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Removing Boundary Artifacts for Real-Time Iterated
Shrinkage Deconvolution

Michal Šorel

Abstract—We propose a solution to the problem of boundary artifacts
appearing in several recently published fast deblurring algorithms based
on iterated shrinkage thresholding in a sparse domain and Fourier domain
deconvolution. Our approach adapts an idea proposed by Reeves for decon-
volution by the Wiener filter. The time of computation less than doubles.

Index Terms—Deblurring, deconvolution, image processing, image
restoration, iterated shrinkage thresholding, primal-dual methods, spar-
sity, Wiener filter.

I. INTRODUCTION

In this paper, we address the classical problem of deconvolution, i.e.,
to find the original image when we know an observed image blurred by
a known blur kernel and degraded by an additive Gaussian noise. We
use a matrix notation so that the convolution of image � with kernel � is
written as��, where� is a block Toeplitz matrix with Toeplitz blocks
and � is taken as a column vector got by stacking all columns of the
image to one long vector. In this notation, our observation model can
be written as � � ����, where � is a Gaussian noise of variance ��.
Matrix � has more columns than rows because observation � includes
only pixels not influenced by the unknown area outside of image �.

Deconvolution is usually viewed from the probabilistic viewpoint as
a maximum a posteriori probability problem, i.e., we look for image �
with the highest posterior probability, given an estimate of image prior
probability distribution ����. For Gaussian noise, this is equivalent to
minimization

����	

�

�

���
�� ����� � 
�� ����� (1)

The prior probability distribution ���� is never known exactly and
must be estimated. In addition, its form must be chosen so that the
functional (1) could be minimized efficiently.

If � is a circular convolution and the prior distribution can be ex-
pressed as � 
�� ���� � 	��
� � ��

�, then (1) can be solved in the
Fourier domain exactly as

�� �
�����

����� � ��� 	� ��
� ��
(2)

which is the well-known Wiener filter with signal variance given by
the inverse sum of power spectra of kernels 
� . For the Tikhonov regu-
larization with the image gradients, 
� and 
� are derivatives in �- and
�-directions.
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The main problem of the implementation in the Fourier domain is
the introduction of boundary artifacts caused by the fact that � is not
circulant. In [1], Reeves described a trick that transforms problem (1)
with such noncirculant � to the circular deconvolution (2) (for details,
see Section IV).

In recent years, a group of techniques has appeared based on the fact
that natural images can be decomposed as a linear combination of few
atoms from an overcomplete dictionary [2]. The application of spar-
sity priors to deconvolution provides state-of-the-art results. A signifi-
cant part of the corresponding research, including recent papers [3]–[8],
aims at improving the speed of these algorithms.

Here, we are interested in a so-called analysis-based sparsity ap-
proach [9]. The prior probability is described by an �� norm 1 as
���� � ��������������, where �� is a linear analysis operator
(transform to a sparse domain) such as the gradient, wavelets, or an
overcomplete dictionary. Considering the possibility of multiple input
images, i.e., distinguished here by index 
, this gives the solution of our
deconvolution problem as

����	

�

����
���� �

�

����
��� �����

�
� (3)

The standard solutions of (3) with the �� norm are based on
convex programming and, as such, are relatively time-consuming (for
references, see [7]). The development of iterated shrinkage thresh-
olding techniques [8], [10]–[16] provided a convenient tool for simple
and fast computation. For a good overview of early synthesis-based
techniques (see [17]). Cai et al. [16] describes the constrained split
Bregman method including convergence proofs for the analysis-based
formulation. Faster two-step methods were proposed in [18] and [7],
in the latter case including convex constraints and the proved quadratic
convergence rate. A method suitable for parallel implementation and
hybrid regularizers is given in [19]. For the latest developments in the
area of more general primal-dual algorithms, see [8], [20]. Note that
for � � � the functional (3) is not convex; for convergence properties
in this case, see [21].

The method presented in this paper relates to a special class of the it-
erated shrinkage thresholding methods accelerating computation using
deconvolution in the Fourier domain [4], [6], [8], [22]. As detailed in
Section II, we propose a modification that removes boundary artifacts
produced by division in the Fourier domain while keeping the speed
close to that of the original methods.

II. CONTRIBUTIONS

In the recent methods [4], [16], [22]–[24], the algorithm minimizing
(3) alternates between shrinkage thresholding in a sparse domain and
deconvolution in the Fourier domain, which converges to a satisfactory
solution in a few iterations. The main problem of these algorithms are
boundary artifacts, analogous to those we know from Wiener filtering.
In this paper, we show how to remove these artifacts without excessive
slow down. Results improve significantly in terms of both the visual
quality and the mean square error.

Our solution is inspired by an idea published in [1] for the deconvo-
lution with Tikhonov regularization, which transforms the problem (1)
with noncirculant � to the circular deconvolution (2), with the blurred

1Despite violating the triangle inequality, it is common to refer to ��� as a
norm even for � � �. We use this convention as well.

1057-7149/$26.00 © 2011 IEEE



2330 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 21, NO. 4, APRIL 2012

Fig. 1. Algorithms I-III for the analysis-based splitting algorithm with tight
frame regularization.

input image framed to a previously estimated border of a width corre-
sponding to half of the PSF. The estimation of the border is stated as
an inverse problem of significantly smaller dimension.

We extended this idea to the functionals minimized in each iteration
of the analysis-based methods [4], [8], [16], [22]. The resulting proce-
dure includes relatively time-consuming estimation of borders that the
input images are framed to. If we apply this estimation in each itera-
tion, the artifacts are almost perfectly removed, but the computation is
noticeably slower than the original algorithm. In this paper, this algo-
rithm is denoted as Algorithm II (see Fig. 1). To speed-up the algorithm,
the estimated borders can be reused during the subsequent iterations of
the algorithm, denoted as Algorithm III. In certain cases, it is sufficient
to simply treat the boundaries using the MATLAB function edgetaper
(part of the Image Processing Toolbox), which blurs the image borders
so that the image can be considered approximately periodic (Algorithm
I). This is a simpler and faster alternative. However, as demonstrated in
the experimental section, the more elaborate solutions (Algorithms II
& III) can yield considerably better results, particularly for motion blur
and, in general, for images with large differences in the intensity of the
opposing sides of the image. The same approach can be used for the
augmented Lagrangian method [16], [23] and the primal-dual method
[8].

III. DECONVOLUTION BY ITERATED SHRINKAGE THRESHOLDING

WITH ANALYSIS-BASED SPARSITY PRIORS

In this section, we explain the idea of the analysis-based algorithms
[4], [22], mentioned above. Convergence is analyzed in [4], [16], and
[21]. All results are shown for an arbitrary number of input images,
denoted as � in the sequel.

Our task is to minimize the functional (3). For this, we split variable
� and estimate

���
���

������ � ������ ��� �
�

���

�

��� �����
� (4)

where � represents the unknown image � in the sparse domain �. The
middle term binds � and � together. Equation (4) is equivalent to (3) for
� going to infinity. This equation is alternately minimized with respect
to � and its sparse representation �.

A drawback of this approach is that to obtain the solution of the orig-
inal problem (3), parameter � must go to infinity, which makes the in-
termediate minimization increasingly ill-conditioned, thus causing nu-
merical problems [25]. One solution to this problem is to increase �

with each iteration (continuation approach), another is to extend the
functional to get to the right solution even with a constant weight on

the binding term, which is the case of the split Bregman method [23]
or the equivalent augmented Lagrangian method [25].

The simplest solution, i.e., adopted in [4] and [22] and also in our
experiments, is to set a reasonably large constant � and to solve (4)
instead of the original problem. In practice, its results are comparable
or even better than in the original formulation, and its convergence is
sufficient even for 	 
 �. The reason is that the “binding” term makes
the functional more convex and helps to get closer to the real minimum.

First, let us treat the minimization of (4) with respect to � (two left
terms). This is a simple equation that can be solved analytically and
separately in each pixel. For 	 � 	, this is equivalent to the hard
thresholding [17] � � 
������

��� ������, where 
�����
� �� � 	

for �
� 
 � and 
�����
� �� � 
, if otherwise. The second pa-
rameter is threshold � � ���. For 	 � �, we get the soft thresh-
olding � � 
��	
��

��� ��������� defined by the continuous function

��	
�
� �� � 
���
�����	� �
� � ��. A similar thresholding func-
tion can be constructed for an arbitrary other �� norm by a suitable
approximation [17].

For now, let us assume that ��� is diagonal in the Fourier domain.
This assumption clearly holds for tight frames, where��� � �� , with
� � 	. The second important case is for ������� defined as a con-
catenation of convolutions with sparsifying kernels ����� � ��

�
�. A

typical example is total-variation (TV) regularization in its anisotropic
form, 2 where �� are derivatives in the �- and �-directions and ��� is
the convolution with the discrete Laplace operator. However, there are
many other possibilities how to choose the sparsifying kernels, such as
a suitable subset of wavelets. To have��� diagonalizable, we need the
convolutions with �� to be defined as circular. Luckily, as the support
of these kernels is small, and the borders are finally removed, taking
the convolution circular does not introduce visible artifacts.

If also �� were simple circular convolutions, we could minimize (4)
over � exactly in the Fourier domain. For � being a tight frame, we get

�� �
��� �� ���

�

���

�� ��� �����
(5)

where �� � ������

� . Likewise, for ������� in the form ��������
�
�,

we get analogously to (2)

�� �
��� �� ���

�

���

�� ���� �� � ��� �����
� (6)

Unfortunately, in practice, the convolution is never circular, and
such an approach produces artifacts due to boundary effects [see
Figs. 2(c) and 4(c)]. In the next section, we show how to compute
the minimum of (4) over � using the Fourier transform without
introducing the boundary artifacts.

IV. FOURIER DOMAIN DECONVOLUTION

In this section, we explain a fast solution to the deconvolution
problem, i.e.,

���
�

����� ��� � ����� �����
� (7)

where��� are valid parts of convolutions with PSFs �� . Therefore, the
size of � is larger than ��, where the difference corresponds to the size
of �� minus one pixel.

2Anisotropic regularization computes TVs separately in �- and �-directions.
Isotropic formulation takes the integral of the size of discretized image gradient.
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Fig. 2. Comparison of the results of the original algorithm [22], the improved
version with boundaries treated by edgetaper and more elaborated Algorithms
II and III. Artifacts in the form of vertical stripes on the right side of (d) are
clearly visible. On the other hand, the difference between Algs. II & III is barely
noticeable. Best viewed electronically. (a) Original. (b) Blurred (added noise
30 db). (c) Portilla [22]. (d) Algorithm I. (e) Algorithm II. (f) Algorithm III
�� � ��.

The idea comes from [1], where the author showed how to treat
boundary artifacts when deconvolving in the Fourier domain using
Tikhonov regularizers, i.e., an approach basically equivalent to the
Wiener filter. In [26], the original procedure was applied to deconvo-
lution with regularization using the Huber function. In this section,
we modify the original result to work with the left term of (7) and
multiple images, which is the form required in algorithms [4], [8],
[16], [22]–[24].

Variable � is the known current estimate of the sparse representation
of the solution. Therefore, image �� is also known: It is the synthesis
transform of �. The minimizer of (7) is

� � ���
�
� �� � ���

��

���
�
� �� ��� � (8)

For now, let us assume that ��� is diagonalizable in the Fourier
domain, as described in the end of the previous section. Therefore, if
�� were a circular convolution, we could compute (8) exactly in the
Fourier domain by (5) or (6).

Now, we get to the trick. We will find such boundaries �� of the
observed images �� that would have resulted if image � minimizing
(7) had been blurred circularly. Therefore, when circular deblurring
(5) is performed on the observation �� framed to boundaries ��, the
boundary artifacts resulting from the erroneous boundary conditions
are eliminated.

To express (8) using circular convolution, we need to define two
quantities. First, taking matrix �� and adding extra rows for the
boundary pixels, we can form a new matrix

�� � �
��

	�

corresponding to the circular convolution with the same kernel 
�,
which is now a block-circulant matrix with circulant blocks. � is
a permutation matrix shifting the rows to the appropriate position.
Second, let us denote � � � ���

�
� �� � ��� ���. It can be shown

that the solution of (7) can be written as

� � � �
�
� �

����

��
��� (9)

where term �
� �

�
corresponds to framing each input image ��, i.e.,

multiplied by scalar ��, with border ��. � and �� are circulant and
therefore (9) can be computed in the Fourier domain by (5) or (6), with
the only change that the blurred images �� are framed to previously
computed borders ��. These borders can be expressed as

� �

��

�

�

��

� �� � 
���
� ���


�� ���
�
� �� � �� (10)

where� is a matrix obtained by stacking all matrices	� to one matrix

� �

	�

�

�

	�

and 
 is a diagonal matrix with �� values on the positions cor-
responding to borders 	�. Multiplication by 	� corresponds to
computing circular convolution with 
� taking only boundary pixels.
Similarly, 	�

� � corresponds to framing an image of all zeros by
boundary pixels � and computing circular convolution by 
� turned
180 � around its center. Obviously, we still need to compute an inver-
sion but of a matrix of much smaller dimension. In our implementation,
this inversion is computed by the conjugate gradient method. Due to a
low dimension of this problem, we never need more than about three
iterations of the conjugate gradients and, as described further, even
less when used repetitively in consecutive iterations. The result given
in [1] is a special case of (9) and (10) for one image and � � �. The
derivation of (9) and (10) is analogous to that in [1].

V. ALGORITHM

In this section, we detail the proposed algorithm in three versions
denoted as Algorithms I–III. All of them are modifications of the it-
erative procedure described in Section III. At the input, the algorithm
needs the blurred images and corresponding PSFs. The user can adjust
the number of iterations and parameters � and �.

The first algorithm (Algorithm I) is basically the original algorithm
[4], [22] extended to the possibility of multiple images and with a
simple treatment of boundary artifacts. Boundary pixels of the input
images are first replicated to achieve the same size as the estimated
image �. Then, we apply the MATLAB edgetaper function to smooth
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TABLE I
TIME COMPLEXITY AS A NUMBER OF FFTS

Fig. 3. ISNR for “Einstein” and “Peppers” images in the first 20 iterations. The
dashed (blue) line shows results for Algorithm III with boundaries reestimated
in the first iteration, which is in the example (a) indistinguishable from the solid
(red) line of Algorithm II. In the Peppers graphs, the three dashed (blue) lines
denote results for � � � � � � �. The higher �, the better ISNR. (a) Einstein (
Fig. 2). (b) Peppers from 2 images ( Fig. 4).

the transition between the opposite sides of the images (for a detailed
discussion of this function, see [1]). In some cases, this procedure sup-
presses the artifacts so that the results are acceptable. This is typical for
Gaussian-like blurs.

The second version (Algorithm II) treats boundaries rigorously in
each main-loop iteration according to formulas derived in Section IV,
which results in the almost complete removal of boundary artifacts.
Its main disadvantage is a relatively slow speed. The problem is that,
although it is usually sufficient to use only two iterations of conjugate
gradients to estimate the boundaries (we initialize the boundaries with
the value from the previous iteration), it still takes 16 FFTs for a single-
image scenario �� � ��, which is eight times more than two FFTs in
the original algorithms.

Recall that the main motivation is not only to remove the boundary
artifacts but also to keep the speed close to that of the original algo-
rithms. Fortunately, the estimation of the border areas need not be very
precise to reduce the artifacts. Our experiments showed that it is suffi-
cient to run the estimation of boundaries �� only in the first one to three
iterations (this number is denoted as �) and then reuse them in the sub-
sequent iterations (Algorithm III). This means that except for a small
constant number of iterations, our procedure reduces to the computa-
tion of almost the same equation as in the original algorithm, which
takes just 2 FFTs per iteration. Algorithm III is outlined in Fig. 1. Note
that the augmented Lagrangian algorithm has almost the same form,
except the addition and subtraction of an auxiliary variable.

Next, we analyze the number of critical time-consuming operations,
which is the Fourier transform and transforms to and from a sparse
domain. In Table I, we compare the number of FFTs of Algorithm I,
which is basically of the same complexity as the original algorithm,
with the other two versions. The number of iterations is denoted as �.
Algorithm I needs two FFTs per iteration: one to compute �� and the
other to return from the Fourier domain after finishing the deconvolu-
tion step. In addition, we precompute ��� and ��� for each input image.

Algorithm II is a complete computation that repeats all steps de-
scribed in Section IV in each main-loop iteration. In addition to the
operations in Algorithm I, Algorithm II requires ��� � �� FFTs to es-
timate borders by (10), where � is the number of conjugate gradient it-
erations. In our experiments, we use � � 	, which is sufficient because

Fig. 4. Multi-image version of experiment in Fig. 2. Input images [one of
them shown in Fig. 4(b)] are blurred by PSFs Fig. 6(b) and (c). Significantly
higher ISNR compared to the single-image version can be seen in Fig. 3(b).
Best viewed electronically. (a) Original. (b) One of two input images (added
noise 35 db). (c) Multi-image modification of Portilla [22]. (d) Algorithm I. (e)
Algorithm II. (f) Algorithm III �� � ��.

the borders are being refined during all the consecutive main-loop it-
erations. The rest of the FFTs are consumed in the precomputations at
the beginning of each main-loop iteration.

Algorithm III computes the boundaries only in the first � iterations,
and in the remaining iterations, they are simply reused. In this case,
� � 
 worked in all examples we tested.

The number of sparsity transforms is 	� for all cases ( � analysis
and � synthesis transforms). Complexity of such transform is usually
either 	�
 ��

� or 	�
�, where 
 is the number of pixels. It is
important to realize that even the computation of an asymptotically
linear transform can take more than an FFT in practice, particularly for
highly redundant dictionaries. On the other hand, if we use the gradient
as the analysis operator, its computation time is very fast.

For example, for ten iterations, � � �, and for most common frames,
the Algorithm III takes only about 50% more time than the original al-
gorithms and less than twice the original time for the regularization
by TV. In languages with high overhead of other operations, such as
MATLAB, the difference may be even smaller. In our MATLAB im-
plementation, ten iterations of the experiment in Fig. 2 takes 0.17, 0.55
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Fig. 5. Night photo (a) was taken from hand with shutter time 2.5 s (1550� 980
pixels). The other images show the result of deconvolution (TV regularization,
5 main-loop iterations). Best viewed electronically. (a) Blurred image, 3� 1.5
MP. (b) Portilla [22]. (c) Algorithm I. (d) Algorithm III �� � ��.

Fig. 6. PSFs used in experiments. PSFs (a), (b) and (c) are artificially generated,
PSF (e) of size 51� 51 elements was estimated from Fig. 5(a). (a) Einstein. (b)
Peppers 1. (c) Peppers 2. (d) Real PSF.

and 0.23 s for Algorithms I, II, and III, respectively (Intel i5, 2.67-GHz
processor).

VI. EXPERIMENTS

For this paper, we chose only the analysis-based splitting approach
(as in [4] and [22]) taken with �� norm and combined with two types
of analysis operators: anisotropic TV and the union of translation-in-
variant Haar wavelets with dual-tree complex wavelets [27]. The latter

Fig. 7. Close-ups of the top part (300 � 500 pixels) of Fig. 5. Remaining ar-
tifacts are mainly due to spatial variance of the actual PSF. Brightness was ad-
justed to improve readability in print. Best viewed electronically. (a) Blurred
image. (b) Portilla [22]. (c) Algorithm I. (d) Algorithm III.

was shown to achieve a state-of-the-art quality of deconvolution in sim-
ulated experiments with circular convolution [22]. However, we tested
also the �� norm and other combinations of sparse transforms with
slightly worse results in terms of ISNR but the same conclusions.

Figs. 2 and 3 demonstrate the effect of the better treatment of image
boundaries. To evaluate deconvolution error, we work with simulated
data. Standard images (Einstein and Peppers) were blurred using artifi-
cial kernels [see Fig. 6(a)–(c)] and degraded by additive Gaussian noise
(the SNR is 30 and 35 for Figs. 2 and 3, respectively). Fig. 2 uses one
input image, and Fig. 3 works with two input images. The figures com-
pare the original Portilla’s implementation [22] and the three proposed
versions of the boundary treatment. Fig. 4 gives the ISNR as a function
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of the number of iterations. Notice how the ISNR for Algorithms II and
III is almost indistinguishable in Fig. 4.

Fig. 5 is a demonstration of a real use of the proposed approach. To
estimate the PSF [see Fig. 6(d)], we took another image with ISO 1600
and 2EV underexposure and, after registration, computed the PSF by
the least square fit, as described in [28]. To demonstrate the speed of
convergence, we used only five iterations (ten iterations would bring a
slight improvement in sharpness) and TV regularization. Note that in
all our color experiments, all three color channels were deconvolved
separately. (Fig. 7)

VII. CONCLUSION

This paper presents a technique to remove boundary artifacts in re-
cent nonblind deconvolution algorithms based on iterative shrinkage
thresholding in a sparse domain and deconvolution in the Fourier do-
main. We obtain an excellent quality of restoration, comparable with
the current state of the art, while keeping the speed close to the high
speed of the original algorithms. Our estimates of achievable frame
rates indicate almost real-time performance even for 1-megapixel im-
ages on a personal computer.

Although the simple treatment of image boundaries (by edgetaper)
can sometimes provide satisfactory results, the proposed solution gives
a better alternative particularly for images with large differences in the
intensity of the opposing sides of the image or motion PSFs. The pro-
posed algorithm in its full version (Algorithm II) removes boundary
artifacts almost perfectly, at the expense of higher time complexity. In
addition, in most cases, the much faster approximative algorithm (Al-
gorithm III) removes the artifacts sufficiently even if the boundaries are
estimated only in the first main-loop iteration.

The rigorous treatment of boundaries is particularly important when
working with small image patches because the importance of bound-
aries in such cases increases. One example is deblurring in the presence
of space-variant blur solved by dividing the image into smaller blocks.
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