
FOREGROUND DETECTION AND IMAGE SEGMENTATION
IN A FLEXIBLE ASVP PLATFORM FOR FPGAS

Roman Bartosinski, Martin Danek, Jaroslav Sykora, Lukas Kohout

Department of Signal Processing

Institute of Information Theory and Automation (UTIA) of the ASCR, v.v.i.

Pod Vodarenskou vezi 4, Praha, Czech Republic

{sykora, kohoutl, bartosr, danek}@utia.cz

Petr Honzik

CIP plus s.r.o.

Milinska 130, Pribram, Czech Republic

petr.honzik@cip.cz

ABSTRACT

This demonstration shows an early prototype of low-level im-
age processing to be used in an embedded smart camera, that
is foreground detection and image segmentation. The exam-
ple uses camera with resolution 640x480 pixels for input im-
ages processed at 100MHz in the FPGA. The input can be
easily extended to higher resolutions. The processed output is
displayed on LCD screen.

1. PLATFORM

The implementation platform used in this demo is the Appli-
cation-Specific Vector Processor (ASVP) described in [1] and
[2]. In traditional work-flows based on direct implementa-
tion in hardware description languages hardware accelerators
must be recompiled and re-synthesized each time to gener-
ate a new FPGA configuration (bitstream) that can be veri-
fied. The drawback of the traditional approach is the long
synthesis time caused mainly by a slow place&route process
of the low-level tools. This also limits the end user to minor
changes of the implemented algorithm such as tuning of co-
efficients. In our approach we abstract the custom accelerator
into a specialized programmable architecture based on a net-
work of programmable data-streaming computing nodes with
local memory. To design for the platform, in the first step the
high-level source code is analyzed and domain features are
extracted. Based on the required domain features new com-
puting kernels are implemented in the computing nodes or the
existing ones are modified. The architecture is programmable
by firmware to the extent that the sequencing of basic process-
ing kernels can be changed without re-synthesizing the hard-
ware, hence source code modifications that do not change the
problem domain can be tested quickly for they require only
fast firmware recompilation.

The system-level view is presented in Figure 1. Similar to
the streaming architectures the execution control is hierarchi-
cal:

This work has been supported from project SMECY, project number
Artemis JU 100230 and MSMT 7H10001.

SDRAM

(off-chip)

Streaming DMA

(MPMC + NPI)

Multi-Banked 

Local Memory

(A, B, C, …)

Vector Processing

Unit (VPU)

Controller 

(with sCPU)

α

β

Str0 Str1 ...

Application-

Specific Vector 

Processor 

(ASVP 0)

ASVP 1

γ

Host CPU

(e.g. MicroBlaze)

Communications Backplane

δ

Fig. 1. A system-level organization of an ASVP-based core.

1. Task scheduling is executing in the Host CPU (e.g. Mi-
croBlaze). Optional inter-core synchronization is han-
dled by the Communications Backplane (δ).

2. Scheduling of the vector instructions is realized in a
simple scalar control processor (sCPU) embedded in
each ASVP core .The sCPU forms and issues wide
instruction words (α) to the Vector Processing Unit
(VPU).

3. Data path multiplexing and vector processing is real-
ized autonomously in the VPU. The unit handles both
the vector-linear and vector-reduction operations, as
well as local memory banks access scheduling (β).

The whole video processing chain is developed and im-
plemented on a Xilinx SP605 development board with a low
cost, low power Xilinx Spartan 6 FPGA. The MicroBlaze
soft-core processor is employed as the host CPU. Each algo-
rithm is implemented in a separate ASVP. The entire system
runs at 50MHz except the data flow units that run at 100MHz.
All accelerators are synthesized with four memory banks with
1024x32bit words.



Table 1. Memory required to store contextual data - Modified Mix-
ture of Gaussians (4 Gaussian models per pixel).

Format Resolution Contextual data
VGA 640x480 23.4 MB
HD 720 1280x720 72 MB
HD-DV 1440x1080 118,65 MB
Full HD 1080 1920x1080 162 MB

Fig. 2. The data path of the video chain.

2. RESULTS

The foreground detection is derived from the common Mix-
ture of Gaussian Models algorithm that has been modified
to eliminate operations difficult to implement in hardware
such as division and square root while maintaining the con-
vergence properties of the original algorithm (normaliza-
tion). The memory requirements of the algorithm used in the
demonstration is shown in Table 1. The demonstration uses
image resolution of 640x480 as we think it is sufficient for
performing initial analysis of the scene; the higher resolutions
are to be used for subsequent image processing.

The data path of the implementation is shown in Figure 2.
The labelling process is implemented in software executed in
MicroBlaze in the current version.

As mentioned above the video application has been imple-
mented in the system on a chip with hardware compute cores
on a Xilinx SP605 development board. The board contains
power management chip accessible through PMBus. Power
consumption has been measured by this chip on power rail
that supplies power to the FPGA internal logic.

The average power consumption of the entire system on
a chip with disabled accelerators is Pavg = 433.2mW . Ta-

Table 2. Motion detection. Implementation parameters measured on
Xilinx SP605.

Parameter Number of used ASVP
1 2 3

FPS[s−1] 2.07 4.14 6.21
PSoC [mW ] 460.26 487.58 509.68
PASV P [mW ] 27.061 54.38 76.48

Computation of one frame
t[s] 0.436 0.218 0.146
E[mJ ] 11.81 11.87 11.13

Table 3. Morphological opening process. Implementation parame-
ters measured on Xilinx SP605.

Parameter Value
FPS[s−1] 11.51
PSoC [mW ] 452.419
PASV P [mW ] 19.219
Computation of one frame
t[s] 0.0868
E[mJ ] 1.67

ble 2 contains performance data for the motion detection algo-
rithm executed on one, two and three floating-point compute
cores for an input video stream with resolution of 640x480
pixels. It is shown that the time required to process one frame
is a multiple of the number of used compute cores, but the
consumed energy is the same. The initial requirements for the
minimal frame rate 5 FPS can be reached with three cores run-
ning in parallel; each core computes one-third of each frame.

Table 3 shows average of consumed energy for processing
one frame in opening function. The current implementation
of opening function reaches frame rate 11.51 FPS. Consumed
energy is 1.67 mJ for one frame and it is only one tenth of
energy consumed by motion detection operation.

3. REFERENCES

[1] Jaroslav Sykora, Lukas Kohout, Roman Bartosinski,
Leos Kafka, Martin Danek, and Petr Honzik, “The Archi-
tecture and the Technology Characterization of an FPGA-
based Customizable Application-Specific Vector Proces-
sor,” in Proceedings of the 2012 IEEE 15th International
Symposium on Design and Diagnostics of Electronic Cir-
cuits and Systems. 2012, DDECS ’12, pp. 62–67, IEEE.

[2] Jaroslav Sykora, Lukas Kohout, Roman Bartosinski,
Leos Kafka, Martin Danek, and Petr Honzik, “Reducing
Instruction Issue Overheads in Application Specific Vec-
tor Processors,” in Proceedings of the 15th Euromicro
Conference on Digital System Design. 2012, DSD ’12,
pp. 600–607, IEEE Computer Society.


