
VIDEO SURVEILLANCE APPLICATION BASED ON
APPLICATION SPECIFIC VECTOR PROCESSORS

Roman Bartosinski, Martin Danek, Jaroslav Sykora, Lukas Kohout

Department of Signal Processing

Institute of Information Theory and Automation (UTIA) of the ASCR, v.v.i.

Pod Vodarenskou vezi 4, Praha, Czech Republic

{sykora, kohoutl, bartosr, danek}@utia.cz

Petr Honzik

CIP plus s.r.o.

Milinska 130, Pribram, Czech Republic

petr.honzik@cip.cz

ABSTRACT

Current video surveillance applications put higher demand
both on processing power and personal privacy. This results
in new video processing solutions being based on smart cam-
eras. This paper presents a sample implementation of a sys-
tem that implements core functions of a smart camera - mo-
tion detection and labelling - in an FPGA. The implementa-
tion is based on the data-flow ASVP platform extended with
a number of selection operations that enable to implement
constructs with conditional branching. Experimental perfor-
mance results and power consumption data are presented for
an actual implementation in the Xilinx SP605 board.

Index Terms— video surveillance, smart camera, FPGA,
custom accelerators, vector processing

1. INTRODUCTION

Current video surveillance systems belong to two classes
based on two technology concepts. The first and older con-
cept is based on analog video systems that have been widely
used up till now. The second more recent concept is based
on the IP network technology, which enables much more
variability in configuration and communication among all
components connected in a network. IP-based video sys-
tems will slowly replace all analog video systems. In our
approach we assume that in the future any network type will
be available anywhere in the public and private space. All
electronic appliances will be able to connect to each other
over the network. Because of this reason in our design we
need to consider autonomous equipment that can decide and
connect to other devices in the network. In the future, as
the number of monitored areas increases, there will be no
chance to keep the current concept of video surveillance that
relies on transferring complete image data from a big pool
of cameras to one remote processing unit that processes all
the data from the cameras as it would increase extremely the

This work has been supported from project SMECY, project number
Artemis JU 100230 and MSMT 7H10001.

communication demands on the network, and its reliability
is limited by the central processing node. Moreover, trans-
ferring all video data over a network brings in a big security
risk. For this reasons we need to process video data and make
decisions locally, and send only a minimum amount of data
to the network to increase safety, processing capacity and
dependability of the whole system. To sum it up, significant
features of modern video surveillance systems are

• autonomous execution,

• local decision making,

• decentralization,

• increased privacy,

• cooperation with the outside world.

Privacy is one of todays biggest problems, and most video
surveillance system cannot meet strict rules dictated by pri-
vacy of personal spaces. Current video surveillance systems
collect, store and send image data, which all increases the po-
tential for illegal privacy intrusion. Because of this reason
current video surveillance systems cannot be used to detect
dangerous situations in many places like private rooms or so-
cial facilities, and there we have to count only on personal in-
volvement of persons present there. If we are able to process
video data locally and send out just detected events, we will
be able to increase the use use of video surveillance systems
in these private spaces.

Modern video surveillance systems built to respect pri-
vacy issues must be based on smart cameras. A smart cam-
era consist of an input device (mostly represented by a digital
camera chip) and input video processing chain. These parts
have crucial impact on the quality of outputs (events) gener-
ated by the system.

Figure 1 shows an example of an input video processing
chain that we will consider in the remainder of this paper.
The input video processing chain consists of several processes
that can be seen as three processing levels [1]. Generally, the
amount of data in the chain decreases and the algorithm com-
plexity increases with a switch to a higher processing level.



Fig. 1. Possible structure of an input video processing chain. Ar-
rangement of component blocks in hardware resources used in our
case.

Processes on the low and middle levels are usually where the
data throughput bottleneck is. On the other hand, processes
on the lower levels can be often parallelized.

The low-level processing usually contains simple opera-
tions that are repeated for each pixels (e.g. color transfor-
mations, filtering). As these processes do not need any addi-
tional memory to store contextual data or they need to store
only several common parameters, they can be implemented
as high-speed pipelined IP cores in an FPGA.

On the other hand, mid-level processes (e.g. object seg-
mentation and tracking) require more complex and iterative
or recursive algorithms with additional contextual data. In
general, mid-level algorithms still operate on the whole video
data. More sophisticated algorithms need higher amount of
contextual history data than can be extracted from a single
input frame.

The core block in the mid-level processing of video
surveillance applications is motion detection. This process
creates a mask of moving objects from a sequence of time-
delayed input frames. The mask is usually computed using
statistical algorithms. The noise in such a result is usually
cleaned in the next operation, traditionally morphological
opening is employed. Then connected pixels are identified
as objects by a labeling algorithm. The output from this pro-
cessing level is a mask of foreground objects and a table with
parameters of individually identified objects.

The high-level processes (e.g. object analysis and recog-
nition) often involve complex sequential algorithms that usu-
ally execute on small regions determined in the middle level;
these are best suited to be implemented in a CPU.

The paper is organized as follows: We begin by brief de-
scription of selected hardware platform in section 2, and con-

SDRAM

(off-chip)

Streaming DMA

(MPMC + NPI)

Multi-Banked 

Local Memory

(A, B, C, …)

Vector Processing

Unit (VPU)

Controller 

(with sCPU)

α

β

Str0 Str1 ...

Application-

Specific Vector 

Processor 

(ASVP 0)

ASVP 1

γ

Host CPU

(e.g. MicroBlaze)

Communications Backplane

δ

Fig. 2. A system-level organization of an ASVP-based core.

tinue with description of application in section 3. In section 4
details about implementation are described, and several re-
sults are presented and commented in section 4.3.

2. PLATFORM

The implementation platform used in this paper is the Appli-
cation-Specific Vector Processor (ASVP) described in [2] and
[3]. In traditional work-flows based on direct implementa-
tion in hardware description languages hardware accelerators
must be recompiled and re-synthesized each time to gener-
ate a new FPGA configuration (bitstream) that can be veri-
fied. The drawback of the traditional approach is the long
synthesis time caused mainly by a slow place&route process
of the low-level tools. This also limits the end user to minor
changes of the implemented algorithm such as tuning of co-
efficients. In our approach we abstract the custom accelerator
into a specialized programmable architecture based on a net-
work of programmable data-streaming computing nodes with
local memory. To design for the platform, in the first step the
high-level source code is analyzed and domain features are
extracted. Based on the required domain features new com-
puting kernels are implemented in the computing nodes or the
existing ones are modified. The architecture is programmable
by firmware to the extent that the sequencing of basic process-
ing kernels can be changed without re-synthesizing the hard-
ware, hence source code modifications that do not change the
problem domain can be tested quickly for they require only
fast firmware recompilation.

The system-level view is presented in Figure 2. Similar to
the streaming architectures (Stanford Imagine [4], IBM Cell
[5]), the execution control is hierarchical:

1. Task scheduling is executing in the Host CPU (e.g. Mi-
croBlaze). Optional inter-core synchronization is han-
dled by the Communications Backplane (δ).

2. Scheduling of the vector instructions is realized in a



Table 1. Required frame rate versus object motion speed.
Type of object Speed Frame rate
People 5 km/h 5 fps
Cars in a city 50 km/h 23 fps
Cars on a highway 130 km/h 60 fps

simple scalar control processor (sCPU) embedded in
each ASVP core .The sCPU forms and issues wide
instruction words (α) to the Vector Processing Unit
(VPU).

3. Data path multiplexing and vector processing is real-
ized autonomously in the VPU. The unit handles both
the vector-linear and vector-reduction operations, as
well as local memory banks access scheduling (β).
The VPU contains Data Flow Unit (DFU) which per-
forms vector operations.

3. APPLICATION

3.1. Requirements

We have performed several tests to measure the speed of video
processing required in real-world situations. The main param-
eter for video surveillance is the frame rate of the video pro-
cessing block and video surveillance camera. The minimal
frame rate of the video surveillance camera can be set accord-
ing to the setting. 5 fps is valid for common use in public
spaces with people walking. In the case of moving cars or ob-
jects moving faster than pedestrians we need a higher frame
rate. From our tests and experience it is desirable that in two
subsequent frames the distance objects travel be 0.3m for peo-
ple and 0.6m for cars. Table 1 shows the frame rate in three
most common scenarios.

The next parameter is the minimal required resolution of
the input video. The increasing demands on video quality
imply the increase in the resolution of the input video stream.
Currently cameras with the full HD resolution are often used
as input of video stream. Hence we need to consider image
resolutions starting at 640x480 pixels.

Another strong requirement is that the used algorithm
must not exhibit faulty behaviour with varying external con-
ditions such as time-varying lighting. The implemented
algorithms should be adjustable by the user.

The main idea is that the application should respect pri-
vacy issues and provide image information only if a moni-
tored event occurs.

To fulfil the stated requirements and in line with [1] we
have selected the FPGA technology for implementating the
low and mid-level processes (shown in Figure 1); the high-
level analyses will be executed in a CPU.

As it is not efficient to design, implement and debug com-
plex function cores directly on an FPGA (i.e. in a hardware

Fig. 3. False positive error frequency for a testing video sequence.

description language), we have developed and analyzed all al-
gorithms in Matlab, and then we have implemented them in
hardware. The next subsections analyze algorithms used in
the processing blocks in our video chain.

3.2. Motion Detection

The motion detection process detects changes in an input
video stream and returns mask of presently changed re-
gions in the frame. This process is often called foreground-
background segmentation, where static regions are marked
as background and changes as foreground objects. There are
many algorithms for motion detection, from simple back-
ground subtraction to complex algorithms which are based
on statistical models of the background. In general, simpler
algorithms are faster and need smaller amount of memory
to store their contextual data. More robust and sophisticated
algorithms are more computationally intensive and require
higher amount of data memory. All algorithms use one or
more parameters (mainly thresholds) that are adjustable and
must be set by the user, but the quality of their values is cru-
cial to get useful results. These parameters are commonly set
experimentally.

We have analysed several algorithms for their computa-
tion complexity, data consumption and robustness. In the
analysis we used the settings recommended in papers [6],
[7], [8] where the algorithms have been described. The al-
gorithms and the required memory size for their contextual
data are listed in Table 2. The table also contains calculated
sizes for the recommended parameters and color input video
with resolution 640x480 pixels. Figure 3 demonstrates the
basic quality of analysed algorithms, it shows the number of
false positive errors each algorithm produced in relation to the
video resolution. The algorithms have been tested on artificial
video sequences prepared in a scene modelling program.



Table 2. The analyzed algorithms for motion detection and memory required to store their contextual data normalized wrt the size of the
input video frame. The last column shows the size of contextual data for the recommended settings and video resolution 640x480.

Algorithm Normalized size of contextual data Size for 640x480
Simple background subtraction 1 900 kB
Spatial temporal entropy image [6] N+1/3 (for N quantization levels) 23.7 MB
Mixture of Gaussians [7] 8*K (for K Gaussian models) 37.5 MB
Modified Mixture of Gaussians 5*K (for K Gaussian models) 23.4 MB
Bayes classifications [8] 3*N+4*M+3 (for N color vectors and M co-occurrence vectors) 247.5 MB

Except simple background subtraction all tested algo-
rithms require floating point arithmetic.

Based on the analysis we have selected the algorithm
based on the Mixture of Gaussians (MoG) as a compromise
between computational complexity, required memory for
contextual data, used operations and the possibility to trans-
form the algorithm to a vector form. The selected algorithm
has been modified to decrease its memory requirements. The
algorithm is based on [7] without shadow detection. This
algorithm belongs to the class of pixel motion detection algo-
rithms which consider all pixels as independent.

The algorithm is executed for each new frame from an
input video in RGB or another three-component color space.
The output of the algorithm is a mask of foreground objects
in the frame.

The decisions if pixels from the current frame represent
foreground or background depend on statistical models and
their mixture for each pixel. Each pixel is modeled by a mix-
ture of K strongest Gaussians models of the background in
the pixel (K=4 in our implementation). Each Gaussian model
defined by its mean value and variance represents one state
(color) of a pixel. Each model also contains a parameter
weight which represents how often the particular model clas-
sified the pixel as the background.

Four models are sufficient to describe basic and repeating
changes of the scene background such as trees in air, moving
escalators.

The algorithm tests if the current pixel value belongs to
one of the already existing pixel models. It tests models se-
quentially from the strongest to the weakest one. If there is an
appropriate model, the model is updated with the new value
(the mean value and variance are updated and the weight of
the model is increased). The model is updated with a given
learning rate to perform progressive adaptation to new condi-
tions. If none of the models describes the pixel, the weakest
model is replaced with a new one which is built based on the
current pixel value and with the default weight. After updat-
ing the models, they are reordered from the strongest to the
weakest one, and their weights are normalized. Then the algo-
rithm tests if the weight of the model (or mixture of stronger
models) that describes the new pixel value is higher than the
user’s threshold; if so, the pixel is classified as background.
Otherwise it is classified as a foreground object.

3.3. MoG Implementation

In its basic form the algorithm is suitable for sequential pro-
cessing. For processing on the proposed ASVP architecture
and with respect to the requirements it has been modified and
transformed to a vector form. The main parts changed are
conditional branching, reordering of the models, replacement
of the operations divide and square root.

Each model in the original version is described by its
mean value and variance in each color channel, weight and
sort key. Thus each model is represented by eight single pre-
cision floating point (FP) numbers. In our modified version
of the algorithm we reduced the model data to weight, mean
value in each color channel and a common sum of variances,
which is five FP numbers that equal to the reduction of the
transferred contextual data by about 37,5%.

In the original version the operation sqrt was used to com-
pute sort keys as a relation between the weight and variances
of a model. Our modified algorithm uses only the weight to
find the strongest and the weakest models. The modified ver-
sion does not use the division to normalize weights; this is
possible because the algorithm is recursive, and the weights
of the models are updated in each step (with each new frame)
by multiplying them with the forgetting factor that is always
smaller then 1, thus the sum of weights for a given pixel can-
not be greater than the number of models (four in our case).

The behaviour of both the original and the modified al-
gorithms can be tuned with several parameters: background
threshold, variance threshold, learning rate, initial weight, and
initial variance.

The modifications of the algorithm have impact on the be-
haviour of the algorithm and its convergence, but the impact
can be partially compensated by slightly adjusting parameters
of the algorithm. The modified algorithm returns results with
a slightly higher error constituent, it returns about 1% more
false positive and about 1% fewer false negative errors.

3.4. Morphological Opening

The second block in the mid-level processing (Figure 1) per-
forms morphological opening. It cleans the mask of fore-
ground objects from the smallest objects which are mostly
manifestations of noise or statistical errors. The opening al-
gorithm is the dilation of the erosion of an input image. These
operations are well known, and their description is included



in many image processing textbooks (see for example [9]).

3.5. Object Labelling

The input to most object labelling algorithms is a binary mask
of objects. Some of the more complex algorithms use both
the binary mask and the original colour (or greyscale) image
as their input. Each algorithm produces either a color mask
where each separate object has a unique color, or it produces
a table of objects with their description. The minimal descrip-
tion should contain a bounding box of each object (object po-
sition and its size) and its center of mass. To generate a colour
mask object colouring must be executed in two sequential
steps. In the first step the algorithm marks objects with con-
secutive colours and produces a table of equivalent colours.
In the second step the objects are re-mapped to the colour that
described the particular object in the previous step. After that
other characteristics can be computed for each object. Com-
mon labelling algorithms based on colouring the input image
is processed by lines, pixel by pixel. The 8-neighbourhood is
used in most cases while the 4-neighbourhood is used rarely.
If a pixel is neighbouring with another pixel that has already
been assigned a colour, the pixel is coloured with the same
colour, otherwise a new colour is assigned to the pixel. If
the pixel has more pixels with different colours in its neigh-
bourhood, the algorithm selects one colour and saves all the
other colours to a temporary table of colours assigned to each
object.

If we need only the basic characteristics (bounding box,
center of mass, volume), we can use a simplified algorithm
that colours objects and computes their characteristics in just
one step. All these characteristics can be computed and up-
dated recursively, therefore the labelling algorithm can also
compute the other characteristics. The algorithm is based
on a static table of object characteristics, where one of the
characteristic is colour used in the algorithm, and objects are
coloured with more colours saved in the table separately.

The output of the algorithm is a table that contains the
bounding box, mass center, object volume and colour of each
object.

4. IMPLEMENTATION AND RESULTS

The ASVP approach first constructs a programmable archi-
tecture customized for a given application, then employs soft-
ware techniques to develop firmware that implements the al-
gorithm.

In this methodology we need to describe the algorithm
as a sequence of vector operations running in the comput-
ing nodes because the synthesized hardware must support all
the required operations. Then the algorithm is written as a
firmware with a sequence of set-up and computing opera-
tions in the VPU. The firmware also controls data transfers
between the off-chip shared memory and local memories

Fig. 4. Diagram of mapping process.

through the streaming DMA. Because the ASVP uses dual-
port local memories, operation processing and data transfers
from or to the shared memory can overlap. The data through-
put can be maximized by optimizing this overlap. The speed
of computation and data transfer minimization depends on the
mapping of the data vectors to the accelerator local memory.
The best performance of the accelerator is achieved for long
data vectors that minimize data transfers between the local
and shared memories.

The mapping problem can be solved through colouring
of the data-dependency graph constructed from the sequence
of operations and their variables. As the graph colouring is
an NP-complete problem, the mapping is solved by heuristic
algorithm.

If a solution is not found or if we want to optimize vector
lengths, we can either insert the VCOPY operation to the op-
eration sequence or use the time domain access scheduling in
the VPU crossbar or try a different colouring.

Figure 4 depicts the mapping process. After all variables
are mapped to the local memories, the data transfer schedule
can be derived and a firmware program with operations and
data transfers can be designed. In the future the firmware will
be generated automatically from the input sequence of vector
operations.

The whole video processing chain is developed and im-
plemented on a Xilinx SP605 development board with a low
cost, low power Xilinx Spartan 6 FPGA. The MicroBlaze
soft-core processor is employed as the host CPU. Each algo-
rithm is implemented in a separate ASVP. The entire system
runs at 50MHz except the data flow units that run at 100MHz.
All accelerators are synthesized with four memory banks with
1024x32bit words.

4.1. Foreground/Background Segmentation

The architecture of the accelerator contains small local mem-
ories relative to the size of the input frame, therefore each
frame must be processed in tiles with N pixels. In our im-



plementation, each tile contains 50 pixels. The size of the
tile is the maximal possible in order to reduce data transfers.
Mappings and lifetimes of variables in the implemented MoG
algorithm are shown in Figure 5. In the figures, the X axis rep-
resents the time in the execution steps of the algorithm, and
the vertical axis corresponds to the offset in memory. The sec-
ond memory bank (memory B in Figure 5) is occupied mainly
by the pixel models of the background. Our version of the al-
gorithm uses 4 models for each pixel. Each model is defined
by its mean value for R,G,B color components, common vari-
ance (placed in the first memory bank) and model weight.

The input data and models for pixels in each tile must
be transferred from the shared off-chip memory to the local
memories. Then the accelerator executes the modified MoG
algorithm for all pixels in the tile treated as vectors, then the
updated models are saved back to the shared off-chip memory.

We have modified the algorithm to eliminate conditional
branches, hardware-expensive operations (division, square
root) and reordering. We also had to extend the basic ASVP
platform with a number of instructions described below (also
see Table 3). Branches are reimplemented so that the algo-
rithm speculatively computes both possibilities (branch taken
and not taken), and with a special operation VSELECT it
selects the proper result from both branches according to the
condition. Reordering of the models has been replaced with
a selection of the strongest and the weakest models from all
pixel models. The operations INDEXMAX and INDEXMIN
have been added for this reason. These operations return
the integer index of the element where the maximal/minimal
value is located. The integer index can be used in subsequent
operations that work only with a selected model.

Another example of application-specific vector instruc-
tions required by the MoG algorithm is the group of VCONVR
/ VCONVG / VCONVB instructions. These instructions take
a 32-bit word that represents one pixel, extract a given 8-bit
colour (R, G, or B), and convert the colour to a floating-
point value. The VCMPLT (compare-less-than) operation
compares two vectors element-wise, and returns a vector of
boolean values. The VSELECT operation is a vectorized
conditional ternary operator as defined in the C language.

Given a set of operations and their high-level specifica-
tions in Table 3, the hardware implementation of the cus-
tomized DFU can be generated. Currently this is done mostly
manually in VHDL, however, it should be possible to synthe-
size the DFU automatically in a tool (this is our future work).

4.2. Morphological Opening

In our implementation, we want to be able to set the size of
the structure element for morphological operations. There-
fore we use a 3x3 square with the origin in its center as a
structure element. It has a feature that a sequence of N rep-
etitions of morphological operation with the basic structure
element can be substituted for an operation with an N times

Table 3. Specific operations implemented in the DFU for motion
detection.

Operation Definition
VMAX A0 ← ΨMax(Bi)
VMIN A0 ← ΨMin(Bi)
INDEXMAX A0 ← Arg{ΨMaxBi}
INDEXMIN A0 ← Arg{ΨMinBi}
VCMPLT Ai ← (Bi < Ci) ? T : F
VSELECT Ai ← (Bi 6= 0) ? Ci : Di

VGTE Ai ← (Bi < Ci)?Ci : Bi

VBOR Ai = bitwiseOR(Bi, Ci)
VBNOT Ai = bitwiseNOT (Bi)
VCONVR Ai ← int2float((Bi >> 16)& 0xFF)
VCONVG Ai ← int2float((Bi >> 8)& 0xFF)
VCONVB Ai ← int2float(Bi& 0xFF)

Table 4. Operations implemented in the DFU for morphological
opening. AND and OR are logical operations, i.e. the result of the
AND operation is TRUE if all operands are TRUE.

Operation Definition
VCOPY Ai ← Bi

VAND3H Ai ← and(Bi, Bi+1); i = 0
Ai ← and(Bi−1, Bi, Bi+1); i ∈ (0, N − 1)
Ai ← and(Bi−1, Bi); i = N − 1

VAND3V Ai ← and(Bi, Ci, Di)
VOR3H Ai ← or(Bi, Bi+1); i = 0

Ai ← or(Bi−1, Bi, Bi+1); i ∈ (0, N − 1)
Ai ← or(Bi−1, Bi); i = N − 1

VOR3V Ai ← or(Bi, Ci, Di)

bigger structuring element.
The opening operation consists of the erosion and the di-

lation operations. We work with binary images, that is in bi-
nary morphology. This means we can replace the erosion op-
eration with the logical AND among neighbouring elements,
and similarly we can replace the dilation operation with the
logical OR among neighbouring elements.

To maximize the ASVP utilization we have implemented
four new operations in the VPU. These operations allow the
VPU to treat each line in the image as one vector, each line
will be read from and written to the shared memory only
once. As the morphological operations described here are
fixed-point by nature, they are executed in a separate comput-
ing node that implements just these new operations to save
resources (compared to the floating-point computing nodes
with operations described in the previous section).

Table 4 shows the instructions implemented in the DFU
that are used in the Opening function. Operations VAND3H
and VOR3H get three consecutive elements from an input
vector (line of image) and set the corresponding element in
the output vector if all three elements are set (VAND3H) or
one of them is set at least (VOR3H). On the contrary, oper-
ations VAND3V and VOR3V process tree elements with the
same index from three vectors (consecutive lines of the input
image).



Fig. 5. Mapping of variables in local memories. Each box represents one variable.

Figure 6 shows the firmware pseudocode for one part of
the opening function. It performs the erosion operation on an
input image in InputBuffer (resolutionW ×H) with a full
square structure element of size 1 + 2 ∗N .

4.3. Results

The data path of the implementation is shown in Figure 7.
The labelling process is implemented in software executed in
MicroBlaze in the current version.

As mentioned above the video application has been imple-
mented in the system on a chip with hardware compute cores
on a Xilinx SP605 development board. The board contains
power management chip accessible through PMBus. Power
consumption has been measured by this chip on power rail
that supplies power to the FPGA internal logic.

The average power consumption of the entire system on
a chip with disabled accelerators is Pavg = 433.2mW . Ta-
ble 5 contains performance data for the motion detection algo-
rithm executed on one, two and three floating-point compute
cores for an input video stream with resolution of 640x480
pixels. It is shown that the time required to process one frame
is a multiple of the number of used compute cores, but the
consumed energy is the same. The initial requirements for the
minimal frame rate 5 FPS can be reached with three cores run-
ning in parallel; each core computes one-third of each frame.

Table 6 shows average of consumed energy for processing
one frame in opening function. The current implementation

Fig. 6. ASVP firmware pseudocode for the erosion operation used
in opening function.

SetReadingFrom(InputBuffer)
SetWritingTo(TmpBuffer1)
for (cn=0:N-1) {
/* initiate */
Line1 = VCOPY(cZero),W
ReadLine(Out),W
Line2 = VAND3H(Out),W
ReadLine(Out),W
Line3 = VAND3H(Out),W
WriteLine(Line1),W
/* process entire image */
for (y=1:H) {
Line1 = VCOPY(Line2),W
Line2 = VCOPY(Line3),W
ReadLine(Out),W
Line3 = VAND3H(Out),W
Out = VAND3V(Line1,Line2,Line3),W
WriteLine(Out),W

}
Line3 = VCOPY(cZero),W
WriteLine(Line3),W

if (cn & 1) { /* switch buffers */
SetReadingFrom(TmpBuffer2)
SetWritingTo(TmpBuffer1)

} else {
SetReadingFrom(TmpBuffer1)
SetWritingTo(TmpBuffer2)

}
}



Fig. 7. The data path of the video chain.

Table 5. Motion detection. Implementation parameters measured on
Xilinx SP605.

Parameter Number of used ASVP
1 2 3

FPS[s−1] 2.07 4.14 6.21
PSoC [mW ] 460.26 487.58 509.68
PASV P [mW ] 27.061 54.38 76.48

Computation of one frame
t[s] 0.436 0.218 0.146
E[mJ ] 11.81 11.87 11.13

of opening function reaches frame rate 11.51 FPS. Consumed
energy is 1.67 mJ for one frame and it is only one tenth of
energy consumed by motion detection operation.

5. CONCLUSIONS

In this paper we have described an implementation of a video
processing chain to be used in smart camera-based video
surveillance applications. The implementation is based on
the Xilinx SP605 development board. The implementation of
the video processing chain is based on the ASVP platform,
with the MicroBlaze running at 50MHz and the computing
nodes running at 100MHz. Performance results for motion
detection and morphological opening have been shown to
meet the initial design requirements, the power consump-

Table 6. Morphological opening process. Implementation parame-
ters measured on Xilinx SP605.

Parameter Value
FPS[s−1] 11.51
PSoC [mW ] 452.419
PASV P [mW ] 19.219
Computation of one frame
t[s] 0.0868
E[mJ ] 1.67

tion data indicate that our implementation is suitable for
low-power embedded devices.

6. REFERENCES

[1] D. Fábio Real and François Berry, “Smart Cameras:
Technologies and Applications,” in Smart Cameras,
Ahmed N. Belbachir, Ed., pp. 35–50. Springer US, 2010.

[2] Jaroslav Sykora, Lukas Kohout, Roman Bartosinski,
Leos Kafka, Martin Danek, and Petr Honzik, “The Archi-
tecture and the Technology Characterization of an FPGA-
based Customizable Application-Specific Vector Proces-
sor,” in Proceedings of the 2012 IEEE 15th International
Symposium on Design and Diagnostics of Electronic Cir-
cuits and Systems. 2012, DDECS ’12, pp. 62–67, IEEE.

[3] Jaroslav Sykora, Lukas Kohout, Roman Bartosinski,
Leos Kafka, Martin Danek, and Petr Honzik, “Reducing
Instruction Issue Overheads in Application Specific Vec-
tor Processors,” in Proceedings of the 15th Euromicro
Conference on Digital System Design. 2012, DSD ’12,
pp. 600–607, IEEE Computer Society.

[4] Scott Rixner, William J. Dally, Ujval J. Kapasi, Brucek
Khailany, Abelardo López-Lagunas, Peter R. Mattson,
and John D. Owens, “A bandwidth-efficient architec-
ture for media processing,” in Proceedings of the 31st
annual ACM/IEEE international symposium on Microar-
chitecture, Los Alamitos, CA, USA, 1998, MICRO 31,
pp. 3–13, IEEE Computer Society Press.

[5] H. Peter Hofstee, “Heterogeneous Multi-core Processors:
The Cell Broadband Engine,” in Multicore Processors
and Systems, Stephen W. Keckler, Kunle Olukotun, and
H. Peter Hofstee, Eds., Integrated Circuits and Systems,
pp. 271–295. Springer US, 2009.

[6] Guo Jing, Chng E. Siong, and D. Rajan, “Foreground
motion detection by difference-based spatial temporal en-
tropy image,” in TENCON 2004. 2004 IEEE Region 10
Conference, 2004, vol. A, pp. 379–382 Vol. 1.

[7] P. Kaewtrakulpong and R. Bowden, “An Improved Adap-
tive Background Mixture Model for Realtime Tracking
with Shadow Detection,” 2001.

[8] Liyuan Li, Weimin Huang, Irene Y. H. Gu, and Qi Tian,
“Foreground object detection from videos containing
complex background,” in Proceedings of the eleventh
ACM international conference on Multimedia, New York,
NY, USA, 2003, MULTIMEDIA ’03, pp. 2–10, ACM.

[9] M. Sonka, V. Hlavac, and R. Boyle, Image Processing,
Analysis, and Machine Vision, Chapman & Hall, 2 edi-
tion, 1998.


