram of face recognition system]

Fig. 4 The general procedure of face recognition system

A. Data Collection

The Notre–Dame Database [4]-[25] time-lapse face database (Collection X1) is used in our experiments which consists of 2292 IR frontal face images and 2292 visible frontal face images from 82 human subjects captured from 2002-2004 with a Merlin long-wavelength infrared camera. Due to IR’s opaqueness to glass, all images have been taken without glass. In our experiments, images of 20 subjects from the UND face database were selected. Each subject attended 10 acquisition sessions for each season. So 10 images are used for training and 10 images are used for testing. There is no overlap between testing and training set. While the training set contains no facial expressions or time-lapse, the test set is composed of several images containing variations in time, facial expressions and head rotation. Tolerance for head rotation is utmost 15 degrees. Some sample images of a single subject in visible and infrared imagery are provided in Fig. 5.
used to compensate head rotation which is not considered in
registration step. Hence Zernike moment $|Z_{m,n}|$ up to order 20
is calculated by (6), for visible, infrared and fused images
which resulted in feature vectors of size 227. Mahalanobis
distance is chosen as an objective function and the best feature
vectors of size 62 are selected by SFS. Finally, classification
accuracy is measured by different criterions of NN classifier
and results are noted. The mean recognition rate is reported in
Table II.

VII. PERFORMANCE ANALYSIS

Two main experiments are conducted to compare and
evaluate the performance of moment invariants and TSR.
Zernike moments and PCA are used for feature extraction.
Then, for all modalities, final results for Zernike moments
with TSR and PCA are plotted in Fig. 6. Some important
results based on Table I, Table II and Fig. 6 can be concluded
as follows:

1) As other studies have shown [6]-[28], there is exist no
consistent trend for both visible and thermal images in
this database.

2) The fluctuation of Fig. 6, based on Zernike moment
invariants, is more consistent than that of PCA which
shows that orthogonal moment invariants has better
stability due to their salient and discriminatory
characteristic on Notre–Dame database in comparison
with PCA. Some samples which are misclassified by PCA
while recognized by Zernike moments are depicted in Fig.
7.

3) TSR as a sophisticated criterion for NN classifier
performs better than the Euclidean distance. Hence the
advantage of using TSR as a new criterion for NN
classifier is obvious. This striking asset can be expressed
by the inherent characteristic of TSR which considers
both correlation and similarity. Some samples which are
recognized by TSR while misclassified by Euclidean
distance are shown in Fig. 8.

4) The effectiveness and good performance of orthogonal
moment invariants as a dominant feature for face
recognition, in comparison with PCA is noticeable.
Orthogonal moments not only need smaller training set,
but also represent good discrimination power in
comparison with PCA. This can be interpreted by
invariance and global characteristic of Zernike moments
which almost leads to invariance of features regards to
time-lapse.

5) As many previous studies have expressed [4]-[29]-[30]
fusion of visible and thermal, strengthens the performance

B. Preprocessing

Generally, image preprocessing is used for normalization of
image before feature extraction. Acquired facial images
normally include background, hair, clothing, etc, which can
deteriorate the recognition performance of the system. If the
whole image is taken into consideration for feature extraction,
the performance and accuracy of the system may be affected
and decreased. This impact can be minimized by
normalization. The procedure for normalization is as follows:

1) Face detection: First step in our preprocessing procedure
is to locate the face in input images. Thus Viola-Jones
[26] algorithm has been employed which minimizes
computation time while achieving high detection
accuracy.

2) Image registration: Image registration is one of the most
important procedures which is done to align two images
of the same person (visible and infrared). It is a
prerequisite step for thermal and visible images before
image fusion [27]. Typically, visible images, and thermal
images are considered as reference. This step is performed
manually and finally, all of images are resized to 320x240
pixels.

3) Masking: Masking is done to remove some parts of facial
images such as background, hair, clothing, etc. This is to
make sure that the face recognition system is not affected
by redundant features.

4) Histogram equalization: lighting and sensor differences
may reduce the performance of the system. Thus histogram
equalization is used for normalizing the image
histogram and decreasing image variation.

C. Experiment I

In the first experiment, principal component analysis is
employed and the results are considered. Table I shows the
mean recognition rate for three different modalities of images.

<table>
<thead>
<tr>
<th>Table I</th>
<th>Mean Top-Math Recognition Performance for Time lapse Experiments with PCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modality</td>
<td>Visible</td>
</tr>
<tr>
<td>PCA</td>
<td>76.23</td>
</tr>
</tbody>
</table>

D. Experiment II

In the second experiment Zernike rotation invariants are

Table II

<table>
<thead>
<tr>
<th>Table II</th>
<th>Mean Top-Math Recognition Performance for Time Lapse Experiments with PCA and Zernike Moments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modality</td>
<td>Visible</td>
</tr>
<tr>
<td>ZMs with NN(Euclidian)</td>
<td>87.24</td>
</tr>
<tr>
<td>ZMs with NN(TSR)</td>
<td>91.35</td>
</tr>
</tbody>
</table>

Fig. 5 Sample images of a subject in the UND database which
were taken over the span of several months
of system considerably. However, one has to take into account that registration of visible and thermal images needs a lot of time and can considerably affect the speed and accuracy of system.

![Image](53x503 to 285x704)

Fig. 6 Mean recognition results of ZMs and PCA for visible, infrared and fusion as a function of months elapsed between training and testing

![Image](106x424 to 232x457)

Fig. 8 Sample of images which are misclassified by Euclidian distance whereas recognized by TSR

VIII. CONCLUSION

In this paper, a holistic method based on orthogonal moments is presented to compensate time-lapse which can reduce the accuracy of system greatly. The Notre–Dame database images are used for conducting all experiments. The method uses the values of Zernike moment invariants with lower dimension instead of whole image. Some of these salient features are chosen by means of sequential forward selection algorithm with Mahalanobis distance as an objective function. A modified criterion for nearest neighbor classifier which considers both distance and correlation is employed to measure the efficiency of TRS in comparison with Euclidian distance. Moreover it is deduced that due to inherently global characteristic of orthogonal moment invariants; they represent high accuracy in time-lapse scenarios and can be chosen as a suitable feature in face recognition algorithms. With regards to previous analysis and recent results by researchers on time-lapse recognition, we also certify that the use of thermal images for biometric identification as a superior modality can be a challenging task. This is due to large variation of thermal images which can be created by a small variation in temperature. Undoubtedly, fusion of visible and thermal can be the best solution to overcome the deficiencies of both modalities, however higher computational complexity and problematic registration procedure of image fusion should be considered.

ACKNOWLEDGMENT

This work is supported by Ministry of Higher Education (MOHE) and Universiti Teknologi Malaysia (UTM) under Research University Grant (VOT Q.J130000.7128.00H71). Authors would like to thank the Soft Computing Research Group (SCRG) for the support and incisive comments in making this study a success, Institute of Information Theory and Automation (UTIA) for providing MATLAB codes and the University of Notre Dame (UND) for providing UND biometric database to carry out this experiment.

REFERENCES

