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Robust Multichannel Blind Deconvolution via Fast
Alternating Minimization

Filip Šroubek, Member, IEEE, and Peyman Milanfar, Fellow, IEEE

Abstract—Blind deconvolution, which comprises simultaneous
blur and image estimations, is a strongly ill-posed problem. It is
by now well known that if multiple images of the same scene are
acquired, this multichannel (MC) blind deconvolution problem is
better posed and allows blur estimation directly from the degraded
images.We improve theMC idea by adding robustness to noise and
stability in the case of large blurs or if the blur size is vastly over-
estimated. We formulate blind deconvolution as an -regularized
optimization problem and seek a solution by alternately optimizing
with respect to the image and with respect to blurs. Each optimiza-
tion step is converted to a constrained problem by variable split-
ting and then is addressed with an augmented Lagrangianmethod,
which permits simple and fast implementation in the Fourier do-
main. The rapid convergence of the proposed method is illustrated
on synthetically blurred data. Applicability is also demonstrated
on the deconvolution of real photos taken by a digital camera.

Index Terms—Alternating minimization, augmented La-
grangian, blind deconvolution.

I. INTRODUCTION

I MAGE deconvolution is a classical inverse problem in
image processing. Deconvolution appears in a wide range

of application areas, such as photography, astronomy, medical
imaging, and remote sensing, just to name few. Images de-
teriorate during acquisition as data pass through the sensing,
transmission, and recording processes. In general, the observed
degradation is a result of two physical phenomena. The first is
of random nature and appears in images as noise. The second is
deterministic and results in blurring, which is typically modeled
by convolution with some blur kernel called the point spread
function (PSF). Degradation caused by convolution can thus
appear in any application where image acquisition takes place.
The common sources of blurring are lens imperfections, air
turbulence, or camera-scene motion. Solving the deconvolution
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problem in a reliable way has been of prime interest in the field
of image processing for several decades and has produced an
enormous number of publications.
Let us first consider problems with just one degraded image,

i.e., single-channel deconvolution. The simplest case is if the
blur kernel is known (i.e., a classical deconvolution problem).
However, even here, estimating an unknown image is ill-posed
due to the ill-conditioned nature of the convolution operators.
This inverse problem can only be solved by adopting some
sort of regularization (in stochastic terms, regularization corre-
sponds to priors). Another option is to use techniques such as
coded aperture [1], but this requires a modification of camera
hardware, which we do not consider here. A popular recent
approach is to let the unknown image be represented as a
linear combination of few elements of some frame (usually an
overcomplete dictionary) and to force this sparse representation
by using the norm . Either we can search
for the solution in the transform domain (coefficients of the
frame elements), which is referred to as the synthesis approach,
or regularize directly the unknown image, which is called the
analysis approach. Analysis versus synthesis approach has been
studied earlier [2], [3]. If the frame is an orthonormal basis,
both approaches are equivalent. More interesting however is
the case of redundant representation (e.g., an undecimated
wavelet transform), when the two approaches differ. Conclu-
sions presented in [3] suggest that, for deconvolution problems,
the analysis approach is preferable because sparsity should
be enforced only on a part of the redundant representation
(e.g., high-pass bands), and this can be easily implemented
only in the analysis approach. Very recently, it has been shown
that the analysis approach is solved efficiently using variable
splitting and by applying a Bregman iterative method [4] or an
augmented Lagrangian method (ALM) [5] (both methods lead
to the same algorithm).
If the blur kernel is unknown, we face single-channel blind

deconvolution, which is clearly even more complicated than the
classical deconvolution problem. This inverse problem is under-
determined as we have more unknowns (image and blur) than
equations. For a long time, the problem seemed too difficult to
solve for general blur kernels. Past algorithms usually worked
only for special cases, such as astronomical images with a uni-
form (black) background, and their performance depended on
initial estimates of PSFs. To name a few papers from this cat-
egory, consider [6]–[8] and survey [9]. Probably, the first at-
tempt toward a more general blur estimation came from Fergus
et al. [10], who proposed a variational Bayesian method [11]
with natural image statistics. This triggered a furious activity in
the computer vision community, and soon, several conference
papers appeared on the same topic [12]–[17]. Levin et al. [15]
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pointed out that the joint posterior probability of the image–blur
pair favors a trivial solution of the blur being a delta function
and that marginalizing the posterior (integrating out the image
variable) is more appropriate. However, a closed-form solution
seldom exists, and a complicated approximation of the poste-
rior is necessary, which leads to cumbersome methods that can
hardly handle large blurs. In order to avoid these drawbacks,
recent methods still try to minimize directly the joint posterior
probability since it can be done in an efficient way but perform
all sorts of tricks to avoid the trivial solution. Jia [12] uses an
alpha matte to extract a transparency map and estimates the blur
kernel on the map. Joshi et al. [13] predicts sharp edges using
edge profiles and estimates the blur kernel from the predicted
edges. Cho et al. [16] applies a shock filter and gradient thresh-
olding to restore only strong edges and estimates the blur kernel
from the truncated gradient image. A similar idea further im-
proved by a kernel refinement step has been proposed recently
by Xu et al. [17]. In general, the single-channel blind deconvo-
lution methods get trapped in local minima and must estimate
blurs using a multiscale approach. They have many parameters
that influence the result considerably and are hard to tune. The
common trick for the methods to work is to have means to pre-
dict strong edges. However, if the blurry image does not have
salient edges or it is corrupted by noise, all the single-channel
deconvolution methods usually fail.
The ill-posed nature of blind deconvolution can be reme-

died to a great extent by considering multiple images. In this
case, the problem is referred to as multichannel (MC) blind de-
convolution and will be the subject of our investigation. Ac-
quired images must capture the same scene and differ only in
the blur kernel. This may not seem to be easy to achieve in
practice. However, the opposite is true. There are many sit-
uations where multiple images blurred in a slightly different
way can be obtained. For example, if atmospheric turbulence
causes blurring, we can capture several images (or video frames)
in a row, and due to the random nature of turbulence, each
image is almost surely blurred in a different way. If camera
shake causes blurring, continuous shooting (or video capture)
with the camera provides several images that are blurred in a
different way since our hand moves randomly. MC deconvo-
lution requires that the input images are properly registered,
which is one drawback compared with the single-channel case.
If the images are acquired as described above, misregistration
is only minor, and even simple registration methods will pro-
vide accurate and stable results (see, e.g., [18]) for a survey of
registration methods. We will thus assume that the input im-
ages are registered up to some global translation. A simple reg-
istration method for affine transforms is used in our experi-
ments, as sketched in Section VI. More problematic is the oc-
currence of space-variant blur, which often arises in practice,
such as rotating camera or profound depth of scene. We note
that the method proposed here assumes a space-invariant case,
but by applying the method locally, we can, in theory, deal with
space-variant cases as well.We refer the interested reader to [19]
and references therein for space-variant deconvolution.
One of the earliest intrinsic MC blind deconvolution methods

[20] was designed particularly for images blurred by atmo-
spheric turbulence. Harikumar et al. [21] proposed an indirect

algorithm, which first estimates blur kernels and then recovers
the original image by a standard nonblind method. The blur
kernels are equal to the minimum eigenvector of a special
matrix constructed from the blurred input images. Necessary
assumptions for perfect recovery of the blurs are noise-free
environment and channel coprimeness, i.e., a scalar constant
is the only common factor of the blurs. Giannakis et al. [22]
developed another indirect algorithm based on Bezout’s iden-
tity of coprime polynomials, which finds restoration filters. In
addition, by convolving the filters with the input images, it
recovers the original image. Both algorithms are vulnerable
to noise and, even for a moderate noise-level restoration, may
break down. Pai et al. [23] suggested two MC restoration al-
gorithms that, contrary to the previous two indirect algorithms,
estimate directly the original image from the null space or
from the range of a special matrix. Another direct method
based on the greatest common divisor was proposed in [24].
In noisy cases, the direct algorithms are more stable than the
indirect ones. Approaches based on the autoregressive moving
average model are given in [25]. MC blind deconvolution using
a Bussgang algorithm was proposed in [26], which performs
well on spatially uncorrelated data, such as binary text images
and spiky images. Sroubek et al. [27] proposed a method that
reformulates Harikumar’s idea in [21] as a MC regularization
term and simultaneously minimizes an energy function with
respect to the image and blur kernels. This allows us to handle
inexact PSF sizes and to compensate for small misalignment in
input images, which made MC deconvolution more practical.
However, small PSFs (less than 15 15) and images of size
couple of hundreds of pixels were only considered. It is mainly
because of the inefficiency of the applied numerical algorithm
that the method is not converging for larger blurs and images.
Here, we propose anMCblind deconvolutionmethod that can

handle very large blurs (e.g., 50 50) and images of several
megapixels with even better accuracy and speed. The method
is based on the same idea as in [27], and it is formulated as
a constrained optimization problem. For image regularization,
we use total variation (TV) [28], and for blur regularization,
we use the MC constraint proposed in [21]. We show that the
original MC constraint is not robust to noise and propose a
simple remedy, which requires a negligible extra computation
but achieves much better stability with respect to noise. Since
the optimization problem mixes the and norms, we use the
state-of-the-art numerical method of augmented Lagrangian [5]
to solve the blind deconvolution problem and achieve very fast
convergence. As it will be cleared later, positivity of blur ker-
nels is an important constraint that must be included in the opti-
mization problem. We show that positivity can be incorporated
in augmented Lagrangian effortlessly without affecting the con-
vergence properties.
This paper is organized as follows. Section II defines nota-

tion and presents the basic alternating minimization approach
to blind deconvolution. Image regularization in the form of
isotropic TV is given in Section III. Section IV discusses the
problem of blur estimation in the MC scenario and influence of
noise and blur size and proposes a novel blur kernel constraint
with sparsity and positivity regularization. A description of
the proposed algorithm is given in Section V, together with
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Fig. 1. Flowchart of the alternating minimization algorithm.

implementation details. The experimental section, Section VI,
empirically validates the proposed method, and Section VII
concludes this paper.

II. MC BLIND DECONVOLUTION BASICS

We formulate the problem in the discrete domain and use
frequently vector–matrix notation throughout the text. Images
and PSFs are denoted by small italic letters and their corre-
sponding vectorial representations (lexicographically ordered
pixels) are denoted by small bold letters. The MC blind decon-
volution problem assumes that we have input images

that are related to an unknown
image according to model

(1)

where denotes an unknown blur (kernel or PSF PSF) and
is the additive noise in the th observation. Operator stands

for convolution, and .When no ambiguity arises, we drop
multiindex from the notation. In the vector–matrix notation,
(1) becomes

(2)

where matrices and perform convolution with and ,
respectively. To denote the th element in the vector notation,
we write , e.g., . The size of images and blurs
(matrices and vectors) will be discussed later when necessary.
In the case of multiple acquisitions, we cannot expect that

input images are perfectly spatially aligned. One can model
such misregistation by the geometric transformation
that precede blurring , i.e., . If is invert-
ible, then , where

. If is a standard convolution with
some PSF and is a linear geometric transformation,
then the new blurring operator remains a standard convo-
lution but with warped according to . Therefore, for
linear geometric transformations (such as affine), the order of
geometric transformation and blurring can be interchanged. We
thus assume that input images can be accurately registered
by linear transformations, and a registration step preceding
blind deconvolution removes such geometric transformations.
It is well known that the problem of estimating from is

ill-posed; thus, this inverse problem can only be solved satis-
factorily by adopting some sort of regularization. Formally, this
leads to the following optimization problem:

(3)

where is the data fidelity term and and are regular-
izers of the image and blurs, respectively. The formation model
(1) determines the data term leading to a standard formulation

, where is inversely
proportional to the variance of noise and denotes the
norm. For simplicity, we assume the same noise variance in all
frames; therefore, single parameter suffices. The standard ap-
proach to solve (3) is called alternating minimization and will
be adopted here as well. We split the problem into two subprob-
lems, i.e.,

-step" (4)

-step" (5)

and alternate between them (see the algorithm flowchart in
Fig. 1). Convergence to the global minimum is theoretically not
guaranteed since the unknown variables are coupled in the data
term . However, we show that each subproblem separately
converges to its global minimum and that it can be solved
efficiently by the ALM. This implies that, in general, the global
minimum of (3) is attainable after few alternations between
the subproblems. The next two sections describe in detail the
image and blur regularization terms.

III. IMAGE REGULARIZATION

A popular recent approach to image regularization is to as-
sume that the unknown image is represented as a linear com-
bination of few elements of some frame (usually an overcom-
plete dictionary) and to force this sparse representation by using
the norm (or ). Arguably, the best known and most com-
monly used image regularizer, which belongs to the category of
sparse priors, is the TV norm [28].
The isotropic TV model is the norm of image-gradient

magnitude values and takes the following form:

(6)

where . The TV regularizer thus forces the solu-
tion to have sparse image gradient. Depending on the type of
data, one can have sparsity in different domains. This modifica-
tion is however easy to achieve. All we have to do is to replace
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derivatives with a transformation (e.g., a waveletlike multiscale
transform), which gives sparse representation of our data.
Using the vector–matrix notation, the isotropic TV (6) can be

written as

(7)

where and are matrices performing derivatives with re-
spect to and , respectively.

IV. BLUR ESTIMATION AND REGULARIZATION

We first review an MC PSF estimation method proposed in
[21], [22], which was later used in MC blind deconvolution as
the PSF regularizer [27]. We demonstrate that the method is not
robust to noise and show a novel improvement in this aspect.
To keep the notation simple, let us assume 1-D data and the
two-channel convolution model (1) . The following
discussion can be easily extended to 2-D data and any .
The sizes of 1-D data , , and is , , and , respectively,
with . Noise is of the same size as . Kernels
can be of different sizes, but we can always pad the smaller
ones with zeros to have the size of the largest one and therefore
refers to the size of the largest PSF. To deal correctly with

convolution at image boundaries, weworkwith convolution that
returns a “valid” part of the support and thus .
The matrices and in the vector–matrix formation model
(2) are thus of size and , respectively.
Let be an estimate of . In general, the original PSF size
is not known; therefore, can be of different size, which

is denoted here as . Let us study three cases that will be used
in the following discussion: (a1) noiseless case ; (a2)
PSF size is exactly known ; and (a3) original PSFs are
weakly coprime and images are persistently exciting for size
. A set of kernels is called weakly coprime [22]; if there
exists kernel and set so that, , , then is
a scalar. In other words, if the kernels are decomposable, they
must not have a common kernel. An image of size is called
persistently exciting [21] for size if its “valid” convolution
matrix of size has full column rank. Note
that such an image will be also persistently exciting for any size
smaller than .

A. Noiseless Case

We first consider a situation, when all three assumptions (a1),
a(2), and (a3) hold. If , then

(8)

where we used the commutative property of convolution.
Rewriting the above relation in the vector–matrix notation, we
get

(9)

where . Matrices and denote “valid”
convolution with and , respectively, and they are of size

. Note that, in the case of , it is sufficient
to consider all unordered pairs of images, which is equal to the

Fig. 2. Spectra of kernel regularization matrices in (10), in (15), and
in (17). (a) in the (solid line) noiseless and (dotted line) noisy case and

(b) (solid line) and (dashed line) in the noisy case.

combinatorial number . Thus, for example, for , the
number of image pairs is ; (9) becomes

Let us continue with and define a symmetric positive
semidefinite matrix, i.e.,

(10)

The computational complexity of constructing this matrix is dis-
cussed in Section V-C. It follows from (9) that the correct esti-
mates of lie in the null space of . We refer to eigenvalues
of as and the corresponding
eigenvectors as . Since (a2) and (a3) hold, has exactly one
zero eigenvalue , and eigenvector is equal to the correct
PSFs stacked in one vector multiplied by a scalar. Note that
is constructed solely from the input image values, and it

can be thus used for the PSF estimation. An example of the
spectrum (plot of values) is in Fig. 2(a) (solid line). Matrix
was constructed from images blurred by two 5 5 PSFs in

Fig. 3(a). Notice the prominent kink at the first eigenvalue .
The corresponding eigenvector represents exactly the orig-
inal PSFs. This fact is also illustrated in Fig. 4(a), which plots
the representation of in basis , i.e., .
One can use to build the following quadratic form:

(11)

and rewrite the eigenvector estimation as a constrained op-
timization problem

s.t. (12)

As proposed in [27], it is better to use the quadratic term as a
PSF regularization term in the blindMC deconvolution problem
(3). Because of the favorable spectrum of , the convergence
of such algorithms is very fast.

B. Noisy Case

Let us see what happens if we remove (a1) and allow noise
to enter the formation model (1). We assume uncorrelated nor-
mally distributed noise . It follows from (2) that
the convolution matrices in (9) take the form

(13)
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Fig. 3. PSFs and their estimates (first eigenvectors) in the noisy case. (a) two
original PSFs of size 5 5. (b) Estimation using . (c) Estimation using .
(d) Estimation using .

Fig. 4. Representation of PSFs in the eigenvector basis of regularization ma-
trices. (a) in the noiseless case. (b) in the noisy case. (c) in the noisy
case. (d) in the noisy case.

where, this time, is of size and is a noise
convolutionmatrix constructed in the sameway as but using
elements of instead of . Substituting for in (9), we get

(14)

where

,
since , which
follows from (8). Because of noise, we cannot expect that the
smallest eigenvalue of will no longer be zero. Indeed, the
kink visible in the noiseless case is completely leveled out
in the noisy case. Fig. 2(a) (dotted line) shows the spectrum
of for the input data used before but corrupted by noise
with SNR dB, which is a relatively small level of noise
hardly detectable by human eyes. Eigenvector is no longer
informative and represents an erroneous solution, as shown in
Fig. 3(b). The correct solution is a linear combination of all
eigenvectors with the weights almost randomly distributed, as
shown in Fig. 4(b).

The maximum-likelihood estimation of kernels must include
the covariance matrix in , i.e.,

(15)

The spectrum of retains the kink at the first smallest
eigenvalue , as Fig. 2(b) (solid line) shows. For comparison,
we show the original spectrum of in (10), as a dotted line
[also in Fig. 2(a)]. The eigenvector of captures the orig-
inal PSFs, as shown in Fig. 3(c). Encoding of the true kernels
in the basis is relatively sparse and cluster around the

smallest eigenvalues [see Fig. 4(c)]. The same behavior persists
even for much higher noise levels (around 10 dB). The con-
struction of has one severe drawback: We must know the
correct kernels a priori in order to build . Since our aim is
to estimate PSFs, this seem to be contradictory. One can apply
an iterative procedure and update with every new estimate of
, as proposed in [21]. Unfortunately, this framework is not

guaranteed to converge. In addition, inversion of can be very
costly, which makes the whole calculation of for large ker-
nels (large ) impossible.
We propose to filter the blurred input images in such a way

so that without in (10) will be closed to in (15). If we
filter the input images with some kernel , then

(16)

where performs convolution with and the covariance matrix
is

. The best choice of the filter is such that
; since then, the covariance matrix can be neglected. How-

ever, this would again require a priori knowledge of unknown
kernels since depends on . Achieving a diagonal cor-
relation matrix means that we want to spatially decorrelate the
blur kernels. In the absence of any prior knowledge of the blurs,
we wish to employ a decorrelation method that is sufficiently
general. As such, given the well-accepted assumption of spar-
sity on high-frequency spatial structures, the natural choice is to
apply a Laplacian operator. The justification is therefore empir-
ical but quite reasonable. In Fig. 5(a), we show a small part of
the covariance matrix for our example with two blurs and, in
Fig. 5(b), the covariance matrix with being the Laplacian.
The covariance matrix of the filtered images is not diagonal but
close to diagonal. The Laplacian produces images, which are
relatively sparse and therefore spatially uncorrelated to a great
extent. The same holds for PSFs that blur the images, which ac-
counts for the close-to-diagonal covariance matrix.
Let denote a matrix that performs convolution with the

discrete Laplacian kernel (in 1-D ). The proposed
modification of the matrix is

(17)

Matrix depends only on the input images , and the con-
struction is trivial. The spectrum of this matrix retains the kink
[see dashed line in Fig. 2(b)] and relatively sparse representa-
tion of , as shown in Fig. 4(d). Eigenvector estimates in
a similar way as ideal [see Fig. 3(d)].
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Fig. 5. Covariance matrices. (a) Calculated from the original PSFs. (b) Calcu-
lated from the Laplacian of PSFs.

C. Overestimated Kernel Size

It is unrealistic to assume that the kernel size is exactly
known in practice. Let us thus consider the case when both (a1)
and (a3) hold, but (a2) is violated with the kernel size being
overestimated, i.e., . We can readily see that if
, where is an arbitrary spurious kernel of size ,

the MC constraint (8) still holds

(18)

In the language of matrix eigenvalues and eigenvectors, this
fact translates as follows. Matrix defined in (10) is of size

. The correct kernels lie again in the null space of , but
this time, the matrix nullity is of the size of the spurious kernel,
i.e., nullity . The regularization term (11) built from
becomes less restrictive (more “flat”) because of the increased
nullity. Therefore, convergence of any minimization algorithm,
which estimates PSFs using the proposed regularizer , is se-
riously hindered in the case of overestimated kernel size. Note
that if the kernel size is underestimated, (18) does not hold,
and we cannot estimated the kernels at all. We will not consider
the underestimated case and, instead, focus on improving the
stability of the overestimated case.
One can be tempted to assume that the unconstrained opti-

mization problem, as defined in (5), would eliminate the ambi-
guity inherent in . Using the vector–matrix notation, this
problem rewrites as

(19)

where is the convolution matrix with the estimate of
the original image . If estimate , the above optimization
problem is well posed, and in fact, we do not need regularizer
at all. However, this scenario is unrealistic since we do not know
the original image. Alternating minimization often starts with
equal to a so-called average image, i.e., . To
illustrate the behavior of the data term with respect
to the spurious kernel , we conducted the following experi-
ment. We generated two blurry signals and using some
random positive PSFs and of size . We set ;
therefore, the spurious kernel is of size 2, and .
Let us consider kernels of form that preserve en-
ergy , then for any and .
The data term with being the average image is a
function of , and we plot its values for different in Fig. 6.

Fig. 6. Data term as a function of the first elements of the
2 1 spurious vector , where . The minimum is not
reached for (delta function) but for with a small negative value.

The minimum was reached for a negative value of , and the
same behavior was observed for any pair of blurs and .
The data term is thus biased toward kernels with small nega-
tive values, and the unconstrained optimization problem (19) is
inappropriate if the kernel size is overestimated. An intuitive ex-
planation is the following. Since we use the average image, the
value of would reach its minimum for some close to delta
functions. Such a solution is however heavily penalized by ,
which allows only PSFs of form . In order to get closer to
the delta-function solution, must act as an inverse filter to all
positive , and this means that it must perform differentiation;
hence, negative values in are inevitable.
Forcing positivity on kernels is the remedy to the above

problem. Clearly, this approach is possible only for positive
kernels. We encounter positive-only kernels in many deconvo-
lution problems, and making this assumption is thus not very
restrictive. With the positivity constraint, the above problem
can be solved by means of quadratic programming. Here, we
show a different approach, which will allow us an elegant
integration in the ALM and much faster implementation than
quadratic programming. We have empirically observed that
forcing sparsity on further boosts convergence. In order to
guarantee both positivity and sparsity, we propose to use a new
kernel regularizer, i.e.,

(20)

where

if
otherwise

(21)
and is the weight that controls the influence of the MC con-
straint . The definition of ensures positivity by absolutely
penalizing negative values and forces sparsity by calculating the
norm of positive kernels.
Note that it is not necessary to explicitly include the constraint

as in (12), which preserves the average gray
value in images. This constraint is automatically enforced by
the fidelity term in (19). If the mean value
of the estimated image is equal to the mean value of , then
by solving (19) ( -step), we always preserve .
The -step in (4) does not change the mean value of either
because the fidelity term is present there as well. Therefore, the
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condition is not modified in alternating minimization, and we
only have to guarantee that initial PSFs follow the constraint.

D. Kernel Coprimeness

Let us consider the assumption (a3) of persistently exciting
images and weakly coprime kernels. The condition of persis-
tently exciting image is a very mild one. Usually , con-
volution matrices have many more rows than columns, and
the probability that the matrices will not have a full column rank
is thus very small. We do not consider here degenerate cases,
such as perfectly uniform or periodic images, that may not be
persistently exciting.
The condition of weakly coprime kernels may seem to be

more problematic. In the 1-D case (signals), any kernel of length
can be decomposed (factorized) into kernels (root fac-

tors) of size 2, which is the direct consequence of the funda-
mental theorem of algebra1 (see, e.g., [29]). It is therefore likely
that there might exist a factor common to all kernels . In the
2-D case (images), no such factorization in general exists and,
as also discussed in [21], coprimeness holds deterministically
for most of the 2-D cases of practical interest.
If the common factor exists despite its low probability, kernel

estimation still partially works. We are able to recover kernels
without their common factor, and the common factor remains
as a blur in the estimated image.

V. OPTIMIZATION ALGORITHM

Alternating minimization, which solves the MC blind decon-
volution problem (3), consists of two subproblems: minimiza-
tion with respect to the image ( -step) and the minimization
with respect to the blurs ( -step). Both subproblems share some
similarities because both the image (7) and the blur regularizer
(20) are not smooth and introduce nonlinearity in the problem.
Direct minimization in each step would be thus a slow process.
A simple procedure that solves such problems is called variable
splitting, which decouples the and portions of the problem
(3) by introducing auxiliary variable and converting each sub-
problem to two simpler minimization steps. We then apply the
ALM, which is equivalent to the split Bregman iterative method
[4], to solve the subproblems. Our derivation follows the work
presented in [5] and partially in [4]. Unique aspects of our al-
gorithm will be emphasized. From now on, we will exclusively
use the vector–matrix notation and stack all observations into
one system by using the compact notations ,

, , and the convolu-
tion matrix will now denote a block diagonal matrix with
blocks, where each block is the original from (2).

A. U-Step

Using the TV regularizer (7), minimization with respect to
the image (4) writes as

(22)

1However, some of the factors may contain complex values.

Applying variable splitting, we replace by and
by . This yields a constrained problem

s.t. (23)

which is equivalent to (22). The ALM (or split-Bregman iter-
ation) tackles the constrained problem (23) by considering the
functional

(24)

and solving it with an iterative algorithm:

Algorithm: -step

1: Set and

2: repeat

3:

4:
,
,

where

5:

6:

7: until stopping criterion is satisfied

8: return

This iterative algorithm consists of three update steps: lines
3, 4, and 5. Variables and are introduced by the ALM.
Their update on line 5 is trivial. It is worth drawing a relation
of the ALM to a penalty method. If we omit the updating step
for and , and keep , the above algorithm de-
faults to the penalty method. The penalty method converges to
the solution of the constrained problem (23) only if we keep
increasing to infinity while iterating, as advocated in [30].
This is however not practical as the problem becomes gradu-
ally more ill-posed with increasing . This drawback is avoided
in the ALM. Since is a lower semicontinuous proper convex
function,2 and has a full column rank, then, if (23)
has a solution, the -step algorithm converges to this solution
even for that is relatively small and fixed. This important the-
orem was proved in [31].

2In our case, is continuous and thus lower semicontinuous
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Fig. 7. Soft thresholding. (a) Shrinkage formula (26) for a nonzero threshold
(solid) and for (dashed). (b) Corresponding in (25) for a

(solid) nonzero threshold and (dashed) for . Note that is a
relaxed form of the norm, which is the absolute value (dashed) in this simple
case.

Since in (24) is quadratic with respect to , minimization
on line 3 is a solution to a set of linear equations. We show later
that this can be solved efficiently in the Fourier domain.
The beauty of variable splitting is that minimization with re-

spect to and is, by definition, the Moreau proximal map-
ping [32] of applied to and . The
problem can be solved for each th element independently. Let

and be
vectors of size 2 1; the problem on line 4 is of the form

(25)

and, as proved in [30], the minimum is reached for

(26)

which is a generalized shrinkage formula for vectors. For the
scalar, (26) corresponds to a well-known soft-thresholding for-
mula plotted as a solid line in Fig. 7(a). It is interesting to note
that, after substituting for in (25), [solid line in Fig. 7(b)]
can be written in a closed form

if
otherwise

(27)

which is a relaxed form of the original in the
isotropic TV definition (6). If , then , and the
corresponding graphs are plotted as dashed lines in Fig. 7.

B. H-Step

The kernel estimation proceeds analogously to the -step.
Using the proposed regularizer (20), minimization with respect
to the PSFs (5) writes as

(28)

Applying variable splitting yields the constrained
problem

s.t. (29)

Then, we consider the following functional:

(30)

Fig. 8. Thresholding in the blur domain. (a) Shrinkage formula (32) for (solid)
a nonzero threshold and for (dashed) . (b) Corresponding in
(31) for a nonzero threshold (solid) and for (dashed).

and solve it with the following iterative algorithm:

Algorithm: -step

1: Set and

2: repeat

3:

4:

5:

6:

7: until stopping criterion is satisfied

8: return

Matrix denotes identity of size . As in the -step,
the -step iterative algorithm consists of three update steps:
lines 3, 4, and 5. Since in (30) is quadratic with respect to
, minimization on line 3 is a solution to a set of linear equa-
tions. This time, the minimization with respect to is again the
Moreau proximal mapping of applied to , and it is
solved elementwise. Let and ; the problem
on line 4 is of the following form:

(31)

where is our positivity–sparsity enforcing function defined in
(21) and plotted as dashed line in Fig. 8(b). After some manip-
ulation, one can see that the minimum is reached for

(32)

The plot of this “one-sided” thresholding function is the solid
line in Fig. 8(a). Using the thresholding function, a closed form
of is

if

otherwise
(33)
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with a plot in Fig. 8(b), i.e., the solid line. The function linearly
increases in the positive domain, whereas in the negative do-
main, it increases quadratically. If , then , and
the thresholding function in (32) approaches the dashed line in
Fig. 8(a). However, as in the -step, we do not need to increase
to infinity for the -step algorithm to converge to the solution

of the constrained problem (29). The ALM approach with its
extravariable converges. Note, that must be a lower semi-
continuous proper convex function for the method to converge,
which is the case. Interestingly, if we replaced in definition (21)
infinity with some large but finite numbers, the resulting func-
tion would no longer be convex. Infinity in the definition might
look dangerous, but it turns out to give an elegant solution in the
form of the thresholding function (32).

C. Implementation

We have analyzed the main points ( -step and -step) of the
optimization algorithm. Nowwe proceed with the description of
the main loop of the algorithm and the computational cost of in-
dividual steps. Let denote the number of pixels in the output
image , and let denote the number of pixels in our overesti-
mated PSF support. The main loop of the MC blind deconvolu-
tion alternating minimization algorithm looks as follows:

MC blind deconvolution

Require: input images ; blur size ; parameters
, , ,

1: Set , ’s to delta functions, and

2: Calculate

3: repeat

4: -step

5: -step

6:

7: until stopping criterion is satisfied

8: return

The stopping criterion, which we typically use, is
. The same can be used in the

-step and, likewise, in the -step using instead of . The
calculation of can be done using the fast Fourier transform
(FFT) without explicitly constructing the convolution matrices
. Since values are “valid” convolutions, we can con-

struct only one row of at a time, and the overall complexity
is thus .
In general, the most time-consuming is the -step,

which requires an inversion of the huge matrix
. One can apply iterative

solvers, such as conjugate gradient, to avoid direct inversion,
but we can do even better and have a direct solver. In our for-
mulation, , , and are convolution matrices. To avoid
any ringing artifacts close to image boundaries, they should
perform “valid” convolution, i.e., the output image is smaller

and covers a region where both the input image and the convo-
lution kernel are fully defined. If we properly adjust the image
borders, e.g., by using the function edgetaper in MATLAB,
we can replace “valid” convolution with block-circulant one,
and ringing artifacts will be almost undetectable. The TV
regularizer also helps to reduce such artifacts. FFT diagonalizes
block-circulant convolution matrices, and inversion is thus
straightforward. The remaining update steps for and

are simple and can be computed in time. The
-step is thus carried out with an overall cost.
Unlike the -step, which is calculated almost entirely in the

Fourier domain, we perform the -step in the image domain
since we need the constrained kernel support . Otherwise,

becomes a very uninformative regularizer, as explained in
Section IV-C. On line 3 of the -step algorithm, we have to
invert matrix , which is of size

and thus much smaller than the matrix in the -step.
Typically, the size of blurs is not more than 40 40 pixels

, and for two input images , the matrix
size is 3200 3200, which is still relatively small.3 One can
again apply an iterative solver such as a conjugate gradient, but
we found it much more efficient to store the whole matrix and
perform Cholesky decomposition to solve this problem. This
can be computed in time. Again, update steps for
and are very simple and require operations.
Setting parameters is based solely on our empirical studies

and cannot be considered as a rigorous procedure. The opti-
mization method has four parameters. We have noticed that, in
general, they can be fixed relative to one of them, i.e., , which
depends on the noise level. This observation is not superficial.
Afonso et al. [5] (as well as is [4] for the split Bregman method)
also recommend to set parameters introduced by the ALM, i.e.,
in our case, and , with respect to the weight of the fidelity
term. Parameter , which is the weight of the MC constraint
term , is proportional to the noise variance, as shown
in (16), and therefore should be fixed to as well. The role of
thumb is to set equal to a ratio of signal and noise variances,
i.e., SNR dB or SNR dB ,
etc.4 Then, we have found that choosing , ,
and usually results in good convergence. For higher
noise levels (smaller ), we observed that is better.
In our experiments, the number of iteration in the main loop

and in the -step and -step typically did not exceed ten. In order
to further decrease computational time, we tried to modify the
algorithm in several ways. For example, we found it very effec-
tive to divide the algorithm into two stages. In the first stage, we
select a small (typically 256 256) central region from input
images and run the algorithm on this selection. In the second
stage, we take the estimated PSFs from the first stage and apply
one -step on the whole image in order to obtain the final recon-
structed image. The usable output of the first stage are thus PSFs
and not the reconstructed central region.We observed that fixing
to ten (even for the SNR above 10 dB) in the first stage and

3A matrix of such size, if stored in double precision, occupies approximately
78 MB of memory, which current computers can easily handle.
4We use a standard definition of the signal to noise ratio, SNR

, where and are the signal and noise variances, respec-
tively.
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Fig. 9. Test data set. (a) Original image 256 256. (b) Two blurs 9 9. (c) Example of an input blurry pair with SNR dB.

setting other parameters according to formulas as shown above
produces accurate PSFs in a more reliable way. This conver-
gence boost can be explained by noting that the reconstructed
image for lower becomes more piecewise constant (patchy)
with only strong edges preserved, which makes the -step in
the fidelity term focus only on areas around strong edges and
neglect areas with details that are prone to noise.
Another modification, which proved to be a minor improve-

ment, was to estimate PSFs in a multiscale fashion. Initializing
with upsampled PSFs from the courser levels tend to decrease
the number of iterations. However, we observed that more than
two levels (half-sized and original scale) are not necessary and
that the choice of the upsampling algorithm is important. Simple
linear upsampling generates PSFs that are wider than the true
PSFs on that scale, and we waste several iterations of the al-
gorithm to shrink the PSFs back. In our tests, we were using a
Lanczos interpolation method, which seems to give the best re-
sults.
To provide the cost of individual steps in terms of computer

time, we performed blind deconvolution of two one-megapixel
images with PSF size 40 40 on a 2.7-GHz Pentium Dual-Core
CPU using our MATLAB implementation. The cost of one it-
eration inside the -step and the -step is around 0.8 and 4.5
s, respectively. Calculating matrix using the whole images
takes 11 min in this case, which is clearly the most time-con-
suming step. However, as pointed out earlier, we can calculate
on a small region. For example, for a 256 256 block, the

calculation (same PSF size 40 40) then takes around 30 s.

VI. EXPERIMENTS

In order to illustrate the favorable convergence properties of
the proposed algorithm, we performed two sets of experiments.
The first set works with synthetically blurred data and compares
convergence and quality of PSF and image estimations for dif-
ferent SNRs and blur sizes. The second set of experiments com-
pares the proposed algorithm with another MC blind deconvo-
lution method of Katkovnik et al. [33] and demonstrates decon-
volution of real photos taken with a standard digital camera.
The setup for the synthetic data experiment was the fol-

lowing. We took the Lena image in Fig. 9(a) and convolve it
with two 9 9 blurs [see Fig. 9(b)] and add noise at three
different levels SNR and dB. An example of blurry
images for the least noisy case is in Fig. 9(c). To evaluate perfor-
mance in every iteration of the main loop, we use normalized

root mean square error defined as NRMSE ,
where is the estimation of PSFs after iterations and
are the true PSFs. NRMSE as a function of iterations and
estimated PSFs for different situations are summarized in
Fig. 10. NRMSE is plotted in logarithmic scale. Three graphs
correspond to three levels of SNRs. In each case, we ran the
algorithm with three different PSF supports: 9 9 (solid line),
15 15 (dotted line), and 21 21 (dashed line). The corre-
sponding estimated sharp images for the PSF support 21 21
and are summarized in Fig. 11. One can see that the proposed
method provides accurate results regardless of the degree of
PSF size overestimation and shows robustness with respect to
noise.
There are several interesting points we can draw from the

obtained results. First of all, the MSE decreases very quickly.
In most of the cases, after five iterations, MSE remains almost
constant. For overestimated blur supports (dotted and dashed
line) MSE reaches almost the same level as for the correct
blur support (solid line), but the decrease is slightly less sharp
(particularly visible for SNR dB). This is logical since,
in the overestimated case, the dimensionality of the problem
is higher, and the MC constraint is less effective, as dis-
cussed in Section IV-C. Clearly, as the noise level increases,
the lowest attainable MSE increases as well. For SNR dB
[see Fig. 10(a)], estimated PSFs are very accurate. The corre-
sponding estimated image in Fig. 11(a) is almost perfect. For
SNR dB, [see Fig. 10(b)], the estimated PSFs take the
shape of the true PSFs but are slightly blurred. The estimated
image in Fig. 11(b) still looks very sharp and artifact free.
As the noise level increases further to SNR dB [see
Fig. 10(c)], the quality of deconvolution starts to deteriorate,
but the TV denoising feature of the method is evident, as shown
in Fig. 11(c).
There are few data in the literature to which we can directly

compare which uses multiple frames in the process. Most of
the MC work presented in the introduction is mainly theoret-
ical and presents no algorithms for large-scale problems. Com-
parison with single-channel results is possible, but we do not
feel that this is fair to these other methods. To our knowledge,
the only recent method, which is intrinsically MC and claims
to work with large kernels, was proposed in [33]. This method
performs alternating minimization by switching between mini-
mization with respect to the image (corresponds to our -step)
and minimization with respect to the kernels (corresponds to our
-step). A variation of the steepest descent algorithm is used
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Fig. 10. Estimated PSFs and plots of NRMSE for different noise levels in input blurry images: (a) 50, (b) 30, and (c) 10 dB. Three different PSF supports were
considered in each noisy case: (solid line) correct PSF size 9 9, (dotted line) two overestimated sizes 15 15, and (dashed line) 21 21. (a) 50 dB. (b) 30 dB.
(c) 10 dB.

Fig. 11. Estimated sharp images for the PSF size set to 21 21 and three different noise levels: (a) 50, (b) 30, and (c) 10 dB. Results are arranged as in Fig. 10.
The first row shows one of the input images and the second row shows the estimated image. (a) 50 dB. (b) 30 dB. (c) 10 dB.

for minimization. Everything is implemented in the Fourier do-
main, as in our case. For minimization, we use ALM in order to
work with nonlinear regularization terms in an efficient manner.
Katkovnik et al. use a variation of the steepest descent algo-
rithm with only quadratic terms. Instead of using regulariza-
tion, they project current estimation after every iteration into
an admissible set of solutions (such as positive PSFs with lim-
ited support and image intensity values between 0 and 1) and
perform spatially adaptive image denoising based on the inter-
section-of-confidence-interval rule. To compare the methods,
we took a data set generated in [15], which contained four im-
ages blurred by eight PSFs providing 32 blurred images [see
Fig. 12(a) and (b)]. The blurred images are real and captured
by a digital camera. The ground-truth PSFs in Fig. 12(b) were
estimated by a collection of point sources installed in the ob-
served scene. We divided the blurred images into eight groups
(each containing one image blurred by four blurs) and applied
both methods. The NRMSE of the estimated images and blurs

are plotted in Fig. 12(c) and (d). One can see that, in half of the
cases, our method provides better PSFs (in the NRMSE sense)
and outperforms the other method in the image NRMSE in all
eight cases. In addition, our method requires only ten iterations
of alternating minimization, whereas the other method requires
roughly 100 iterations to achieve these results.5

In order to demonstrate that the algorithmworks well in many
practical applications, we took several pairs of images with a
3-megapixel digital camera Olympus C3020Z and applied the
proposed algorithm. Light conditions were low, and the shutter
speed of the camera was typically longer than 1/10 s. Such set-
ting produces nice blurry images, when the camera is held in
hands. It is of course necessary to first register the input photos
before the algorithm can be applied. In our case, we do not have

5It is true that we perform at most ten iterations inside both -step and -step.
Katkovnik’s method cannot perform many iterations inside their -step and
-step since they need to project into the admissible set frequently; therefore,
they do ten steps of steepest descent in the -step and one step in the -step.
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Fig. 12. Comparison with Katkovnik et al [33] Ground-truth data from Levin’s data set [15]: (a) four images and (b) eight blur kernels, which generates 32 blurred
images. We split the kernels into two groups (b1, b2) and got eight input sets each containing four blurred images. (c) NRMSE of estimated sharp images. (d)
NRMSE of estimated kernels. Left bars are results of our method and right bars are results of [33].

Fig. 13. Real data set. (a) and (b) Ttwo input blurry images of size 2048 1536. (c) Estimated output sharp image using the proposed algorithm. (d) Closeups of
the input images and the output, and estimated PSFs of size 50 30.

to deal with heavily misregistered data since the images have
been taken one after another with minimum delay. A fast reg-
istration method, which proved to be adequate and was used
in these experiments, works as follows. A reference image is
selected from the input set , and the other images (called
sensed images) are sequentially registered to the reference one.
The reference and sensed image are first divided into several
nonoverlapping blocks (typically 6 6). Phase correlation is
applied in each block to determine the integer translation vector
between the reference and the sensed block. The estimated shifts

are used to calculate parameters of an affine trans-
form. The sensed images are then interpolated using the esti-
mated affine transforms.
Reconstruction results for two different data sets are in

Figs. 13 and 14. Input image pairs exhibit relatively large blur-

ring, but the reconstructed images are sharp and with negligible
artifacts (see image closeups for better visual comparison).
Estimated PSF pairs model very well motion blurs induced by
camera shake. Some artifacts are visible in the second data set
[see Fig. 14(c)] around the snow heap in the left bottom corner.
It is very likely, that the blur is slightly different in this part
due to a different distance from the camera or due to rotational
movement during acquisition. Since our method assumes
space-invariant blurs, such artifact are however inevitable.

VII. CONCLUSION

We have presented a new algorithm for solving MC blind de-
convolution. The proposed approach starts by defining an opti-
mization problem with image and blur regularization terms. To
force sparse image gradients, the image regularizer is formu-
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Fig. 14. Real data set. (a) and (b) Two input blurry images of size 2048 1536. (c) Estimated output sharp image using the proposed algorithm. (d) Closeups of
the input images and the output and estimated PSFs of size 40 40.

lated using a standard isotropic TV. The PSF regularizer con-
sists of two terms:MC constraint (matrix ) and sparsity–pos-
itivity. The MC constraint is improved by considering image
Laplacian, which brings better noise robustness at little cost.
Positivity helps the method to convergence to a correct solu-
tion, when the used PSF size is much larger than the true one.
The proposed approach solves the optimization problem in an it-
erative way by alternating between minimization with respect to
the image ( -step) and with respect to the PSFs ( -step). Spar-
sity and positivity imply nonlinearity, but by using the variable
splitting and ALM (or split-Bregman method), we can solve
each step efficiently, and moreover, convergence of each step
is guaranteed. Experiments on synthetic data illustrate fast con-
vergence of the algorithm, robustness to noise, and stability in
the case of overestimated PSF sizes. Experiments on large real
data underline practical aspects of the algorithm. Current and fu-
ture work involves extending this approach to the space-variant
blur and analyzing the convergence properties.
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