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Abstract: The paper studies the problem of decentralized state feedback control design for a
class of continuous-time complex systems. These systems are composed of identical nominal
subsystems, symmetric nominal interconnections, and nonlinear perturbations. We consider
local time-varying delayed feedback at each channel. Single delay as well as multiple delay
cases are considered. By exploiting the special structure of the systems, sufficient conditions
are derived for the gain matrix selection performed on the design system of reduced dimension
under linear matrix inequality approach constraints. It is shown that the robust delay-dependent
stability of the global multiple delay closed-loop system is guaranteed when implementing the
gain matrix into the global decentralized controller. Moreover, sufficient conditions are derived
for the tolerance of local control channel failures in such a global closed-loop system. The fault
tolerance can be effectively tested on systems of reduced dimensions.

Keywords: Decentralized control, symmetric interconnected systems, delayed feedback,
large-scale systems

1. INTRODUCTION

Large-scale complex systems have been extensively studied
since early seventies to deal with complexity as a cen-
tral problem in system theory and practise. High dimen-
sionality, uncertainty, information structure constraints,
and delays are well known major motivating features for
development of decentralized control theory as surveyed
for instance in Šiljak [1991], Lunze [1992], Bakule [2008],
Zečević and Šiljak [2010].

The paper focuses on a class of continuous-time dynamic
systems composed of the interconnection of identical sub-
systems with identical couplings. Such systems are known
as symmetric interconnected systems. They appear in very
different real world systems as presented for instance in
Bakule and Rodellar [1996], Bakule [2005]. In this paper, it
is shown that such a structure of subsystems and intercon-
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nections enables a special analysis and control procedure.
The main feature of this method is the setup of systems
with reduced dimension, but keeping the same dynamic
properties as shown for instance in Bakule and Lunze
[1988], Bakule [2007], Bakule [2005], Bakule and de la Sen
[2009]. A more complete survey of theoretic and applied
results is presented in Bakule [2008], Bakule and de la Sen
[2010], Bakule and de la Sen [2011], Hovd and Skogestad
[1994] with the references therein.

The paper is mainly inspired by the previous works on
symmetric composite systems with delayed feedback in
Bakule and Lunze [1988], Bakule and de la Sen [2010] and
Bakule and de la Sen [2011], as well as the results on fault
tolerance for this class of systems in Huang et al. [1999]
and Lam and Huang [2007]. A common well known feature
of these problems is to show how the global synthesis can
be simplified through a appropriate transformation to a
collection of systems of reduced dimensions.

The first and main contribution of this paper is a proce-
dure for the gain selection of the decentralized delayed
feedback which guarantees the robust delay-dependent
stability of the global multiple delay closed-loop system.
The proper controller design is performed on the generic
system of the subsystem’s dimension and a single delay in
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the feedback. A convex optimization approach is used for
the state feedback matrix gain selection. It is shown how to
synthesize this gain matrix into the global original system
to maintain the required stability property. The result is
presented in the form of sufficient conditions.

The second contribution is a sufficient condition for the ro-
bust delay dependent stability of the global decentralized
multiple delay closed-loop systems in the case when several
local feedback controllers fail. The solved problem is to find
an integer which corresponds with the smallest number of
failures that make the global closed-loop system unstable.
We will show that the decomposition approach results in
this case to simpler test systems of reduced dimension.

To the authors’ best knowledge, the problem of decen-
tralized robustly delay-dependent controller design with
multiple delay feedback as well as the problem of fault
tolerance for this class of complex composite systems have
not been solved up to now.

1.1 Outline of the Paper

Section 2 contains the formal state space description of the
system in the structured as well as global form and the
structure of feedback which is summarized in the problem
statement. In Section 3, a single delay controller design
as well as its extension to a multiple delay controller
design are presented including computation algorithms.
This section contains also fault tolerant analysis resulting
in an easily calculated test conditions based on certain
systems of reduced dimensions. In Section 4, an example
for decentralized networked control system illustrates the
potential of presented methodology.

2. PROBLEM FORMULATION

2.1 Structured System Description

Consider a nonlinear symmetric system consisting of N
subsystems, where the ith subsystem is described as fol-
lows

ẋi(t) = Axi(t) + Bui(t) + hi(t, x) xi(to) = xio

i = 1, . . . , N N > 2
(1)

where xi(t) and ui(t) are n- and m-dimensional vectors of
the subsystem states and control inputs. The interconnec-
tions are described in the form

hi(t, x) =
N∑

j=1

Lijxj(t) + hij(t, xj) (2)

where A,B,Lii = Ld, and Lij = L denote constant
nominal matrices. hij(t, ·) are uncertain arbitrarily time-
varying piecewise-continuous functions belonging to a class
of piecewise-continuous real functions H(∗) over the do-
mains of continuity Dd,D defined as

Hii
def= {hii(t, ·) : R

n+1 → Dd|hii(t, ·)T hii(t, ·)
≤ α2xT

i HT
d Hdxi}

Hij
def= {hij(t, ·) : R

n+1 → D|hij(t, ·)T hij(t, ·)
≤ α2xT

j HT Hxj}

(3)

where Hd,H are given constant matrices and α > 0 is a
given scalar. These functions have the form

hii(t, xi) = e(t, xi)Hdxi(t)
hij(t, xj) = e(t, xj)Hxj(t)

(4)

where e(t, xj) : R
n+1 → [−1, 1] represents normalized

uncertainty parameter for all i, j.

2.2 Global System

The global system description of (1)–(4) has the form
S : ẋ(t) = Agx(t) + Bgu(t) + hg(t, x) x(to) = xo

(5)
where x(t) = (x1(t)T , ..., xN (t)T )T are global states, while
u(t) = (u1(t)T , ..., uN (t)T )T are global inputs. The nom-
inal matrices are Ag = (Ag

ij), A
g
ii = A + Ld, A

g
ij = L

for i �= j, Bg = diag(B, ..., B). hg(t, x) are uncertain
piecewise-continuous functions satisfying the relation

Hg def= {hg(t, ·) : R
Nn+1 → Dg|hg(t, ·)T hg(t, ·)

≤ α2xT HgT Hgx}
(6)

where Hg = (Hg
ij),H

g
ii = Hd,H

g
ij = H for i �= j, denote

the bounds.

2.3 Delayed feedback

The goal of the paper is twofold as follows

a) Decentralized state stabilization, when the states in
the feedback are delayed. The motivation for such an
approach appears standardly mainly in networked control
systems. Arbitrary time-varying delays acting within a
given bounded interval are considered in local loops.

Consider the controller for the structured system (1) as
ui(t) = Kxi(t − τi(t)) i = 1, ..., N (7)

with the bounds
0 ≤ τi(t) ≤ τ (8)

where τ is a given positive constant.

The control (7) can be equivalently considered for the
global system (5) as

u(t) =
N∑

i=1

DiK
gCixi(t − τi(t)) (9)

where Kg = diag(K, ...,K),Di = diag(0, ..., 0, I, 0, ..., 0),
and Ci = diag(0, ..., 0, I, 0, ..., 0). The matrices Di and
Ci are partitioned into N blocks of identical dimensions,
where I denotes the n × n and m × m identity matrices
located at the ith position of the matrices Di and Ci,
respectively.

b) Fault tolerance analysis means to guarantee the asymp-
totic stability of the global closed-loop system (5)–(9)
under l local feedback channels failures. By exploiting the
special structure of symmetric systems, the stability test
can be performed easily based on certain system of reduced
dimension.

Consider the global closed-loop system as

Sc : ẋc(t) = Agxc(t) +
N∑

i=1

BgDiK
gCix

c
i (t − τi(t))

+ hc(t, xc) xc(to) = Φc(to) to ∈ [−τ , 0]
(10)
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where Φc(to) denotes the function of initial conditions.

Suppose that any l channels of the system (10) fail, where
l ∈ {1, ..., N} during a certain time interval. The dynamics
of actuator failures can be modelled, without any loss of
generality, by a generic model as follows

Sfc : ẋfc(t) = Agxfc(t) +
N∑

i=l+1

BgDiK
gCix

fc
i (t − τi(t))

+ hc(t, xfc) xfc(to) = Φfc(to) to ∈ [−τ , 0]
(11)

with the first l failed channels. The indices of xg for l failed
channels are dropped in (11) to simplify the notation. The
model (11) enables a simplification of the system analysis
as presented later.

Remark 1. The system (11) is only the model of actuator
failures. An extension of the model to setup active fault
tolerant control scheme require a properly designed FDI
system to isolate the actuator failures. The model (11)
has a potential for such an extension, but we do not deal
with it here.

2.4 The Problem

Given the system (5) and the controller (9), the primary
goal is to design the gain matrix K so that the con-
troller (9) globally asymptotically stabilizes the closed-
loop system (11) for all admissible nonlinearities and a
certain valid domain for the delays, i.e. it is robustly
delay-dependently stable. The supplementary goal is to
derive the conditions for the fault-tolerance of the closed-
loop system (11), when a subset of local controller fails.
Solve the problem by exploiting the special structure of
the symmetric systems which enables an effective system
decomposition leading to certain systems of reduced di-
mensions.

3. MAIN RESULTS

The proposed solution attempts to employ the special
structure of a class of symmetrically interconnected identi-
cal subsystems for the stabilizing decentralized controller
as well as easily calculated fault tolerance of the resulting
closed-loop system. First, the gain matrix design proce-
dure for the design model of reduced dimension with a
single delay is surveyed. Then, it is shown how to use this
result for multiple delay decentralized controller. Finally,
a simple test for a fault tolerance of the closed-loop system
is derived.

3.1 Single Delay Controller Design

This case means that τi(t) = τ(t) for all i in (7) and
0 ≤ τ(t) ≤ τ . Then (9) has the reduced form as follows

u(t) = Kgx(t − τ(t)) (12)
where Kg = diag(K, ...,K). The proper control design is
performed for the n-dimensional design model

ẋm(t) = Amxm(t) + Bum(t) + hm(t, xm) (13)
and the controller

um(t) = Kxm(t − τm(t)) (14)
where the model setup including the calculation of com-
ponents Am, hm(t, xm) = e(t, xm)Hmxm(t) including the

quadratic bound on a nonlinear perturbation Hm and
0 ≤ τm(t) ≤ τ are presented in detail by Bakule and de la
Sen [2009]. Let us summarize the controller gain selection
as an algorithm.

Agreement. Denote as P1 the gain selection problem pre-
sented by Theorem 2 in Yu et al. [2005].

Algorithm 1.

1. Given the system (1) and the constant τ > 0. Set up
the model (12) by Bakule and de la Sen [2009].

2. Solve the LMI problem P1 for the system (13). If the
the problem P1 is feasible, we get the robustly delay-
dependent stabilizing gain K for (14). Then go to step
3. If no feasible result is reached, then go to step 3.

3. End.

Remark 2. To simplify, we omitted the robust stabilization
of the plant (13) by the control law (14) with its maximum
nonlinear bound in terms of the solvability of LMIs by Yu
et al. [2005].

The synthesis leads to the following theorem.
Theorem 1. Given the system (5) and a constant τ > 0.
Setup the model (13) and solve the problem P1 by using
Algorithm 1. If the problem P1 is feasible, use the resulting
gain matrix K to construct the global gain matrix Kg

by (12). Then the global closed-loop system (5), (12) is
robustly delay-dependently stable.

Proof. It is omitted because it is given in Bakule and de la
Sen [2009].

3.2 Multiple Delay Controller Design

We will show that the specific structural properties of
the system (5) can be used to derive a special control
synthesis procedure for the decentralized control design
when local feedback loops have individual time-varying
interval bounded delays. An extension of a previous single
delay control design can be effectively used also in the case
of multiple delay control design.

Consider the system (5) and the controller (9).

Symmetrically interconnected systems represented by a
state space realization with circulant matrices of a special
structure as presented by (5) are always diagonalizable
Bakule and Lunze [1988], Hovd and Skogestad [1994],
Massioni and Verhaegen [2009]. Denote the open-loop
system (5) as S and the open-loop transformed system
as Sd. The states of system S are transformed through a
similarity transformation Tn,N as follows

S
Tn,N−−−−→ Sd (15)

This transformation Tn,N has the form

Tn,N =
1
N

⎛
⎜⎜⎝

(N−1)I −I ... −I −I
−I (N−1)I ... −I −I

...
...

. . .
...

...
−I −I ... (N−1)I −I
I I ... I I

⎞
⎟⎟⎠ (16)

where I denotes the nxn identity matrix.

The system Sd is described as

MoA02.1

33



Sd : ẋd(t) = Adxd(t) + Bdu(t) + hd(t, xd)

x̃d(to) = xd
o

(17)
where

Ad = diag(As, ..., As, Ao)

Bd =
1
N

⎛
⎜⎜⎝

(N−1)B −B ... −B −B
−B (N−1)B ... −B −B

...
...

. . .
...

...
−B −B ... (N−1)B −B
B B ... B B

⎞
⎟⎟⎠

hd(t, x̃) = diag(hs(t, xd
1), ..., hs(t, xd

N−1), ho(t, xd
N ))

(18)

and
As = A + Ld − L

Ao = As + NL

hs(t, xd
i ) = e(t, xd

i )(Hd − H)xd
i (t)

ho(t, xN )d = hs(t, xd
N ) + e(t, xd

N )NHxd
N (t)

(19)

There are identical first N − 1) subsystems in (15). It is
evident that such a decomposition considerably simplifies
the analysis Bakule and Lunze [1988], Lunze [1992], Bakule
and de la Sen [2009].

The synthesis is based on the decomposition approach by
Massioni and Verhaegen [2009]. It leads to the following
main theorem for the synthesis of the multiple-delay sys-
tem based on the system of reduced dimension.
Theorem 2. Given the system (5) and a constant τ > 0.
Setup the model (13) and solve the problem P1 by using
Algorithm 1. If the problem P1 is feasible, use the resulting
gain matrix K to construct the global gain matrix Kg by
(9). Then the global closed-loop system (5), (9) is robustly
delay-dependently stable.

Proof. It is omitted here due to the space limitation.

The synthesis problem is summarized as an algorithm.

Algorithm 2.

1. Given the system (1) and the constant τ > 0. Set up
the design model (13) by the construction given in Bakule
and de la Sen [2009].

2. Compute the gain matrix K by using Algorithm 1. If
the problem P1 is non-feasible, then go to step 5.

3. Implement the gain matrix K into the controller (9).

4. Check the the robust delay-dependent stability of the
global closed-loop system (10).

5. End.

Remark 3. Step 4. of Algorithm 2 can be realized in
different ways. For instance, a direct computation using
LMIs by Li et al. [2008], indirect verification by simulation
or the stability test for a single delay by Yu et al. [2005]
can be applied.

3.3 Fault Tolerance

This section deals with the tolerance of the decentralized
controller (9) to actuator failures of the closed-loop system
(10). Total failures of local controllers within multiple
control schemes are considered. That is, entire failed local

controllers are completely disconnected from the plant
Šiljak [1991]. We suppose that the synthesis has been
performed so that closed-loop system (10) is available.
Fault tolerance problem means to find the smallest number
of failures, i.e. an integer l = lo, that makes the closed-loop
system (11) robust delay-dependent unstable. Denote a
generic time-varying delay τg(t), 0 ≤ τg(t) ≤ τ , where τ is
given by (8).

Consider the systems with l failures
Sf1 : ẋf1(t) = Asx

f1(t) + BKxf1(t − τg(t))

+ hs(t, xf1)
(20)

Sf2 : ẋf2(t) = Af2xf2(t) + Bf3xf2(t − τg(t))

+ hf2(t, xf2)
(21)

Sf3 : ẋf3(t) = Asx
f3(t) + hs(t, xf3) (22)

where

Af2 =
(

As+lL
√

l(N−l)L√
l(N−l)L As+(N−l)L

)

Bf2 = diag(0, BK)

hf2(t, xf2) = e(t, xf2)
(

Hs+lH
√

l(N−l)H√
l(N−l)H Hs+(N−l)H

)
xf2(t)

(23)
As and hs(t, .) are defined by (19).

We derive easily computed conditions to test the robust
delay-dependent stability in the form of the following
theorems.
Theorem 3. Given the system (10) and a constant τ > 0.
Consider that one local controller fails, i.e. l = 1 in the
system (11). If the systems Sf1 and Sf2 are robustly delay-
dependently stable, then the closed-loop system (11) is
robustly delay-dependently stable.

Remark 4. The robust delay-dependent stability can be
influenced by the selection of the gain K only for l = 1.
Theorem 4. Given the system (10) and a constant τ > 0.
Consider that l local controllers fail in the system (11),
where 2 ≤ l ≤ N − 2. If the systems Sf1, Sf2, and Sf3

are robustly delay-dependently stable, then the closed-loop
system (11) is robustly delay-dependently stable.

Remark 5. Both the open-loop system with l subsystems
without any control as well as the closed-loop system
with (N − l) subsystems with local feedback compose the
resulting test system for 2 ≤ l ≤ N − 2.
Theorem 5. Given the system (10) and a constant τ > 0.
Consider that l local controllers fail in the system (11),
where l = N − 1. If the systems Sf1 and Sf3 are robustly
delay-dependently stable, then the closed-loop system (11)
is robustly delay-dependently stable.

Remark 6. The requirement of the robust stability on the
system Sf3 is a necessary condition for the tolerance more
than two local controllers.

Proof. Proofs of Theorems 3-5 are omitted here due to the
space limitation.

4. EXAMPLE

The solved problem has an important application in de-
centralized networked control systems, where mainly time-
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varying delays have a direct interpretation as packet
dropouts as considered for instance in Bakule and de la
Sen [2009], Bakule and de la Sen [2010], Yu et al. [2005],
Bakule and Paṕık [2012].

Networked Control System

Consider the system (1)–(6) with N = 3 as follows

ẋ(t) =
(

A 0 0
0 A 0
0 0 A

)
x(t) +

(
B 0 0
0 B 0
0 0 B

)
u(t) +

(
0 L L
L 0 L
L L 0

)
x(t)

+
(

h(x1)
h(x2)
h(x3)

)
+

(
h′(x2)+h′(x3)

h′(x1)+h′(x3)

h′(x1)+h′(x2)

)

(24)
where the states are x(t) = (x1(t)T , x2(t)T , x3(t)T )T with
xi(t) = (xi,1, xi2)T . The matrices are defined as

A =
(−0.3 1

0 −3.4

)
B = ( 0

1 ) Ld = ( 0 0
0 0 ) L =

(−0.1 0
0.1 0.1

)
(25)

Denote hi(t, xi) = h(s) for s = xi and hij(t, xj) = h′(s)
for s = xj , i, j = 1, 2, 3. The nonlinear perturbations are

h(s) = h(s1, s2) =
(

as1 cos s1

b sin s2

)

h′(s) = h′(s1, s2) =
(

cs1 sin qs1

d sin rs2

) (26)

The parameters of nonlinear terms are a = 0.1, b = 0.1, c =
0.05, d = 0.025, q = 1, r = 1. The quadratic bounds are

hT (s1, s2)h(s1, s2) = a2s2
1 cos2 s1 + b2 sin2 s2

≤ ( s1 s2 )
(

a2 0
0 b2

) (
s1

s2

)
(27)

The bound matrix Hp has the form
Hd = ( a 0

0 b ) (28)
An analogous way of reasoning leads to the relation

h′T (s1, s2)h′(s1, s2) = c2s2
1 sin2(qs1) + d2 sin2(rs2)

≤ c2q2s2
1 + d2r2s2

2

(29)

The matrix H has the form
H =

(
cq 0
0 dr

)
(30)

Consider the initial condition for the system (10) x(0) =
(x1,1, x1,2, x2,1, x2,2, x3,1, x3,2)T = (1,−1, 2,−2, 3,−3)T .

The goal is to design the gain matrix K in the controller (7)
when considering the network with dc = 0.1 and maximal
number of the packet dropouts dik = 4, i = 1, 2, 3 and to
test local controllers failures.

Results

The control design model is constructed for the matrices
Am and Hm of the system (13) by the method described
by Bakule and de la Sen [2009]. The resulting matrices are
given as

Am =
(−0.35 1

0.05 −3.35

)
Hm =

(−0.15 0 0.1 0 0.025 0 0.075 0
0.15 0.15 00.1 0 0.0125 0 0.0375

) (31)

The gain matrix K with γ = α−1 = 0.0001 has been
selected according to Theorem 1 in the form

K = (−3.7924 −1.1525 ) (32)
State responses, control, and delays in the local feedback
loops are shown in Figs.1-3. The initial function is sup-
posed as x(to) = 0 for to ∈ [−τ , 0).
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Fig.1. State responses

Figure 1 plots the state responses of the overall closed–
loop network system with individual delays in the local
feedback loops. It illustrates the robust-delay dependent
stability of the global system.
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Fig.2. Local control

Figure 2 plots local control of the global closed–loop
system with ZOH in the controller-to-actuator part of the
feedback loop.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

d 1(t
)

Delay

t(sec)

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

d 2(t
)

t(sec)

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

d 3(t
)

t(sec)

Fig.3. Delays in the local loops
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Figure 3 plots individual delays τi(t) caused by the packet
dropouts with the upper bound τ = 0.5 and the sampling
period ∆ = 0.1. The minimal value of the delays τi(t)
is 0.1. The delays of the packet dropouts were generated
randomly by using the uniform distribution.
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Fig.4. State responses with l = 1

Figure 4 plots the states with an actuator failure in the
2nd controller. The global closed-loop system maintains
its stability under one channel failure but with a worse
performance as shown in Figs. 1 and 4. It corresponds
with a-priori expectations. More than one failure results
in instability of the global system. The gain selection by
Algorithm 1 was solved using the Sedumi 1.1 package in
Matlab R2012a. Predefined values of options were not
changed. To facilitate the LMI problem definition, the
Sedumi Interface 1.04 was used. The delays in the control
loop are uniformly distributed, their values are generated
by the function randn.

5. CONCLUSION

In this paper, we have presented new procedures for
designing decentralized state feedback controllers for a
special class of continuous-time interconnected systems
composed of identical interconnection and identical sub-
systems. We consider local time-varying delayed feedback
at each channel. Single delay as well as multiple delay
cases are considered. By exploiting the special structure
of the systems, it is possible to decompose synthesis prob-
lems into a set of smaller ones. The problem of robust
delay-dependent stability of the global system is solved
by the gain matrix selection for a reduced-order design
system. Moreover, the problem of the fault tolerance of
the stabilized global system is solved by the decomposing
the problem into a set of three lower order problems.
The method has been applied for the gain matrix design
within the networked control system example. The pre-
sented methodology has a potential to setup an active fault
tolerant system with the robust delay-dependent stability
issues for interconnected systems.
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