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AbstractAs the number and complexity of computing devices in the environment
around us increases, it is interesting to see how we could exploit that and glue them
together to create larger co-operative distributed systems. This paper describes a
framework for dynamically aggregating and configuring processing resources in
order to meet local requirements and constraints. The capability of this framework
is demonstrated by a case study using an adaptive least mean squares filter (ALMS)
application. ALMS improves convergence of least mean squares filters at the cost
of more resources, and allows us to demonstrate abilities of the framework such as
task offloading and run-time adaptation to available resources.
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1. Introduction

Today’s embedded computing is limited to isolated devices bearing some local compu-
tation. They consist of traditional microprocessors and application specific accelerators
like DSP processors or ASICs, statically programmed to handle for example a user inter-
face, communication or multimedia processing. The number of such embedded devices
around us only increases in the future, with each containing processing elements that
have their own special capabilities.

The idea that the computer of the future will eventually dissolve into our environ-
ment has already been explored two decades ago [1]. And with more and more embed-
ded computing appearing in the objects we use in our everyday life, e.g. in our mobile
phones, TVs, toys and cars, we are moving towards this scenario. Can we use a collection
of these devices, interconnected with network technologies, as a collaborative computing
platform for the future? How do we cope with the heterogeneous nature of such a system,
and with devices with reconfigurable hardware? Can we define a way to abstract this and
program it transparently?

In this paper we define and demonstrate a framework that supports such an abstrac-
tion of heterogeneous platforms. It supports self-adaptation and self-repair, as the envi-
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ronment we envisage will not be a static set of resources. The user throws an application
onto a collection of resources, regardless of what it contains, and it organizes itself in or-
der to execute the application in the most optimal way. Devices like ASICs cannot change
their functionality while microprocessors or FPGAs can be re-programmed or reconfig-
ured. The framework supports changing the configuration of devices to optimize itself
for the dispatched applications, potentially migrating components from device to device
when devices come and go or need to be reconfigured. The advantage of our framework
is the separation of concerns between capturing asynchronous activities in an application
and mapping it to a set of parallel resources, which is performed dynamically.

Our approach is based on isolating and distributing software components to devices
that are specialized in executing them. We show how our framework acts as a middle-
ware that provides the necessary abstraction layer through both a distributed implemen-
tation of the Sane Virtual Processor, SVP [2], to manage asynchronous activities and
communication, and a System Environment Place, SEP [3], protocol implementation to
expose the capabilities of the devices and manage resources in the system (Section 2).
We present a case study in Section 3 of an adaptive least mean squares filter application
applied to a hardware platform that fits the component based approach by offering com-
plex arithmetic operations through an efficient reconfigurable computing pipeline [4,5,6].
We show how the application and the system adapt to both the type and availability of
resources. We discuss related work in Section 4 and conclude in Section 5.

2. Framework

In our distributed framework, each node is a Self-Adaptive Network Element, SANE [7],
which implements the SVP (work delegation) and SEP (resource management) proto-
cols. SVP provides us with a way of expressing groups of asynchronous activities, that
can be seen as software components [8], that are started by a create action. It represents
resources as an abstract place, which can be anything where a component can execute,
be it in software or hardware. As we apply SVP to a distributed system here, the create
action can transparently result into a remote call, similar to an Active Message [9], where
place is used as a parameter to identify both the target node in the system, and the specific
resource on that node to execute the requested component. SVP provides us with a way
to wait for a component to complete its operation, sync, and to interrupt the execution
with kill. When making remote calls or calling an operation, this means a create of the
component, local or remote, followed by a sync to wait on its completion.

SVP provides us with the necessary constructs to implement self-healing and self-
adaptive mechanisms. When a program detects a failing software component, it can at-
tempt again to create it on a different place. A timeout and kill can be used to cancel
the execution of a component that stopped responding, for example as the resource has
become unreachable, or to replace a component that does not deliver the required perfor-
mance. A different resource is requested and the component is (re)started there.

The SEP protocol provides us with a mechanism to exchange place information be-
tween nodes, acting as a lookup system to identify which nodes are capable of executing
a specific software component. In this paper we discuss an SEP with a single level hier-
archy as used in the case study example. However, as suggested in [3], besides a multi-
level hierarchy, a distributed peer-to-peer implementation of the protocol is also possible
where nodes exchange information that they have about services on other nodes.
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Figure 1. Client-server architecture of the distributed SVP/SEP framework

In a one level hierarchy in the SEP protocol, a SANE announces itself to the root
SANE when it joins the system, registering the list of services for software components
that can be executed on that SANE. Client applications requesting a software component
will contact the root, which will then negotiate with the appropriate SANEs that offer this
service. In this negotiation a cost model is used, which can be based on the efficiency of
the software component on a certain SANE, taking into account potential reconfiguration
cost, the current workload on the SANE, and the power budget. A SANE is selected and
contracted and, if needed, (re)configured for the execution of the software component,
and a place identifying the contract and the resource is returned to the client. Once the
resource has been obtained, the client application can directly use the SVP create action
to transparently execute the operation on the allocated place. An application is able to
acquire multiple places, allowing it to offload and execute many software components in
parallel. This client-server architecture of the SEP protocol is illustrated in Figure 1.

The SEP service is run as continuations on top of SVP, where each node has a place
where the SEP preserves its state, and the SEP is invoked by starting instances of SEP
components on these places using create. For example, the client makes a request for
resources with a create of the SEP_request() component, using corresponding arguments,
on the place of the SEP at the root SANE.

This framework provides us with a dynamic environment for collaborative dis-
tributed computing. Nothing prohibits a node from acting both as a client and as a SANE
offering services, and both can dynamically join and leave the system. An application is
not statically mapped onto resources, but acquires them on an on-demand basis when it
wants to execute a certain software component. A create to a remote place will transpar-
ently result into a communication to start the execution remotely.

3. Case Study

3.1. Adaptive Least Mean Squares Filter

To demonstrate the possibilities of our framework, we use an application that imple-
ments an adaptive least mean squares (ALMS) filter, shown in Figure 2, based on the
well-known least mean squares (LMS) [10] filter. We send 2000 input samples to four
instances of the LMS filter using different learning rate coefficients, the initial values
µm(0) shown as a vector in equation 1. The learning rate µ determines the step size of the
LMS towards the minimum of its cost function, where µ influences the convergence rate
and precision of the result. After each batch, the µm(n), for which the LMS reached the
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Figure 2. The ALMS filter algorithm

µT(0) = [0.015, 0.012, 0.01, 0.009] (1)

µ(n+ 1) = [1, 1.5, 1.2, .9]
T
µbest(n) (2)

best score is computed as µbest(n), which is used to generate (equation 2) new learning
rates µ(n+ 1) for the next batch.

By using four LMS filters we are able to improve tracking of the non-stationary
model parameters. The adaptation of learning rates is shown in Figure 3. Parameters of
the stationary model were estimated up to iteration n = 50. After that, the input was
switched to a different model, instantaneous changing the estimated parameters. As a
result, the learning rates quickly increase after iteration n = 50, and as the system adapts
to the new condition, the learning rates slowly descend back to their original values.

3.2. Application Programming Model

The block diagram of the algorithm for ALMS is shown in Figure 2. Executing one
iteration of the ALMS filter can either be done as a single component itself, or, when this
is not available, by composing it of four LMS components followed by 32 vector product
(VPROD) operations.

The application acts as a client in our framework sending a request to the SEP to
determine if the ALMS component is available. If it is not, it sets up four asynchronous
operations, using create, that request and execute an LMS component from the SEP, and
sync is used to wait for all four to complete. This sequence of operations is shown in
Figure 4; it starts with the blocking resource request to the SEP. Once the resource has
been acquired, the operation is called on that resource. After it finishes, the resource
can be released. In the end, the sync operation synchronizes all outstanding activities.
As these activities are asynchronous, it can use one to four parallel LMS filters and one
up to 32 parallel VPROD operations. If either LMS or VPROD is not available, the
execution of the user application is suspended until the resources become available. The
decision about the best filter result is obtained by the summation over VPROD results
and by their comparison. Such solution hides the number of real resources involved in the
computation, as the concurrent execution is constrained by the availability of resources.
Therefore, the performance can scale up and down dynamically according to the run-time
availability of computing places, or we could adapt the quality of our solution.

3.3. Platform

In our case study we use a platform based on three Xilinx ML402 prototype boards con-
nected through switched Ethernet. Each has a Virtex2 SX35 FPGA that is configured to
contain a MicroBlaze RISC processor [11] on the FPGA fabric. Programmable hardware
accelerators [12,4,5,6] are connected to the MicroBlaze to accelerate floating-point DSP
algorithms. The possibility to program the accelerators with microcode is one of the key
features of our solution; the SANE implementation can provide hardware accelerated
functions that can be changed on demand.



Figure 3. Adaptation of learning rates of the ALMS filter
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On the board we run an embedded Linux and use a POSIX threads based imple-
mentation of SVP [13], which was extended [8] with a lightweight TCP/IP message pro-
tocol to uniformly handle concurrency and communication on our distributed platform.
The SEP is implemented on top of this, exposing the accelerators and the MicroBlaze
core as places offering services. To implement these services we developed accelerator
microcode to for both the LMS and the complete ALMS filters, as VPROD was already
available. These three are encapsulated as services exposed by the SEP, where each node
can support one or more of these services simultaneously. This is discovered by the SEP
when a node starts, and the available services are announced to the network.

3.4. Experiments

In our experiment, we show the behavior of the application running on the framework
when resources are entering and leaving the system at run-time. Figure 5 shows the
presence of resources and the development of the speedup of the application compared to
running on the bare minimum of resources it requires to successfully execute (one LMS,
one VPROD).

At the start of the run, the user application can not execute its computations because
there are no available resources. It starts immediately when a SANE, providing one LMS
and one VPROD enters the system. When another SANE providing these services enters
the system at iteration n = 10, the application starts to use both in parallel and the
performance is improved. Now all three nodes are in action. One with the user application
and two with SANEs, each containing one place. After that, around n = 20 we withdraw
one SANE from the system again, and replace it with a new SANE which contains four
places able to execute four LMS or VPROD in parallel. The application starts to use four
LMS filters in parallel. At the same time, the application uses all five available VPROD
operations. When the second SANE with one computing place is replaced by the SANE
with four places at n = 32, the number of VPROD operations in use reaches eight.
However, in this case the number of used LMS filters remains at four as the application
can not use more LMS operations in parallel. At this point the performance of the system



Figure 5. Adaptation of the ALMS application to the available resources

decreases because the overhead of executing 8 remote VPROD operations. Finally, the
SANE capable of computing the complete ALMS filter appears at n = 47. Since the
user application prefers to use this implementation, the ALMS is used instead of the
composition of LMS and VPROD. This configuration shows the best performance. When
the ALMS capable place leaves the system again at n = 74, the backup solution based
on using the LMS and VPROD operations is restored.

Further measurements on our framework implementation showed that the minimum
overhead for calling a remote function is 16ms on a 1 Gbit Ethernet network connection
from a PC to our FPGA boards, and as low as 0.3ms between two PCs on a 1 Gbit Ether-
net connection. This means that the software components that are distributed across the
network need to be of sufficient granularity to hide the latency of the network overhead.
However, we measured that a single iteration of the ALMS software implementation
takes 6.8ms on the MicroBlaze on a node, and 0.7ms when executed in the hardware ac-
celerator. Taking into account that the requests to the SEP take multiple remote calls, the
granularity of the distributed software components turned out too small compared to the
framework overhead. This can also be observed in the result of the previously explained
experiment when there were 8 VPROD operations available on the network, the overall
performance of the application would decrease due to network overhead.

4. Related Work

There are many different techniques that have been developed to transparently access
heterogeneous resources and services in distributed systems. Well-known technologies
are RPC [14], Corba [15] or Java RMI [16] which implement interfaces that can also deal
with dynamic resources. However, they do this from a classic sequential execution view-
point with blocking communication primitives. Furthermore, they are not very concerned
with resource management, with the exception of load balancing. This differs from our



framework where there is a clear distinction of responsibility between delegation and al-
location of work, which can all happen asynchronously. Such a coarse-grained dataflow
execution model is supported by Legion [17], which is another distributed object system
presenting an arbitrary heterogeneous pool of resources as a single virtual computer. The
main differences with the work we present here, is that it is object based whereas our
framework is based on services, and that all communication is hidden in Legion.

More coarse grained distributed environments like Grid and Cloud computing are
less suitable for fast changing collaborative computing environments. Service oriented
computing on the Cloud [18], using for example SOAP [19], offers very coarse grained
web services that have their own contained functionality. They are not small reusable
components from which we construct our applications dynamically in our framework.
The Grid often uses techniques such as MPI [20,21] for communication which only deals
well with embarrassingly parallel applications on a static set of resources, and leave
resource management to Grid schedulers which only adapt on a very large timescale.
Tool-kits like Globus [22] provide several services to build a dynamic infrastructure,
authentication, resource allocation, storage, and a communication layer. XtreemOS [23]
is similar approach integrating the functionality into the Linux kernel. Most of this is
taken care of in an SVP implementation, which makes our framework closer to Legion,
though it still shows explicit communication by mapping execution to places.

The framework that we presented in this paper is a suitable dynamic computing
fabric which can be ideally targeted with other component oriented languages such as
S-Net [24], when we can map the components directly on the services provided on the
fabric. On the related side, we have also successfully integrated another hardware plat-
form [25] with our framework, combining it with an S-Net runtime and application that
transparently used the dynamically available hardware components.

5. Conclusion

We have shown that we can use the described technologies for creating a collaborative
distributed computing system, in which we can encapsulate already available compo-
nents as services and share them within our environment. It supports the dynamic nature
of such a system where nodes can join and leave the network using a simple set of prim-
itives. Therefore this framework can be a viable basis for further future research in the
direction of collaborative distributed computing, including, but not limited to, research
on the cost model and mapping of applications, as well as the SEP network organization.

A case study was shown of the proposed framework based on FPGA prototyping
boards running Linux. We used it to show how our system supports run-time allocation
of resources and adaptation by dynamic reconfiguration of computing nodes driven by
application needs and resource availability. We experimentally confirmed how an ap-
plication can use this dynamic and heterogeneous nature of the system with the imple-
mentation of the ALMS filter, which dynamically used software or hardware accelerated
components to adapt to the available resources in the system.

We showed that our software component based distributed system approach needs
to be of sufficient granularity to amortize the network overhead. However, this approach
is useful for self-healing systems as they can be easily re-instantiated on other nodes if
there is a failure in the system. It allows the application programmer to express requests
for functionality, without having to worry how and where this is actually executed.
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