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ABSTRACT
Eye fundus imaging is vital for modern ophthalmology. Due
to the acquisition process, fundus images often suffer from
blurring and uneven illumination. This hinders diagnosis
and the evolution assessment of a disease. We present a
method for fundus image deblurring by means of multichan-
nel blind deconvolution. It consists of a series of prepro-
cessing steps to adjust the images so they comply with the
considered degradation model, followed by the estimation of
the point spread function, and image deconvolution. Results
show that our approach is capable of significant resolution
improvement in degraded retinal images.

Categories and Subject Descriptors
I.4 [Image processing and computer vision]: Restora-
tion, Enhancement, Applications; J.3 [Life and medical
sciences]: Health, Medical information systems

Keywords
Blind deconvolution, fundus image, medical image.

1. INTRODUCTION
Digital imaging of the eye fundus is widely used to diag-

nose and manage ophthalmologic disorders such as diabetic
retinopathy and age-related macular degeneration [1]. Fun-
dus images are captured using a digital camera, attached to
a retinal camera body designed to image the eye fundus in
association with the optical system of the eye. Major source
of fundus image quality degradation are eye aberrations, im-
perfections in the camera optics, and improper camera ad-
justment. The imaging procedure is usually carried in two
separate steps: Acquisition and diagnostic interpretation.
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Image quality is subjectively evaluated by the person cap-
turing the images and they can sometimes mistakenly accept
a low quality image. A recent study in [2] using an auto-
mated system for detection of diabetic retinopathy found
that from 10000 exams 23% had insufficient image quality.

In this paper we develop a practical strategy for retinal im-
age deblurring. The core of our proposal is based on an im-
age processing technique for restoration called blind decon-
volution (BD) [3]. The goal of BD is to recover the original
scene from a single or set of blurred images in the presence
of a poorly determined or unknown point spread function
(PSF). The main assumption is that blur can be described
by a convolution of a sharp image with the unknown PSF.
There are basically two groups of BD algorithms; one group
that uses a single input image (single-image blind deconvolu-
tion SBD) and the other multiple images of the same object
blurred in a different way (multichannel blind deconvolu-
tion MBD). There are many reliable SBD algorithms [4],
however most of them require that the blurred image be
governed by relatively strong edges, which is not case here.
Therefore we have chosen MBD as a suitable strategy for
the restoration of blurred retinal images.

The paper is organized in the following way. Initially we
describe a general model for the image degradation which
encompasses blurring and uneven illumination, subsequently
we detail our approach which consists in an extensive pre-
processing stage followed by the PSF estimation and image
deconvolution. Finally we discuss a result of the image en-
hancement strategy and compare with a recent state-of-the-
art SBD method [5].

2. MATHEMATICAL MODEL OF IMAGE
DEGRADATION

We assume two registered input images, z1 and z2, both
originating from an ideal sharp image u

z1 = u ∗ h1 + n1

z2 =
(
uk−1) ∗ h2 + n2 , (1)

where ∗ is the standard convolution, hi are called convo-
lution kernels or point-spread functions (PSFs) and k is a
function accounting for relative local illumination change be-
tween images z1 and z2. For pixels where no illumination
changes occur k ≈ 1. The noise ni is assumed Gaussian ad-



ditive with zero mean in both images. In our case, the PSFs
comprise all radiometric degradations described above ex-
cept structural changes in the eye. Despite the fact that we
consider the PSFs to vary in time between the two image ac-
quisitions, we assume them to be spatially invariant within
each image.

3. ALGORITHM
In the input, the algorithm accepts two eye fundus im-

ages. The images are processed in the following four steps:
1. Image registration, 2. Compensation of uneven illumina-
tion, 3. Segmentation of areas with structural changes, and
4. PSF estimation and Image deconvolution. The individual
steps are detailed in the following subsections. For illustra-
tion purposes we consider two color fundus images acquired
from a patient that suffered from age-related macular degen-
eration, which we denote hereafter by z1 and z2 and their
enhanced versions as u1 and u2. The images were captured
seven months apart from each other and are shown in Fig. 1.
They are color 24 bit-depth fundus images of size 1500×1230
digitized in TIFF format. This is a general example were
both images do not correspond exactly to the same object
field, the illumination distribution across both images is not
exactly the same, and there are some structural differences
between them given by the pathological development in the
macula (centered yellowish region).

3.1 Image registration
Image registration consists in the spatial alignment of two

or more images. Image registration techniques are usually
divided into two groups: intensity-based and feature-based
methods [6]. Intensity based methods have the drawback
of poor performance under varying illumination conditions.
Feature based methods are robust to such effects but rely on
accurate and repeatable extraction of the features. The reti-
nal vasculature is known to provide a stable set of features
for registration for the conditions of interest.

For registering the images we use the robust dual-bootstrap
iterative closest point algorithm [7]. The vessel branching
and crossover points are used as landmarks to register the
images.The registration algorithm starts from initial low-
order estimates that are accurate only in small image re-
gions called bootstrap regions. The transformation is then
refined using constraints in the region, and the bootstrap re-
gion is expanded iteratively. The algorithm stops when the
boot-strap region expands to cover the overlap between the
images, and uses a 12-dimensional quadratic mapping that
accounts for the curvature of the retina. This registration
algorithm is very robust to local changes and low overlap
between images as demonstrated by its high success rate on
test images with at least one common landmark point and
overlaps even as low as 35% [7]. The pair of images after
registration are shown in Fig. 1(c) in checkerboard represen-
tation. For the following subsection, we will consider only
the overlapping area of both registered fundus images as a
region of interest (ROI).

3.2 Compensation of uneven illumination
Despite controlled conditions in retinal image acquisition,

there are many patient-dependent aspects that are difficult
to control and mainly affect the illumination component
with gradual non-uniform spatial variations [1]. Some of
the contributing factors are: (a) the curved surface of the

(a) z1

(b) z2

(c)

Figure 1: Color eye fundus images affected by age-
related macular degeneration. (a) Image z1 was cap-
tured seven months prior to (b) image z2. (c) Regis-
tration of z1 and z2 in checkerboard representation.

retina. As a consequence, all regions cannot be illuminated
uniformly; (b) Imaging requires either a naturally or an ar-
tificially dilated pupil. However, the degree of dilation is
highly variable across patients; (c) Unexpected movements
of the patients eye and (d) presence of diseases. This effect
hinders both quantitative image analysis and the reliable
operation of subsequent global operators.

In our model, described by (1), the relative changes in in-
tensity between two fundus images of the same eye cannot
be accounted exclusively by convolution with different PSFs
and must be compensated. A number of general-purpose
techniques have been investigated to attenuate the variation
of illumination. However, most techniques, ranging from
simple histogram operations to more elaborate models, are
oriented toward single-image compensation [8, 9]. Thus, no
consistency between a pair of images is guaranteed. This
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Figure 2: Intermediate outputs from the algorithm: (a) illumination compensation function k, (b) local
quadratic difference ∆, (c) areas of structural change, and (d) mask for avoiding areas with structural changes.

uneven illumination can be compensated by adjusting the
intensity values on one image to approximately match that
of the other; i.e. we simply compensate the relative changes
of illumination between the images so they meet the require-
ments from the model. This can be carried out if the blur-
ring is not too large and the illumination changes smoothly,
which is usually the case for eye fundus images.

For the illumination compensation we use a sliding win-
dow procedure. This provides a simple and effective way
to estimate the smooth variation of illumination [8]. To get
the compensation function k of our model (1), in the square
neighborhood of fixed width W j of each pixel j we minimize

kj = arg min
κ

∑
i∈W j

(
zi1 − κzi2

)2
, (2)

where z1 and z2 are the registered input images. By differ-
entiating (2) with respect to κ we obtain the expression for
kj :

kj =

∑
i∈W j z

i
1z
i
2∑

i∈W j zi2
2 . (3)

The interpretation of k from (2) is straightforward. If the
registered images z1 and z2 had neither illumination changes
nor structural changes, then k ≈ 1 throughout the common
object field. The reason why the computation by the sliding
window works is that illumination changes in fundus images
are smooth and can be considered locally constant, together
with the fact that convolution does not change the total
image energy. Since the sums in (3) can be computed in
an incremental way, the computation of k is very fast, with
time complexity proportional to the number of pixels.

The resulting k computed with a window 17 pixels wide is
shown in Fig. 2(a). The different shades of gray indicate the
average contrast and intensity difference between the two
images. From the image it can be seen that most areas have
similar intensity values except for the upper left part (dark
region), where image z2 is up to 30 percent darker. This
is also noticeable for the bottom-left quadrant (the patho-
logical damaged region) where the differences are not due
to illumination variation, but to morphological or structural
changes, thus the values have no meaning in terms of illu-
mination compensation.

3.3 Segmentation of structural changes
The pathological region is actually a structural change and

cannot be taken as illumination variation. To identify these
changes we computed the local quadratic difference from the
two images including illumination compensation as:

∆j =
∑
i∈W j

∣∣∣zi1 − kzi2∣∣∣2 . (4)

We highlight the fact that structural changes can be lo-
cated with this approach because the illumination varies
smoothly, whereas structural changes are often local and ap-
pear abruptly. The interpretation of (4) is rather simple, the
output is close to zero where the illumination has been ad-
equately compensated and the opposite in areas where the
images differ structurally. The result, shown in Fig. 2(b),
clearly reveals the existence of regions that after illumina-
tion compensation still differ significantly. If these regions
appear clustered in the image, one suspects they are proba-
bly caused by a source of variation that is not related to illu-
mination variation.These are most likely related to patholog-
ical damage which is significant from the clinical viewpoint.
To better understand this result, in Fig. 2(c) we show one
of the retinal images in gray-scale where the pixels related
to structural changes are represented in pseudo-color. This
image constitutes an important output of our algorithm. On
the other hand, since these changes do not fulfill our convolu-
tion model, they should be masked out in order to correctly
estimate the PSFs from both images.

In our experiments we applied Otsu’s thresholding method
[10] to automatically generate a mask from the difference
image ∆ (Fig. 2(b)). In this way the regions that have
structurally changed are are not included in the minimiza-
tion routine. This is not critical because in practice there
is enough information in the remaining pixels to adequately
estimate the PSFs. The obtained mask is shown in Fig. 2(d).

3.4 PSF estimation and image deconvolution
For PSF estimation and image deconvolution we have cho-

sen one of the best working MBD methods [11]. Matlab
implementation of this method is available on the web of
the authors1. The algorithm can be viewed as a Bayesian

1http://zoi.utia.cas.cz/download



maximum a posteriori estimation of the most probable sharp
image and blur kernels. For our purposes, we used a modi-
fication of the original method that ignores regions affected
by structural changes, which improves stability and preci-
sion of the computation. This is similar to the solution pro-
posed in [12] within the super-resolution context. Without
this modification, represented by the mask m in (5), the
algorithm does not work reliably. The algorithm can be de-
scribed as a minimization of the functional:

arg min
u,h1,h2

1

2
||u ∗ h1 − z1||2 +

1

2
||m(u ∗ h2 − kz2)||2

+λu

∫
|∇u|+ λh||m(z1 ∗ h2 − kz2 ∗ h1)||2, (5)

h1, h2 ≥ 0 ,

with respect to the latent image u and blur kernels h1 and
h2. The first and second terms measure the difference be-
tween the input blurred images and the searched image u
blurred by kernels h1 and h2. The size of this difference
is measured by L2 norm ||.|| and should be small for the
correct solution. Ideally, it should correspond to the noise
variance in the given image. Function k compensates for
uneven illumination. The value of the masking function m
is one in the valid pixels (white in Fig. 2(d)) and zero in pix-
els where the eye fundus is significantly different; in these
pixels, we consider only the information from image z1. The
two remaining terms are regularization terms with positive
weighting constants λu and λh. The third term is the to-
tal variation of u. It improves stability of the minimization
and from the statistical viewpoint incorporates prior knowl-
edge about the solution. The last term is a condition linking
the PSFs of both images, which also improves the numeri-
cal stability of the minimization. For this procedure we set
λu = 1000 and λh = 10.

The functional is alternately minimized in the subspaces
corresponding to the image and the PSFs. The minimiza-
tion in the PSF subspace is equivalent to the solution of a
system of linear equations in the least squares sense with
the non-negativity constraint (in our implementation solved
by Matlab fmincon function). The deconvolution realized
by the minimization in the image subspace, is solved by
half-quadratic iterative scheme [13], replacing the total vari-

ation by
∫ √
|∇u|2 + ε2 in order to achieve smoothness of

the functional for zero gradients.
The image deconvolution, i.e. the procedure to obtain the

enhanced versions of z1 and z2 consists in the following. The
minimization of (5) yields u1, h1, and h2. However, u2 (the
enhanced version of z2) is obtained by minimizing (5) again
with fixed PSFs and masking z1 instead of z2. The enhanced
RGB fundus image is obtained by estimating the PSF from
the green channel (being the one with highest contrast) and
subsequently deconvolving each channel independently.

4. RESULTS
The ROIs for each image z1 and z2, which consist of patho-

logical area plus the unaltered surrounding area and blood
vessels, are shown in Fig. 3. Both images are slightly blurred
which hinders the possibility to properly resolve details. The
PSFs estimated from the minimization of (5) are shown in
figures 3(b) and 3(d). The difference in size of the PSFs
indicates that one image is more blurred than the other. In
Fig. 4(b) we show the enhanced version of z2 by our method.
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Figure 3: ROIs of retinal images (a) z1 and (c) z2.
Estimated PSFs in (b) and (d), respectively. The
enhanced version of z2 is shown in Fig. 4(b).

There is a significant improvement in resolution evidenced
by the clear definition of the thinner blood vessels and the
small pathological structures in the center. To corroborate
our assumption that MBD methods are better suited for
this type of images, we tried to restore z2 with a recent SBD
method proposed in [5]. The result is shown in Fig. 4(a) and
reveals that this method does not follow the true nature of
the blurring, thus it is prone to produce a poor restoration.
None of the aforementioned fine structures are properly re-
solved in this image. Finally, we show the color restored
versions of z1 and z2 in Fig. 5. The enhancement is much
more noticeable in color.

5. CONCLUSIONS
In this paper we have presented a new approach for eye

fundus image deblurring based on MBD. We have verified,
that a pair of retinal images, belonging to the same eye,
contain enough common information to be restored with the
proposed method. The method consists of a series of pre-
processing steps to adjust the images so they comply with
the convolutional model, followed by the final stages of PSF
estimation and deconvolution. This approach leads to the
improvement in resolution of degraded retinal images, which
we have also compared with one of the most sophisticated
SBD algorithms [5]. While the initial findings are promising,
further tests are necessary.



(a) (b)

Figure 4: Enhanced version of z2 with (a) SBD
method of [5] and (b) proposed method. There is a
significant resolution improvement in (b), compare
with the original in Fig. 3(c).

(a) Original 1 (z1) (b) Restored 1 (u1)

(c) Original 2 (z2) (d) Restored 2 (u2)

Figure 5: Original and restored color retinal images.
The enhancement is much more noticeable in color.
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