
Rectangular Decomposition of Binary Images�

Tomáš Suk, Cyril Höschl IV, and Jan Flusser

Institute of Information Theory and Automation of the ASCR,
Pod vodárenskou věž́ı 4, 182 08 Praha 8, Czech Republic

{suk,hoschl,flusser}@utia.cas.cz
http://zoi.utia.cas.cz/

Abstract. The contribution deals with the most important methods for
decomposition of binary images into union of rectangles. The overview in-
cludes run-length encoding and its generalization, decompositions based
on quadtrees, on the distance transformation, and a theoretically op-
timal decomposition based on maximal matching in bipartite graphs.
We experimentally test their performance in binary image compression
and in convolution calculation and compare their computation times and
success rates.

Keywords: Binary image decomposition, generalized delta-method, dis-
tance transformation, quadtree, bipartite graph, image compression, fast
convolution.

1 Introduction

Binary images can be represented in a more efficient way, than just as a full-
sized matrix consisting of zeros and ones. The terms ”good representation” and
”optimal representation” cannot be generally defined and are always dependent
on what we are going to do with the image. The methods of binary image
representation can be divided into two groups referred as decomposition methods
and boundary-based methods (which we do not discuss in this paper).

Decomposition methods try to express the object as a union of simple dis-
joint subsets called blocks or partitions which can be effectively stored and con-
sequently used for required processing. Having a binary object B (by a binary
object we understand a set of all pixels of a binary image whose values equal
one), we decompose it into K ≥ 1 blocks B1, B2, . . . , BK such that Bi ∩Bj = ∅
for any i �= j and B =

⋃K
k=1 Bk. Although in a continuous domain we may con-

sider various shapes of the blocks (convex, star-shaped, hexagonal, rectangular,
etc., see [10]), all decomposition methods which perform in a discrete domain
use only rectilinear rectangular or square blocks because of a native rectangular
structure of the discrete image domain.

� This work has been supported by the grant No. P103/11/1552 of the Czech Science
Foundation.

J. Blanc-Talon et al. (Eds.): ACIVS 2011, LNCS 7517, pp. 213–224, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

214 T. Suk, C. Höschl IV, and J. Flusser

The power of any decomposition method depends on its ability to decompose
the object into a small number of blocks in a reasonable time. Most authors
have measured the decomposition quality just by the number of blocks K, while
ignoring the complexity of the algorithms, claiming that such decomposition that
minimizes K is the optimal one. This criterion is justified by the fact that the
complexity of subsequent calculations uses to be O(K) and compression ratio
(if the decomposition is used for compression purposes) also increases as the
number of blocks decreases. However, this viewpoint may be misleading. Simple
algorithms produce relatively high number of blocks but perform fast, while more
sophisticated decomposition methods end up with the small number of blocks
but require more time. Even if the decomposition is in most tasks performed
only once per object and can be done off-line, the time needed for decomposing
the image is often so long that it substantially influences the efficiency of the
whole method.

Image rectangular decomposition has found numerous straightforward appli-
cations in image compression methods and formats (RLE, TIFF, BMP and oth-
ers), in calculation of image features (mainly moments and moment invariants)
[7] in fast convolution algorithms with binary kernels, and in VLSI design.

The aim of this paper is to review existing decomposition methods, to present
one which is new in this context and which is theoretically optimal in terms
of the number of blocks, and to compare their performance in loss-less image
compression and in fast convolution calculation.

2 Decomposition into Row Segments

Decomposition of an object into rows or columns is the most straightforward
and the oldest method. The blocks are continuous row segments for which only
the coordinate of the beginning and the length are stored. In image compression
this has been known as run-length encoding (RLE). This principle and its modi-
fications (CCITT, PackBits) are used in several image formats such as TIFF and
BMP. In feature calculation, Zakaria [18] used the same representation for fast
computation of image moments of convex shapes and called it ”Delta-method”
(DM). It is very fast but leads to the number of blocks which uses to be (much)
higher than the minimal decomposition.

A simple but powerful improvement of the delta method was proposed by
Spiliotis and Mertzios [17]. This ”Generalized Delta-method” (GDM) employs a
rectangular-wise object representation instead of the row-wise one. The adjacent
rows are compared and if there are some segments with the same beginning
and end, they are unified into a rectangle (see Fig. 1a). For each rectangle, the
coordinates of its upper-left corner, the length and the width are stored. The
GDM is only slightly slower than DM while producing (sometimes significantly)
less number of blocks. Surprisingly, under our knowledge this method has not
been implemented in any commercial image format.

Rectangular Decomposition of Binary Images 215

(a) (b)

Fig. 1. Decomposition of the bird image. (a) Generalized delta-method (GDM – 983
blocks in total), (b) Quadtree decomposition (QTD – 4489 blocks in total).

3 Quadtree Decomposition

Quadtree decomposition (QTD) is a popular hierarchical decomposition scheme
used in (but not limited to) image representation and compression [9]. The QTD
works with square images of a size of a power of two; if it is not the case, the
image can easily be zero-padded to the nearest such size. The image is iteratively
divided into four quadrants. Homogeneity of each quadrant is checked and if
the whole quadrant lies either in the object or in the background, it is not
further divided. If it contains both object and background pixels, it is divided
into quadrants, and the process is repeated until all blocks are homogeneous.
The decomposition can be efficiently encoded into three-symbol string, where 2
means division, 1 means a part of the object and 0 stands for the background.
An example of the quadtree decomposition is in Fig. 1b.

The algorithm always yields square blocks that may be advantageous for some
purpose but usually leads to a higher number of blocks than necessary. A draw-
back of this decomposition algorithm is that the division scheme is not adapted
with respect to the content of the image, but it is defined by absolute spatial
coordinates. Hence, the decomposition is not translation-invariant and may lead
to absurd results when for instance a large single square is uselessly decomposed
up to individual pixels.

4 Decomposition to the Largest Inscribed Blocks

This group of methods can be described as ”the largest first”. They search the
largest block that can be inscribed into the object, remove it and repeat searching

216 T. Suk, C. Höschl IV, and J. Flusser

in the rest of the object until the entire object disappears and the decomposition
is complete. They differ from each other by the way, how to search the largest
block and also by the type of blocks (squares or rectangles, even or odd sizes).

4.1 Morphological Decomposition

Sossa et al [16] published a decomposition algorithm based on a morphological
erosion. The erosion is an operation, where a small structural element (here a
3×3 square is used) moves over the image and when the whole element lies in the
object, then the central pixel of the window is preserved in the object, otherwise
it is assigned to the background. So, each erosion shrinks the object by one-pixel
boundary layer. They repeat the erosion until the whole object disappears and
count the number of erosions s. Then a (2s−1)×(2s−1) square can be inscribed
into the object and it forms one block of the decomposition.

The pixels of the object before the last disappearing erosion are potential
centers of the inscribed square. So, they have two nested loops: the inner loop
over the erosions for searching one block and the outer loop over the blocks for
whole decomposition. If we consider that erosion is a relatively time consum-
ing operation, it suggests this method performs much slower comparing to the
previous decomposition algorithms. Although the original method [16] considers
decomposition into squares only, it can be generalized also to rectangles which
decreases the number of the resulting blocks.

4.2 Distance Transformation Decomposition

We proposed to speed up the previous algorithm by means of the distance trans-
formation (DT), which we use for finding of the centers of the inscribed rectan-
gles. In morphological decomposition, we must repeat the erosions s-times for
finding (2s − 1) × (2s − 1) inscribed square, while the distance transformation
with a suitable metric can be calculated only once. The DT of a binary image is
an image, where each object pixel shows the distance to the nearest boundary
pixel and the background pixels are zero [1].

DT strongly depends on the metric used for the distance measurement.
Seaidoun [15] proposed an algorithm for the Euclidean metric, we used a sim-
plified version for the chessboard metric

d(a, b) = max{|ax − bx|, |ay − by|}. (1)

The metric is closely related to the form of the blocks, the chessboard metric
leads to the decomposition to rectilinear squares, the Euclidean metric to circular
blocks and a city block metric to the squares rotated by 45◦.

We successively search the image from the left, right, top and bottom, count
distances from the last boundary pixel and calculate the minimum from the four
directions. The result is DT, the maximum of the result equals s for the inscribed
square (2s− 1)× (2s− 1) and the pixels with this maximum value are potential
centers of the inscribed squares.

Rectangular Decomposition of Binary Images 217

We use an improved version of DT inspired by [14]. If we change only a small
part of the original image, then upgrading its close neighborhood is sufficient. In
our case, if we remove a rectangle from the image, then the rectangle is zeroed
and DT is recomputed in a small frame around it. If the frame in some distance
d from the rectangle is not changed, then the rest of DT is left unchanged.

The potential center(s) of the largest inscribed blocks are the pixels with the
maximum values of DT. If the maximum s is unique, then a square (2s− 1)×
(2s− 1) is inscribed. However, often the maximum is not unique and the choice
of the block center is ambiguous. We try to keep the blocks as large as possible.
Hence, if there is a 2× 2 square of the maxima, an even-sized square 2s× 2s can
be inscribed into the object. If the potential square centers create a line segment
(with a single or double-pixel width), then the corresponding squares are unified
into one rectangle. At the end of the loop, the inscribed rectangle is removed
from the object and the procedure starts the next loop, which is applied to the
rest of the image. The decomposed bird image is shown in Fig. 2a.

Both morphological and DT decompositions end up with the same set of
blocks. However, they are still only sub-optimal even on many simple shapes.
This is because a sequence of locally optimal steps which these ”greedy” algo-
rithms apply to an image (placing always the largest inscribed rectangle) may
not yield an optimal solution. As soon as a block is created, it cannot be re-
moved any more because the methods do not include any backtracking. These
two algorithms differ from each other by computing complexity. Erosion is a
relatively complex operation while the DT can be calculated faster thanks to
its simple upgrading. Anyway, both methods perform slower comparing to the
previous decomposition algorithms, see the experiments.

(a) (b)

Fig. 2. (a) Distance transformation decomposition (DTD) of the bird image (1306
blocks in total), (b) GBD decomposition (923 blocks in total)

218 T. Suk, C. Höschl IV, and J. Flusser

5 Graph-Based Decomposition

A large group of decomposition algorithms appeared in 80’s in computational
geometry [10]. Surprisingly, they have not received almost any attention from
image analysis community. Their formulation was usually much more general
than ours. They tried to decompose general polygons into specific polygonal
components (convex polygons, star-shape polygons, triangles, generally oriented
rectangles, etc.). A common feature of these methods was that they transformed
the decomposition problem to a graph partitioning problem and employed known
tools from graph theory. The only subgroup relevant to our purposes is a decom-
position of a digital polygon into rectilinear rectangles. An algorithm that was
proved to be optimal in terms of the number of blocks was independently pro-
posed in the same form by three different authors [12], [13], [6] (in this order) and
later discussed by [8], [4] and others. The method (denoted here as graph-based
decomposition – GBD) works for any object even if it contains holes.

The vertices of a binary object can be divided into two groups, those having
the inner angle 90◦ (we can call them ”convex”) and those having the inner
angle 270◦ (we can call them ”concave”). The method performs hierarchically
on two levels. On the first level, we detect all concave vertices of the input
object and identify pairs of ”cogrid” concave vertices (i.e. those having the same
horizontal or vertical coordinates). Then we divide the object into subpolygons
by constructing chords which connect certain cogrid concave vertices. It is proved
in [6] that the optimal choice of the chord set is such that the chords do not
intersect each other and their number is maximum possible.

The problem of optimal selection of the chords is equivalent to the problem of
finding the maximal set of independent nodes in a graph, where each node cor-
responds to a chord and two nodes are connected with an edge if the two chords
have a common point (either a vertex or an intersection). Since any two hori-
zontal (vertical) edges cannot intersect one another, our graph is a bipartite one
which implies a solution in a polynomial time. First, we find a maximal matching
(classical problem in graph theory which looks for labeling the maximum num-
ber of edges such that each node is incident to at most one labeled edge). It is a
classical problem in graph theory, whose algorithmic solution in polynomial time
has been published in various versions (probably the most popular approach is
by Maximum Network Flow [3] which we also used in our implementation).

As soon as the maximal matching has been constructed, the maximal set
of independent nodes can be found much faster than the maximal matching
itself – roughly speaking, the maximal independent set contains one node of
each matching pair plus all isolated nodes plus some other nodes which are not
included in the matching but still independent. As a result we obtain a set of
nodes that is unique in terms of the number but ambiguous in terms of particular
nodes. However, this ambiguity does not play any role – although each set lead
to different partitioning, the number of partitions is always the same. Hence,
at the end of the first level, the object is decomposed into subpolygons, which
(when considered individually) do not contain any cogrid concave vertices (see
Fig. 3d).

Rectangular Decomposition of Binary Images 219

(a) (b) (c) (d) (e)

Fig. 3. (a) The object to be decomposed. (b) All possible chords connecting the cogrid
concave vertices. The crosses indicate the chord intersections. (c) The corresponding
bipartite graph with a maximum independent set of three nodes. (d) The first-level
decomposition of the object. (e) The second-level decomposition which adds the de-
composition of subpolygons. From each concave vertex a single chord of arbitrary
direction is constructed.

The second level is very simple. Each subpolygon coming from the first level
is further divided. From each its concave vertex a single chord is constructed
such that this chord terminates either on the boundary of the subpolygon or
on the chord constructed earlier. This is a sequential process in which each
concave vertex is visited only once. Between two possible chords offered in each
concave vertex we may choose randomly. After that, the subpolygon is divided
into rectangles because rectangle is the only polygon having no concave vertices
(see Fig. 3e).

The strength of this algorithm is in the fact that it guarantees minimizing
the number of decomposing rectangles regardless of the particular choices on
the both levels. On the other hand, one may expect slower performance than in
the previous algorithms namely because of expensive finding the maximum set
of independent graph nodes.

If the object does not have any cogrid concave vertices or if one of the max-
imum independent sets of nodes contains only the nodes corresponding to the
horizontal (or vertical) chords, then also all chords in the second level may be
constructed in the same direction and, consequently, the GBD decomposition
leads exactly to the same partitioning as the GDM applied in that direction. It
corresponds with the surprisingly good results of the GDM. An example of the
GBD decomposition is in Fig. 2b.

6 Experimental Comparison of Image Compression

In this section, we compare the performance of the above decomposition methods
in binary image compression. The experiments were performed on the publicly
available LEAF database [2] which is a database of 795 scanned and binarized
leaves of trees and shrubs of vegetation growing in the Czech Republic (see

220 T. Suk, C. Höschl IV, and J. Flusser

Fig. 4)1. All methods were implemented in C++ language and run on a PC
with Intel Core 2 Duo, 2.8 GHz CPU and Windows 7 Professional.

Fig. 4. Examples of the LEAF database (acer platanoides, aesculus hippocastanum,
betula pendula, fagus sylvatica, hedera helix, quercus robur, salix alba, ulmus glabra)

First, we monitor and compare two parameters: the number of blocks and the
corresponding decomposition time for the GDM, QTD, DTD and GBD methods,
respectively. The data presented in Table 1 are cumulative for all objects in the
database. The time was always measured just of the decomposition itself, no
input/output operations were included. The minimum number of blocks was
achieved by GBD, as was expected. This is of course on the expense of the time
but surprisingly the time is lower than that of DTD and only five times higher
than the time of QTD. The winner of this test is the GDM method yielding only
a slightly worse number of blocks than GBD but in the by far shortest time. On
the other hand, QTD produce the highest block number and the DTD is the
slowest.

Table 1. The number of blocks and decomposition time achieved on the LEAF
database

Method Number of blocks Number of blocks [%] Time [s]

GDM 419489 112 1.3
QTD 1913275 511 7.2
DTD 545528 146 50.3
GBD 374149 100 37.5

Although the decomposition itself makes a substantial compression, we further
increase the compression ratios of all methods by a proper block ordering. We
propose a new file format denoted as BLK. It uses three types of compression: the
blocks from DTD are grouped according their size, this allows to store the size
only once per each group and then to store just upper left corner of each block.
The long narrow blocks from GDM and GBD are sorted by the coordinates in
the ”narrow” direction and sizes and coordinate differences in this direction are
encoded in the decreased number of bits. QTD uses its traditional three-symbol

1 The database exists in two versions – original (the leaves with petioles, high resolu-
tion) and simplified (the leaves without petioles, twice downsampled). Tab. 1 refers
to the simplified version, Tab. 2 to the original one.

Rectangular Decomposition of Binary Images 221

encoding. The label of the actual decomposition method is stored in the file
header along with other auxiliary parameters.

We compared compression ratios of BLK format (with all these four decom-
position methods) to commercial formats. As we already explained it does not
reflect only the number of blocks since other factors playing role there. We cal-
culated average compression ratios (ACR) over the LEAF database. ACR is a
ratio of the size of all files in the database in the specific format and the size
without any compression. The results are in Table 2. In this experiment, it is not
meaningful to measure the time because it inherently includes I/O operations.
Since we do not have an access to source codes of commercial compressions, it
would be impossible to ensure an objective time comparison.

Table 2. Compression ratios on the LEAF database

Format Method size [byte] ACR [%]

TIFF no compression 172886448 100.00
TIFF PackBits 13282998 7.68
TIFF RLE 8297340 4.80
GIF LZW 6914637 4.00
BLK DTD 5173371 2.99
PNG deflate 5066019 2.93
BLK GDM 4723166 2.73
BLK GBD 4603942 2.66
BLK QTD 3012532 1.74

Surprisingly the best performance of QTD (comparing to the previous exper-
iment) was achieved namely because the three-symbol encoding in the BLK for-
mat is very efficient. The ACR of GBD and GDM is slightly worse, but still very
good; the GBD method is better because it guarantees the minimum number of
blocks. The good result of DTD was achieved by efficient encoding of one-pixel
blocks, but in the longest time. The only commercial format with comparable
ACR is PNG with a deflate method, others provide worse compression ratios
than all BLK methods.

Based on these two measurements a general recommendation can be as follows:
the QTD method yields good compression ratio because of efficient implementa-
tion in BLK format, but we should keep in mind that the number of blocks was
four times higher and the decomposition time even six times higher than GDM
offering a very good compromise between compression ratio and decomposition
speed. The GBD and DTD methods are suitable mainly for applications, where
the compression is performed only once (usually off-line) and thus the time of
the compression is not critical. GBD provides minimum number of blocks and
slightly better ACR and time of compression.

222 T. Suk, C. Höschl IV, and J. Flusser

7 Experimental Comparison of Computing Convolution

In this experiment we show that the decomposition can be a powerful tool for
speeding-up convolution filtering of an image with a binary kernel. While tra-
ditional ”by definition” discrete convolution of an M × N image with an ar-
bitrary m × n mask requires O(mnMN) operations and convolution via fast
Fourier transformation (FFT) O(MN logMN) operations, convolution with a
constant-valued rectangle takes only O(MN) operations regardless of the mask
size. There are several ways how to implement such algorithm. The best one is
probably to employ precalculations of row-wise and consequently column-wise
sums of the image. Let us denote S(X) the row-wise and column-wise sum of the
original image from (0,0) to pixel X , then the convolution with a rectangular
mask ABCD is given as S(D)− S(C)− S(B) + S(A).

Now let us imagine a binary kernel where the non-zero values form a more
complex set than a single rectangle. Such a situation typically appears for in-
stance in coded aperture (CA) imaging. CA is a method of recovering the depth
map of the scene from a single image [11]. The trick is to insert a special oc-
cluder within the aperture of the camera lens to create a coded aperture. The CA
output must be deconvolved, which incorporates (if an iterative deconvolution
method such as Richardson-Lucy or similar is applied) repeating calculations of
convolution of an estimated image with the aperture mask.

If the mask has a full or close-to-full rank, we cannot effectively use any
factorization that seemingly takes us back to the calculation from the definition
or via FFT. However, if we decompose the mask into rectangles B1, · · · , BK , we
can, thanks to the linearity of convolution, calculate the convolutions with each
Bj separately by the method described above and then just sum up the results.
(This method can be used even if the kernel is not binary and thus the blocks
have different values but that is a rare case in practice.) In that way we achieve
the overall complexity of O(KMN). In this experiment we demonstrate that for
K << mn the speed up is really huge comparing to the direct calculation from
the definition and still significant comparing to the FFT.

We filtered a 3456×2592 image with two binary kernels of the same shape but
different size – the small one of (35× 38) and the large one of (141× 152) pixels.
The small kernel is a downsampled version of the large one (see Fig. 5a). The
kernels were decomposed by the GBD method into 10 rectangles (see Fig. 5b).

We tested three methods – direct convolution in the image domain from the
definition, convolution via FFT in the frequency domain (we used popular public-
domain FFTPack software [5]), and fast convolution using kernel decomposition
as described above. In the last case, the matrix of the partial sums of the image
was precomputed and then the (cyclic) convolution was calculated.

We wanted to measure the time of each individual step separately because
in practice either the mask decomposition or the precomputing of partial sums
uses to be done only once and hence its complexity is negligible (in batch pro-
cessing either the mask or the image stays the same while the other factor varies).

Rectangular Decomposition of Binary Images 223

(a) (b)

Fig. 5. (a) The binary convolution kernel used in the experiment. (b) Its 10 blocks of
GBD decomposition.

However, the mask decomposition was so fast that the corresponding time was
not measurable.

As expected, the slowest calculation is from the definition in the image domain
– 26 seconds for the small and 411 seconds for the large kernel, respectively. The
speed of the calculation via FFT is independent of the kernel size – 4.3 seconds
in both cases. Also the time of the decomposition method actually does not
depend on the mask size. It took only 0.96 seconds including precomputing of
the partial sums (0.1 s) and the mask decomposition (negligible time).

This experiment illustrates that the convolution with a binary mask can be im-
plemented by means of mask decomposition in a very efficient way. Two main fac-
tors influence whether or not the convolution via decomposition is faster than via
FFT – the image size (not the mask size – we expect masks much smaller than
the images) and the number of blocks of the mask. In our implementation and
hardware and for 8 – 10 Mpix images the threshold value is about 40 blocks. If the
number of blocks is lower, the decomposition-based convolution is the best choice.

8 Conclusion

We presented an overview of methods which decompose an arbitrary binary ob-
ject into rectilinear rectangles, starting from very simple one up to the optimal
graph-based decomposition. We tested their performance in two frequent tasks
– image compression and linear filtering. We showed that there is no ”generally
best” method; the choice must reflect our requirements and is always a compro-
mise between complexity on one hand and time and memory consumption on the
other hand. The weights given to these two factors are user-defined parameters.

This paper should help the users to select proper decomposition method ac-
cording to their preferences. In our opinion, GDM is the most appropriate in
common situations, while GBD is recommended if we want to achieve as few
blocks as possible on the expense of higher complexity. The other two tested
methods either produce too many blocks (QTD) or perform slowly (DTD). They
may find applications in specific tasks only. The decomposition methods can be
used for speed-up of various other computations, e.g. computing features for
pattern recognition as moments etc.

224 T. Suk, C. Höschl IV, and J. Flusser

References

1. Borgefors, G.: Distance transformations in digital images. Computer Vision,
Graphics, and Image Processing 34(3), 344–371 (1986)

2. Department of Image Processing: Tree leaf database,
http://zoi.utia.cas.cz/tree_leaves

3. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for
network flow problems. Journal of the Association for Computing Machinery 19(2),
248–264 (1972)

4. Eppstein, D.: Graph-Theoretic Solutions to Computational Geometry Problems.
In: Paul, C., Habib, M. (eds.) WG 2009. LNCS, vol. 5911, pp. 1–16. Springer,
Heidelberg (2010)

5. Fernandes, A.: FFTPACK translated to pure iso c/c++,
http://www.fernandes.org/txp/article/

4fftpack-translated-to-pure-iso-cc
6. Ferrari, L., Sankar, P.V., Sklansky, J.: Minimal rectangular partitions of digitized

blobs. Computer Vision, Graphics, and Image Processing 28(1), 58–71 (1984)
7. Flusser, J., Suk, T., Zitová, B.: Moments and Moment Invariants in Pattern Recog-

nition. Wiley, Chichester (2009)
8. Imai, H., Asano, T.: Efficient algorithms for geometric graph search problems.

SIAM Journal on Computing 15(2), 478–494 (1986)
9. Kawaguchi, E., Endo, T.: On a method of binary-picture representation and its

application to data compression. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 2(1), 27–35 (1980)

10. Keil, J.M.: Polygon decomposition. In: Handbook of Computational Geometry, pp.
491–518. Elsevier (2000)

11. Levin, A., Fergus, R., Durand, F., Freeman, W.T.: Image and depth from a con-
ventional camera with a coded aperture. In: Special Interest Group on Computer
Graphics and Interactive Techniques Conference, SIGGRAPH 2007. ACM, New
York (2007)

12. Lipski Jr., W., Lodi, E., Luccio, F., Mugnai, C., Pagli, L.: On two-dimensional
data organization II. In: Fundamenta Informaticae. Series IV, vol. II, pp. 245–260
(1979)

13. Ohtsuki, T.: Minimum dissection of rectilinear regions. In: Proceedings of the IEEE
International Conference on Circuits and Systems, ISCAS 1982, pp. 1210–1213.
IEEE (1982)

14. Schouten, T.E., van den Broek, E.L.: Incremental distance transforms (IDT). In:
20th International Conference on Pattern Recognition, ICPR 2010, pp. 237–240.
IEEE Computer Society (August 2010)

15. Seaidoun, M.: A Fast Exact Euclidean Distance Transform with Application to
Computer Vision and Digital Image Processing. Ph.D. thesis, Northeastern Uni-
versity, Boston, USA (September 1993) advisor John Gauch

16. Sossa-Azuela, J.H., Yáñez-Márquez, C., Dı́az de León Santiago, J.L.: Computing
geometric moments using morphological erosions. Pattern Recognition 34(2), 271–
276 (2001)

17. Spiliotis, I.M., Mertzios, B.G.: Real-time computation of two-dimensional moments
on binary images using image block representation. IEEE Transactions on Image
Processing 7(11), 1609–1615 (1998)

18. Zakaria, M.F., Vroomen, L.J., Zsombor-Murray, P., van Kessel, J.M.: Fast algo-
rithm for the computation of moment invariants. Pattern Recognition 20(6), 639–
643 (1987)

http://zoi.utia.cas.cz/tree_leaves
http://www.fernandes.org/txp/article/4fftpack-translated-to-pure-iso-cc
http://www.fernandes.org/txp/article/4fftpack-translated-to-pure-iso-cc

	Rectangular Decomposition of Binary Images
	Introduction
	Decomposition into Row Segments
	Quadtree Decomposition
	Decomposition to the Largest Inscribed Blocks
	Morphological Decomposition
	Distance Transformation Decomposition

	Graph-Based Decomposition
	Experimental Comparison of Image Compression
	Experimental Comparison of Computing Convolution
	Conclusion

