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a b s t r a c t

We present an overview of the most important methods that decompose an arbitrary binary object into

a union of rectangles. We describe a run-length encoding and its generalization, decompositions based

on quadtrees, on mathematical morphology, on the distance transform, and a theoretically optimal

decomposition based on a maximal matching in bipartite graphs. We compare their performance in

image compression, in moment computation and in linear filtering. We show that the choice is always a

compromise between the complexity and time/memory consumption. We give advice how to select an

appropriate method in particular cases.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

It is intuitively clear and well known that binary images can be
represented in a more efficient way than just as a full-sized
matrix consisting of zeros and ones. It is also clear that the terms
‘‘good representation’’ and ‘‘optimal representation’’ cannot be
generally defined and are always dependent on what we are going
to do with the object. Usually there are two basic requirements
on the representation—small time/memory consumption and
possibility of fast further computation (which is application-
dependent). Sometimes we also require fast recovery of the
original.

Regardless of the particular purpose, the methods of binary
image representation can be divided into two groups referred as
decomposition methods and boundary-based methods. Boundary-
based methods employ the property that the boundary of a binary
object contains a complete information on the object, all other
pixels are redundant. Provided that the boundary consists of
much less pixels than the whole object (which applies to
‘‘normal’’ shapes but does not hold true in general), it provides
efficient non-redundant representation. Individual boundary-
based methods differ from each other by a boundary definition
(outer or inner boundary), by a discrete topology used (4-pixel or
8-pixel connectivity) and by the way how the boundary is
ll rights reserved.
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encoded and stored (chain codes and various piece-wise approx-
imations are mostly used for this purpose).

Decomposition methods try to express the object as a union of
simple disjoint subsets called blocks or partitions which can be
effectively stored and consequently used for required processing.
Having a binary object B (by a binary object we understand a set
of all pixels of a binary image whose values equal one), we
decompose it into KZ1 blocks B1,B2, . . . ,BK such that Bi \ Bj ¼ |
for any ia j and B¼

SK
k ¼ 1 Bk. Although in a continuous domain

we may consider various shapes of the blocks (convex, star-
shaped, hexagonal, rectangular, etc., see [1]), all decomposition
methods that perform in a discrete domain use only rectilinear
rectangular or square blocks because of a native rectangular
structure of the discrete image domain. The methods differ from
one another namely by the decomposition algorithms.

The power of any decomposition method depends on its ability
to decompose the object into a small number of blocks in a
reasonable time. Most authors have measured the decomposition
quality just by the number of blocks K, while ignoring the
complexity of the algorithms (it should be noted that there exist
a few other criteria such as the ‘‘minimum ink’’ criterion which
minimizes the overall length of the inner boundary but they are
out of the scope of this paper). There is a common belief that such
decomposition that minimizes K is the optimal one. This criterion
is justified by the fact that the complexity of subsequent calcula-
tions uses to be OðKÞ and compression ratio (if the decomposition
is used for compression purposes) also increases as the number of
blocks decreases. However, this viewpoint may be misleading.
Simple algorithms produce relatively high number of blocks but
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Fig. 1. Decomposition of the leaf image by the Generalized Delta-Method (GDM).

The size of the original image is 1196�1828 pixels. The adjacent rows of the same

length are unified into blocks (1963 blocks in total).
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perform fast, while more sophisticated decomposition methods
end up with small number of blocks but require more time. Even
if the decomposition is performed only once per object in most
tasks and can be done off-line, the time needed for decomposing
the image is often so long that it substantially influences the
efficiency of the whole method.

Image rectangular decomposition has found numerous straight-
forward applications in image compression methods and formats
(RLE, TIFF, BMP and others) and in calculation of image features
(mainly moments and moment invariants) used subsequently for
object description and recognition [2–9]. Other applications may
be found in image spatial filtering and restoration, in integrated
circuits design and in other areas. Convolution with a constant
rectangular mask can be performed in Oð1Þ time per pixel if the
matrix of partial sums is precomputed. If the mask is constant or
piecewise constant but not rectangular, its support can be decom-
posed into rectangles and the convolution in one pixel can be
calculated in OðKÞ time as a sum of partial Oð1Þ convolutions. In
VLSI design, the decomposition problem appeared many years
ago—the masks are rectilinear polygons (often very complex)
which should be decomposed into rectangles in such a way that
the pattern generator can effectively generate the mask. The time
needed for a mask generation is proportional to the number of
rectangles, so it is highly desirable to minimize their number
[10,11].

The aim of this paper is to present a survey and a comparison of
existing decomposition methods. To ensure an unbiased compar-
ison, all reviewed methods were implemented on the same platform
and run on the same computer. We compare their performance in
three common tasks—loss-less compression, calculation of image
moments and convolution with a binary mask. We show that there
is no ‘‘generally optimal’’ decomposition method and explain the
pros and cons of individual algorithms.
Fig. 2. Decomposition of the leaf image by the quadtree method (8911 blocks in

total).
2. Decomposition methods

In this section, we present a brief survey of the most common
decomposition methods. Their performance in real-data experi-
ments is compared in Sections 3–5.

2.1. Decomposition into row segments

Decomposition of an object into rows or columns is the most
straightforward and the oldest method. The blocks are continuous
row segments for which only the coordinate of the beginning and
the length is stored. In image compression, this has been known
as run-length encoding (RLE). This principle and its modifications
(CCITT, PackBits) are used in several image formats such as TIFF
and BMP. In feature calculation, Zakaria et al. [2] used the same
representation for fast computation of image moments of convex
shapes and called it ‘‘Delta-Method’’ (DM) since the lengths of the
row segments were labeled by the Greek letter d. The method was
slightly improved by Dai et al. [3] and generalized for non-convex
shapes by Li [4].

The decomposition into rows is very fast but leads to the
number of blocks which uses to be (much) higher than the
minimal decomposition. A simple but powerful improvement of
the Delta-Method was proposed by Spiliotis and Mertzios [5]
and adopted by Flusser [6]. This ‘‘Generalized Delta-Method’’
(GDM) employs a rectangular-wise object representation instead
of the row-wise one. The adjacent rows are compared and if
there are some segments with the same beginning and end, they
are unified into a rectangle (see Fig. 1). For each rectangle, the
coordinates of its upper-left corner, the length and the width are
stored. GDM is only slightly slower than DM while producing
(sometimes significantly) less number of blocks. Surprisingly,
under our knowledge this method has not been implemented in
any commercial image format.



Fig. 3. The leaf image after removing two largest square blocks.

Fig. 4. Morphological decomposition of the leaf image to squares (7489 blocks in

total).
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2.2. Quadtree decomposition

Quadtree decomposition (QTD) is a popular hierarchical
decomposition scheme used in several image processing areas
including representation and compression [12], spatial transfor-
mations [13] and feature calculation [7]. In its basic version, QTD
works with square images of a size of a power of two. If this is not
the case, the image is zero-padded to the nearest such size. The
image is iteratively divided into four quadrants. Homogeneity of
each quadrant is checked and if the whole quadrant lies either in
the object or in the background it is not further divided. If it
contains both object and background pixels, it is divided into
quadrants and the process is repeated until all blocks are homo-
geneous. The decomposition can be efficiently encoded into
three-symbol string, where 2 means division, 1 means a part of
the object and 0 stands for the background. An example of the
quadtree decomposition is in Fig. 2.

The algorithm always yields square blocks which may be
advantageous for some purpose but usually leads to a higher
number of blocks than necessary. It would be possible to imple-
ment a backtracking and to unify the adjacent blocks of the same
size into a rectangle but this would increase the complexity. Since
the speed is the main advantage of this method, the backtracking
is mostly not employed here. A drawback of this decomposition
algorithm is that the division scheme is not adapted with respect
to the content of the image but it is defined by absolute spatial
coordinates. Hence, the decomposition is not translation-invar-
iant and may lead to absurd results when for instance a large
single square is uselessly decomposed up to individual pixels. We
may use a bintree or other trees producing non-square blocks but
it does not overcome this principal weakness.

2.3. Morphological decomposition

In order to better adapt the decomposition to the image
content, Sossa-Azuela et al. [8] published a decomposition algo-
rithm based on a morphological erosion. The erosion is an opera-
tion, where a small structural element (here 3�3 square is used)
moves over the image and when the whole element lies in the
object, then the central pixel of the window is preserved in the
object, otherwise it is assigned to the background. So, each
erosion shrinks the object by one-pixel boundary layer. The
decomposition works in an iterative manner: it finds the largest
square inscribed in the object, removes it and looks for the largest
square inscribed in the rest of the object. This outer loop is
repeated until the object is completely decomposed. An inter-
mediate object decomposition after two outer loops can be seen
in Fig. 3, the final decomposition is in Fig. 4.

Although the original method [8] considers decomposition into
squares only, it can be generalized also to rectangles which
decreases the number of the resulting blocks. The inner loop serves
for finding the center and the size of the largest inscribed square/
rectangle. We repeat the erosion until the whole object disappears
and count the number of erosions s. Then a ð2s�1Þ � ð2s�1Þ square
can be inscribed into the object and it forms one block of the
decomposition. The pixels of the object before the last disappearing
erosion are potential centers of the inscribed square. Theoretically,
we can choose one of them randomly, but the ‘‘corner’’ pixels
provide better odds to more compact rest of the object. If the
potential square centers create a line segment, then the correspond-
ing inscribed squares can be unified into a rectangle.

It is possible, especially in the last steps of the method, that
several of the identically sized squares (overlapping as well as
non-overlapping) can be inscribed into different places of the
object. Of course, it is possible to inscribe and remove one of
them, repeat the erosions, inscribe and remove another one, etc.
A better approach is, after inscribing and removing one of them,
to remove the centers of the squares that would overlap this one
and search a center of another block of this size without repeating
the erosions.

Vizireanu (e.g. [14]) generalized the morphological decompo-
sition for other applications as skeleton computation or image
interpolation. The skeleton can be used for image compression,



Fig. 6. The distance transform decomposition of the leaf image (2482 blocks in

total).
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but its utilization for feature computation is difficult. The inter-
polation of an image between two frames in a video sequence can
be computed even for gray-scale images.

2.4. Distance transform decomposition

If the object is sufficiently compact, i.e. the largest inscribed
square is bigger than a certain minimum size, we can speed up
the previous algorithm by means of the distance transform (DT),
which we use for the finding of the centers of the inscribed
rectangles [9]. In morphological decomposition, we must repeat
the erosions s-times for finding ð2s�1Þ � ð2s�1Þ inscribed square,
while the distance transformation with a suitable metric can be
calculated only once. DT of a binary image is an image, where
each object pixel shows the distance to the nearest boundary
pixel and the background pixels are zero [15].

DT strongly depends on the metric used for the distance
measurement. We use a simplified version of the Seaidoun’s
algorithm [16] for the chessboard metric

dða,bÞ ¼maxf9ax�bx9,9ay�by9g: ð1Þ

We successively search the image from the left, right, top and
bottom, count distances from the last boundary pixel and calcu-
late the minimum from the four directions. The result is DT, the
maximum of the result equals s for the inscribed square ð2s�1Þ �
ð2s�1Þ and the pixels with this maximum value are potential
centers of the inscribed squares.

We use an improved version of DT inspired by [17]. If we change
only a small part of the original image, then upgrading its close
neighborhood is sufficient. In our case, if we remove a rectangle
from the image, then the rectangle is zeroed and DT is recomputed
in a small frame around it. If the frame in some distance d from the
rectangle is not changed, then the rest of DT is left unchanged. In
Fig. 5, we can see the visualization of DT of the leaf image.

Similarly to the morphological decomposition, the algorithm
consists on iterative repeating the following loop until the object
Fig. 5. The distance transform of the leaf image. The pixels are labeled by

pseudocolors according to the DT values.
is fully decomposed. In each run, the largest inscribed rectangular
block is found. Its potential center(s) are the pixels with the
maximum values of DT. If the maximum s is unique, i.e. there is a
single pixel with value s only, then a square ð2s�1Þ � ð2s�1Þ is
inscribed. This is however a rare case, often the maximum is not
unique and the choice of the block center is ambiguous. We try to
keep the blocks as large as possible. Hence, if there is a 2�2
square of the maxima, an even-sized square 2s� 2s can be
inscribed into the object. If the potential square centers create a
line segment (with a single or double-pixel width), then the
corresponding squares are unified into one rectangle like in the
morphological method. At the end of the loop, the inscribed
rectangle is removed from the object and the procedure starts
the next loop, which is applied to the rest of the image. The
decomposed leaf image is shown in Fig. 6.

Both morphological and DT decompositions end up with the
same set of blocks. However, they are still only sub-optimal even
on many simple shapes. This is because a sequence of locally
optimal steps that these ‘‘greedy’’ algorithms apply to an image
(placing always the largest inscribed rectangle) may not yield an
optimal solution. As soon as a block is created, it cannot be
removed any more, because the methods do not include any
backtracking. These two algorithms differ from each other by
computing complexity. Erosion is a relatively complex operation,
while the DT can be calculated faster thanks to its simple
upgrading. Anyway, both methods perform slower comparing to
the previous decomposition algorithms.

2.5. Graph-based decomposition

A large group of decomposition algorithms appeared in 1980s
in computational geometry [1]. Surprisingly, they have not
received almost any attention from image analysis community.
Their formulation was usually much more general than ours. They
tried to decompose general polygons into specific polygonal
components (convex polygons, star-shape polygons, triangles,



Fig. 7. (b) First-level decomposition of the object (a) by chords connecting the

cogrid concave vertices. The crosses indicate the chord intersections. (c) The

corresponding bipartite graph with a maximum independent set of three vertices

and (d) the object decomposition.

Fig. 8. Second-level decomposition of a subpolygon. From each concave vertex a

single chord of arbitrary direction is constructed.
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generally oriented rectangles, etc.). A common feature of these
methods was that they transformed the decomposition problem
to a graph partitioning problem and employed tools known from
graph theory. The only subgroup relevant to our purposes is a
decomposition of a digital polygon into rectilinear rectangles. An
algorithm which was proved to be optimal in terms of the number
of blocks was independently proposed in the same form by three
different authors [18–20] (in this order) and later discussed by
[21,22] and others. The method (denoted here as FER) works for
any object even if it contains holes. As will be discussed later,
individual versions of the algorithm differ from one another only
by the implementation of one step, which may influence the
complexity but not the total number of the blocks.

The method performs hierarchically on two levels. On the first
level, we detect all ‘‘concave’’ vertices (i.e. those having the inner
angle 2701) of the input object and identify pairs of ‘‘cogrid’’
concave vertices (i.e. those having the same horizontal or vertical
coordinates). Then we divide the object into subpolygons
by constructing chords which connect certain cogrid concave
vertices. It is proved in [20] and other papers that the optimal
choice of the chord set is such that the chords do not intersect
each other and their number is maximum possible.

The problem of optimal selection of the chords is equivalent to
the problem of finding the maximal set of independent nodes in a
graph, where each node corresponds to a chord and two nodes are
connected with an edge, if the two chords have a common point
(either a vertex or an intersection). Generally, this problem is
NP-complete, but our graph is a bipartite one, since any two
horizontal (vertical) edges cannot intersect one another. In a
bipartite graph, this task can be efficiently resolved. First, we find
a maximal matching, which is a classical problem in graph theory,
whose algorithmic solution in a polynomial time has been
published in various versions. Some of them are optimized with
respect to the number of edges, the others with respect to the
number of vertices (see [23–25,21] for some examples of parti-
cular algorithms). For binary object decomposition, it is impos-
sible to choose one that would be time-optimal for any object,
because the number of vertices and/or edges of the graph depends
on the shape of the object. We implemented the algorithm by
Edmonds and Karp [25] which is based on the Maximum Network
Flow and is linear w.r.t. the number of vertices and quadratic
w.r.t. the number of edges.

As soon as the maximal matching has been constructed, the
maximal set of independent nodes can be found much faster than
the maximal matching itself—roughly speaking, the maximal
independent set contains one node of each matching pair plus
all isolated nodes plus some other nodes, which are not included
in the matching but still independent. As a result, we obtain a set
of nodes that is unique in terms of the number but ambiguous in
terms of particular nodes. However, this ambiguity does not play
any role—although each set leads to different partitioning, the
number of partitions is always the same. Hence, at the end of the
first level, the object is decomposed into subpolygons, which do
not contain any cogrid concave vertices (see Fig. 7).

The second level is very simple. Each subpolygon coming from
the first level is further divided. From each its concave vertex, a
single chord is constructed such that this chord terminates either
on the boundary of the subpolygon or on the chord constructed
earlier. This is a sequential process in which each concave vertex
is visited only once. We may choose randomly between two
possible chords offered in each concave vertex. After that, the
subpolygon is divided into rectangles, because rectangle is the
only polygon having no concave vertices (see Fig. 8).

The strength of this algorithm is in the fact that it guarantees
minimizing the number of decomposing rectangles regardless of
the particular choices on the both levels. On the other hand, one
may expect slower performance than in the previous algorithms
namely because of expensive finding the maximum set of inde-
pendent graph nodes. Since the optimal partitioning is not unique
on both levels, one could require additional constraints, such as
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minimum length of inner boundary, but this would lead to further
increasing of the complexity.

If the object does not have any cogrid concave vertices or if the
maximum independent set of nodes (or, more precisely, at least
one of such sets) contains only the nodes corresponding to the
horizontal (or vertical) chords, then also all chords in the second
level may be constructed in the same direction and, consequently,
FER decomposition leads exactly to the same partitioning as GDM
applied in that direction (see Fig. 9 for an example). This helps us
not only to understand when GDM is strong, but also to interpret
the idea behind FER algorithm—it may be viewed as a ‘‘local
Fig. 9. An example where both FER and GDM yield the same decompositions.

Fig. 10. FER decomposition of the leaf image (1748 blocks in total).
GDM’’ properly switching between the directions. An example of
FER decomposition is in Fig. 10.
3. Experimental comparison—image compression

In this section, we compare the performance of the above
decomposition methods in binary image compression. The experi-
ments were performed on the publicly available LEAF database
[26], which is a database of 795 scanned and binarized leaves
of trees and shrubs of vegetation growing in the Czech Republic
(see Fig. 11).1 All methods were implemented in Cþþ language
and run on a PC with Intel Core 2 Duo, 2.8 GHz CPU and Windows
7 Professional.

3.1. Efficiency of the decomposition

First we monitor and compare two parameters: the number of
blocks and the corresponding decomposition time for GDM, QTD,
DT and FER methods, respectively. The data presented in Table 1
are cumulative for all objects in the database. The time was
always measured just of the decomposition itself, no input/output
operations were included. The minimum number of blocks was
achieved by FER, as one expects from the theory. This is of course
on the expense of the time, but surprisingly the time is lower than
that of DT and only five times higher than the time of QTD.
The winner of this test is GDM method yielding only a slightly
worse number of blocks than FER but in the by far shortest time.
On the other hand, QTD produces the highest block number and
the DT is the slowest.

It is interesting that the differences among these decomposi-
tion methods are observable even on very small and simple
images. For example, the 8�8 object in Fig. 12a was decomposed
by (DM, GDM, QTD, DT, and FER) into (10, 5, 23, 6, and 4)
rectangular blocks, respectively.

3.2. Compression ratio

Although the decomposition itself makes a substantial com-
pression, we further increase the compression ratios of all
methods by a proper block ordering. We propose a new file
format denoted as BLK. It uses three types of compression: the
blocks from DT are grouped according their size, this allows to
store the size only once per each group and then to store just
upper left corner of each block. The long narrow blocks from GDM
and FER are sorted by the coordinates in the ‘‘narrow’’ direction
and sizes and coordinate differences in this direction are encoded
in the decreased number of bits. QTD uses its traditional three-
symbol encoding. The label of the actual decomposition method is
stored in the file header along with other auxiliary parameters.

We compared compression ratios of BLK format (with all these
four decomposition methods) to commercial formats. As we
already explained, it does not reflect only the number of blocks,
since other factors playing role there. We calculated average
compression ratios (ACR) over the LEAF database. ACR is a ratio
of the size of all files in the database in the specific format and the
size without any compression. The results are in Table 2. In this
experiment, it is not meaningful to measure the time, because it
inherently includes I/O operations. Since we do not have an access
to the source codes of commercial compressions, it would be
impossible to ensure an objective time comparison.
1 The database exists in two versions—original (the leaves with petioles, high

resolution) and simplified (the leaves without petioles, downsampled by a factor 2).

Table 1 refers to the simplified version, Table 2 to the original one.



Fig. 11. Examples of the LEAF database (Acer platanoides, Acer saccharinum, Aesculus hippocastanum, Betula pendula, Castanea sativa, Fagus sylvatica, Ginkgo biloba,

Hamamelis virginiana, Hedera helix, Ilex aquifolium, Morus alba, Quercus robur, Quercus rubra, Salix alba, Ulmus glabra, and Vitis riparia).

Table 1
The number of blocks and decomposition time achieved on the LEAF database.

Method # blocks # blocks (%) Time (s)

GDM 419,489 112 1.3

QTD 1,913,275 511 7.2

DT 545,528 146 50.3

FER 374,149 100 37.5
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The best performance of QTD was achieved namely because its
three-symbol encoding in the BLK format is very efficient. This
yields good compression even if the number of blocks is high. The
ACR of FER and GDM is slightly worse, but still very good; FER
method is better because it guarantees the minimum number of
blocks. The result of DT is still good comparing to TIFF and was
achieved by efficient encoding of one-pixel blocks. However, this
method is very time-consuming. The only commercial format
providing a comparable ACR is PNG with a deflate method, others
provide worse compression ratios than all BLK methods.

Based on these two measurements a general recommendation can
be as follows: QTD method yields good compression ratio because of
efficient implementation in BLK format, but we should keep in mind
that the number of blocks was four times higher and the decomposi-
tion time even six times higher than GDM offering a very good
compromise between compression ratio and decomposition speed.
FER and DT methods are suitable mainly for applications, where the
compression is performed only once (usually off-line) and thus the
time of the compression is not critical. FER provides minimum
number of blocks and slightly better ACR and time of compression.

The results of the previous experiments are statistically significant
and can be generalized. However, for specific shapes the results
may be different. The same experiment was carried out on special
images ‘‘Transmitter’’ and ‘‘Labyrinth’’ to illustrate the behavior of the
algorithms in extreme cases. Transmitter is decomposed into very
high number of blocks (7207 in an optimal case), while Labyrinth
represents an opposite case with only 37 blocks (see Figs. 13 and 14
for their decompositions). The compression ratio of various methods
is summarized in Table 3. While PNG deflate, DT, GDM and
FER methods efficiently employs the rectangular structure of the
Labyrinth, the other methods (namely QTD) are not able to do so.

3.3. Backward composition

The compression methods would be useless, if we would
not be able to restore the original shape if requested. In many



Fig. 12. Decomposition of a simple object: (a) original object—29 pixels, (b) QTD—23 blocks, (c) DM—10 blocks, (d) DT—6 blocks, (e) GDM—5 blocks, and (f) FER—4 blocks.

Table 2
Compression ratios on the LEAF database.

Format Method Size (byte) ACR (%)

TIFF No compression 172,886,448 100.00

TIFF PackBits 13,282,998 7.68

TIFF RLE 8,297,340 4.80

GIF LZW 6,914,637 4.00

BLK DT 5,173,371 2.99

PNG Deflate 5,066,019 2.93

BLK GDM 4,723,166 2.73

BLK FER 4,603,942 2.66

BLK QTD 3,012,532 1.74

Fig. 13. Decomposition of the Labyrinth. DT, GDM, and FER produce the same

number of 37 blocks.

Table 3
Compression ratios of Transmitter and Labyrinth.

Format Method Transmitter (%) Labyrinth (%)

TIFF No comp. 100.00 100.00

TIFF PackBits 24.01 49.65

TIFF RLE 11.95 23.49

GIF LZW 13.66 16.04

PNG Deflate 6.29 1.43

BLK DT 8.18 0.54

BLK GDM 7.35 0.54

BLK QTD 9.28 17.40

BLK FER 6.66 0.54

Fig. 14. Decomposition of the Transmitter.
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applications the compressed images are stored in widely-
accessed databases. While decomposition and compression is
performed mostly off-line only once, composition (reconstruc-
tion) of the objects is required repeatedly and (almost) real time.
Hence, three basic constraints on the reconstruction algorithm are
no information loss, high speed and low memory consumption.

A naive reconstruction consists just of drawing all the rectan-
gles to an allocated pixel array. This is accurate, simple to
implement and relatively fast, but such method consumes a large
amount of memory in an inefficient way. A much better way is to
avoid drawing of the whole object and reconstruct the object
boundary only. Since each binary object is fully determined by its
boundary, this is still a lossless reconstruction. Such an algorithm
handles computer memory more efficiently, because it does not
require an array of the size of the original image.

We introduce an algorithm that requires only OðmþnÞmemory
for an m� n image. Its time complexity varies with the shape of
the image, i.e. with the number of the blocks K in the compressed
version, but it performs very fast for ‘‘standard’’ objects. The
algorithm works with images in BLK format regardless of the
particular decomposition method used.
The idea of the algorithm is to search the compressed BLK file
and to maintain lists of border lines that we update whenever
new rectangle is inserted. We start with the first rectangle of
the compressed representation, so in the first step, the object
boundary is formed by border lines of the first rectangle only.
When processing a new rectangle, we need to update the current
outline by inserting or removing lines or its parts. If the new



Table 4
Comparison of the proposed algorithm and the traditional reconstruction.

Criterion Lower 10% Upper 10% Overall

Time (ms/image)

Proposed 1.3 2.3 1.6

Traditional 4.0 4.0 4.0

Memory consumption (bytes/image)

Proposed 4955 41,165 17,589

Traditional 1,048,576 1,048,576 1,048,576

Ratio (%) 0.5 3.9 1.7
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rectangle is adjacent to the current boundary, we insert only those
parts of its border that are not adjacent to the current boundary.
Moreover, in the current boundary, those lines or its parts that are
adjacent to the new rectangle are removed (see Fig. 15).

To find adjacent border lines quickly, we maintain two arrays
of lists, one for every horizontal coordinate and the other for
every vertical one, see Fig. 16. Each element of the array contains
pointer to the list of lines in the corresponding row or column.
The borders of the new rectangle are inserted into the four
corresponding lists and then the adjacent lists are searched.

First, we tested the correctness of the algorithm. We restored
all leaves from BLK format to the standard matrix representation
by the algorithm described above and compared them with the
originals by matrix XOR. The cumulative error over the whole
database was zero, which illustrates a perfect reconstruction. Also
the reconstruction of complex objects is error free (see Fig. 17 for
a reconstruction of a part of the Transmitter).

In the next experiment, we compared time complexity and
memory consumption of the proposed decompression method
with a ‘‘traditional’’ restoration, i.e. with putting all rectangles
Fig. 15. Boundary list updating. Symbol ni is the list of lines in the ith row.

Fig. 16. Horizontal and vertical block boundaries. Symbols ni and hj are the list

of lines in the ith row and jth column.

Fig. 17. Detail of the reconstruction of the Transmitter.
into an array and consequent boundary detection by convolution
with ð�1;1Þ kernel. The results achieved on the LEAF dataset are
in Table 4. The column ‘‘Lower 10%’’ means 10% of objects with
the lowest number of blocks; analogously the column ‘‘Upper
10%’’. ‘‘Overall’’ means a mean value over a complete database.
One can see that we achieved huge savings in memory consump-
tion and that also certain speed-up of the reconstruction can be
observed. Clearly, both these factors are more significant for
objects with a low number of blocks.
4. Experimental comparison—moment calculation

Moments are scalar quantities that have been used to char-
acterize an image and to capture its significant features. From the
mathematical point of view, moments are ‘‘projections’’ of an
image function onto a polynomial basis. Functions of moments,
insensitive to certain group of transforms, are called moment

invariants (see [27] for a survey). Moment invariants have become
one of the most important and most frequently used tools for
object description and recognition. Hence, efficient algorithms of
their computation are of a high importance and have attracted
much attention (see [27, Chapter 7] for an overview).

Geometric moment of a continuous image f ðx,yÞ is defined as

mðf Þpq ¼

Z1

�1

Z1

�1

xpyqf ðx,yÞ dx dy, ð2Þ

where pþq is the order of the moment. If the image f ðx,yÞ is a
discrete one of the size M�N, then we can estimate its moment
as2

mðf Þpq ¼
XM�1

i ¼ 0

XN�1

j ¼ 0

ipjqf ij: ð3Þ

For a binary object, f is just its characteristic function.
Object decomposition can be employed in moment calculation

in the following way. If we decompose an object B into disjoint
blocks B1,B2, . . . ,BK such that B¼

SK
k ¼ 1 Bk, then, thanks to the

linearity of moments,

mðBÞpq ¼
XK

k ¼ 1

mðBkÞ
pq : ð4Þ

Since we can calculate the moment of each rectangular block in
Oð1Þ time (either by symbolic integration of the kernel function
or, in a discrete domain, by summation rules), the overall
complexity of mðBÞpq is OðKÞ. If K5MN the speed-up may be
significant. As we already have seen, simple decomposition
algorithms produce relatively high number of blocks but perform
fast, while more sophisticated decomposition methods end up
with small number of blocks but require more time. The
2 Another way is using higher-order approximation of the integral and/or

exact integration of xpyq over rectangular regions [6].



Fig. 18. Decomposition of the squirrel image: (a) DT—697 blocks, (b) GDM—497

blocks, (c) QTD—2513 blocks and (d) FER—476 blocks.
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Fig. 19. The time complexity of the moments of the squirrel image.
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Fig. 20. A detail of Fig. 19 showing the complexity of lower-order moments.
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complexity of the decomposition must be always considered as a
part of the whole algorithm. Even if the decomposition is
performed only once and can be used for the calculation of all
moments, the time needed for decomposing the image is often so
long that it substantially influences the efficiency of the whole
method.

We decomposed a 465�465 squirrel silhouette by means of
DT, GDM, QTD and FER decompositions (see Fig. 18a–d) which
lead to 697, 497, 2513, and 476 rectangular blocks and took 32, 1,
4, and 19 ms, respectively. Then we calculated the moments of
the image up to the order 464. To prevent floating point overflow
for high orders, we used discrete Chebyshev polynomials tpðxÞ

instead of xp in the kernel functions. The particular choice of
the polynomial basis does influence neither the decomposition
algorithms themselves nor their mutual comparison. The moments
of the individual rectangles were calculated using summation rules
of the kernel functions independently of the size of the rectangle.

The computation times are on the graph in Fig. 19, where the
horizontal axis shows the number of moments calculated. The
initial time tð0Þ shows the expense of the decomposition. It can be
better seen in more detailed Fig. 20.

The best results were achieved for GDM because of its fast
initial decomposition time and only slightly sub-optimal number
of blocks. The theoretically optimal FER method requires so much
initial time that it produces best results only if we calculate about
45,000 and more moments, which is not realistic. QTD is the
second fastest at the beginning, but the time grows quickly, as the
number of moments increases such that it becomes the worst
one, if 3000 and more moments are calculated. DT requires the
longest initialization and then its time complexity grows faster
than that of FER and GDM. It gave the worst results among the
four tested methods in this experiment. All decomposition meth-
ods outperformed the calculation from the definition even for
very low number of moments.

The above results can be generalized for most ‘‘reasonable
simple’’ shapes. However, it is easy to find a counterexample.
If we repeat this experiment for a chessboard image, the results
change dramatically, see Fig. 21. The chessboard image is the
worst possible case, because it cannot be decomposed efficiently.
The decomposition is just a waste of time and a direct calculation
from the definition exhibits the best performance.
5. Experimental comparison—convolution

In this experiment, we show that the decomposition can be a
powerful tool for speeding-up convolution filtering of an image
with a binary kernel. While traditional ‘‘by definition’’ discrete
convolution of an M � N image with an arbitrary m� n mask
requires OðmnMNÞ operations and convolution via fast Fourier
transform (FFT) OðMN log MNÞ operations, convolution with a
constant-valued rectangle takes only OðMNÞ operations regardless
of the mask size. There are several ways how to implement such
algorithm. The best one is probably to employ the precalculations
of row-wise and consequently column-wise sums of the image.
The convolution in a certain position is then calculated just from
four values, which corresponds to the mask corners (see Fig. 22).
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Fig. 21. The time complexity of the moments of the chessboard image.

Fig. 22. Convolution of an image with a constant rectangular mask ABCD. The

large rectangle contains in point X row-wise and column-wise sum S(X) of the

original image from (0, 0) to X. Then the convolution in the depicted position is

given as SðDÞ�SðCÞ�SðBÞþSðAÞ.

Fig. 23. An example of the coded aperture mask (courtesy of [29]).

Fig. 24. The convolution kernel used in the experiment (left) and its FER

decomposition into 10 blocks (right).

Table 5
Time comparison of various convolution methods (the time in s).

Mask size Definition FFT Decomposition

35�38 26 4.3 0.96

141�152 411 4.3 0.96
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Now, let us imagine a binary kernel, where the non-zero
values form a more complex set than a single rectangle. Such a
situation typically appears for instance in coded aperture (CA)
imaging. CA is a method of recovering the depth map of the scene
from a single image [28]. The trick is to insert a special occluder
within the aperture of the camera lens to create a coded aperture
(see Fig. 23 for an example). The CA output must be deconvolved,
which incorporates (if an iterative deconvolution method such as
Richardson–Lucy or similar is applied) repeating the calculations
of convolution of an estimated image with the aperture mask. If
the mask has a full or close-to-full rank, we cannot effectively use
any factorization, which seemingly takes us back to the calcula-
tion from the definition or via FFT. However, if we decompose the
mask into rectangles B1, . . . ,BK , we can, thanks to the linearity of
convolution, calculate the convolutions with each Bj separately by
the method described above and then just sum up the results.
(This method can be used even if the kernel is not binary and thus
the blocks have different values but that is a rare case in practice.)
In that way, we achieve the overall complexity of OðKMNÞ. In this
experiment, we demonstrate that for K5mn the speed up is
really huge comparing to the direct calculation from the defini-
tion and still significant comparing to the FFT.

We filtered a 3456�2592 image with two binary kernels of
the same shape but different size—the small one of (35�38) and
the large one of (141�152) pixels. The small kernel is scaled
version of the large one. The kernels were decomposed by the FER
method into 10 rectangles (see Fig. 24 for the kernel and its
decomposition). We tested three methods—direct convolution in
the image domain from the definition, convolution via FFT in
the frequency domain (we used popular public-domain FFTPack
software [30,31]), and fast convolution using kernel decomposition
as described above. In the last case, the matrix of the partial sums of
the image was precomputed and then the (cyclic) convolution was
calculated as explained in Fig. 22. We wanted to measure the time of
each individual step separately, because in practice, either the mask
decomposition or the precomputing of partial sums uses to be done
only once and hence its complexity is negligible (in batch processing
either the mask or the image stays the same while the other factor
varies). However, the mask decomposition was so fast that the
corresponding time was not measurable.

The smoothed image is always the same regardless of the
method used. The time comparison is summarized in Table 5. As
expected, the slowest calculation is from the definition in the
image domain. Even for the small mask, it is many times slower
than the methods via FFT and via mask decomposition. Note that
the times for both FFT and decomposition methods actually do
not depend on the mask size, which is clear from the theory.
Although FFTPack is a very powerful implementation, the decom-
position method was still able to perform four times faster.
Precomputing of the partial sums took only 0:1 s of the total time.



T. Suk et al. / Pattern Recognition 45 (2012) 4279–42914290
This experiment illustrates that the convolution with a binary
mask can be implemented by means of mask decomposition in a
very efficient way. Two main factors influence whether or not the
convolution via decomposition is faster than via FFT—the image
size (not the mask size!) and the number of blocks of the mask. In
our implementation and hardware and for 8–10 Mpix images the
threshold value is about 40. If the number of blocks is lower, the
decomposition-based convolution is the best choice.
6. Conclusion

We presented an overview of methods which decompose an
arbitrary binary object into rectilinear rectangles, starting from very
simple one up to the optimal graph-based decomposition. We tested
their performance in three frequent tasks—image compression,
moment computation and linear filtering. We showed that there is
no ‘‘generally best’’ method; the choice must reflect our require-
ments and is always a compromise between complexity on one hand
and time and memory consumption on the other hand. The weights
given to these two factors are user-defined parameters. This paper
should help the users to select proper decomposition method
according to their preferences. In our opinion, GDM is the most
appropriate in common situations, while FER is recommended, if we
want to achieve as few blocks as possible on the expense of higher
complexity. The other two tested methods either produce too many
blocks (QTD) or perform slowly (DT). They may find applications in
specific tasks only.

An interesting extension in the future could be a usage of
overlapping blocks (we speak about covering instead of partition-
ing). This may significantly decrease the block number, however,
on the expense of the NP-hard complexity.

Although we have been talking just about binary objects in the
paper, all methods can be theoretically used for graylevel and color
images as well. Graylevel image can be expressed as a union of
disjoint binary images, which can be obtained either as intensity
slices [32] or bit planes [33]. However, these ‘‘images’’ use to be
highly fragmented (especially low bit planes resemble a ‘‘random
chessboard’’) and decomposition methods do not perform well. Our
experiments indicate that for graylevel/color images the decom-
position algorithms of this kind have only little practical importance.
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[27] J. Flusser, T. Suk, B. Zitová, Moments and Moment Invariants in Pattern
Recognition, Wiley, Chichester, 2009.

[28] A. Levin, R. Fergus, F. Durand, W.T. Freeman, Image and depth from a
conventional camera with a coded aperture, in: Special Interest Group on
Computer Graphics and Interactive Techniques Conference SIGGRAPH’07,
ACM, New York, NY, USA, 2007.

[29] A. Levin, R. Fergus, F. Durand, B. Freeman, Image and depth from a
conventional camera with a coded aperture, URL /http://groups.csail.mit.
edu/graphics/CodedApertureS.

[30] P.N. Swarztrauber, FFTPACK, URL /http://www.netlib.org/fftpack/S.
[31] A. Fernandes, FFTPACK translated to pure iso C/Cþþ, URL /http://www.

fernandes.org/txp/article/4/fftpack-translated-to-pure-iso-ccS.
[32] G.A. Papakostas, E.G. Karakasis, D.E. Koulouriotis, Efficient and accurate

computation of geometric moments on gray-scale images, Pattern Recogni-
tion 41 (6) (2008) 1895–1904.

[33] I.M. Spiliotis, Y.S. Boutalis, Parameterized real-time moment computation on
gray images using block techniques, Journal of Real-Time Image Processing
(2011) 81–91.
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