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Abstract-The paper deals with Generalized Predictive Control 
algorithms applied to the electric drives employing Permanent 
Magnet Synchronous Motors (PMSM). The Generalized Pre-
dictive Control (GPC) belongs to the multi-step model-based 
control design. The presented GPC algorithms are arranged 
in a specific explicit form for direct application in PMSM drives. 
The algorithms are supplemented with two front-end modules,  
which enable GPC algorithms to solve tasks of field weakening 
and current limitation. The design and implementation of pro-
posed explicit GPC solution including modules are explained  
in the paper. The solution was experimentally verified at a speed 
control task. Performed experiments are documented by the time 
histories in oscillogram screenshots and figures. 

Keywords — PMSM drives; speed control; field weakening; 
current limitation; Generalized Predictive Control. 

I. INTRODUCTION  
Nowadays, advanced types of electrical drives are based 

on 3-phase Permanent Magnet Synchronous Motors (PMSM). 
Due to few mechanical elements leading to long operation life 
with minor demands on maintenance, those motors have great 
potential in wide range of applications in traffics, robotics 
and mechatronics in general. 

From control point of view, the PMSM require to control 
simultaneously amplitude and frequency of all three terminal 
Alternate Currents (AC) in Pulse-Width-Modulation (PWM). 
Input to the PWM is amplitude and phase of stator voltage. 
Those values are generated by control algorithms. Usual solu-
tion is based on PI controllers coupled in cascade loops [4]. 
That cascade configuration represents set of autonomous PI 
controllers, where mutual relations mean external disturbances. 
The setting of PI controllers is limited only on several static 
constants. Their fixed configuration does not give any space 
for some possible improvements or e.g. modifications solving 
further control requirements. The configuration drawbacks 
consist especially in the behavior in limit or changeable states 
and in constant controller setting without any adaptation. 
It causes that cascade control, due to essentially limited band-
width, can be prone to violation in dynamic applications [3]. 

This paper deals with methods of a model-based approach, 
specifically with a model-based Generalized Predictive Control 
(GPC) [2], which represents a popular way due to its flexibility 
and clarity. It can naturally consider all available pieces of in-
formation from a mathematical model and user requirement 
in a control design within one optimization task [4], [5]. 
The GPC or its computation procedures can be formulated 
as a multi-objective optimization involving different control 
targets [1], [2]. 

The paper follows from previous works of authors [4], [6], 
in which the design principles of GPC algorithms to PMSM 
were introduced. The contribution of this paper consists in no-
vel addressing of the field weakening and current limitation 
problems [10] and in novel GPC algorithms in a specific 
explicit form suitable for direct use in real PMSM drive 
applications. The proposed algorithms differ in the number 
of involved integrators (one or two) suppressing control offset 
[7], [8]. The explicit form employs fixed control laws, gains 
of which are pre-computed off-line for a specific range of mo-
tor speed (electrical rotor speed). The proposed explicit 
algorithms are supplemented with two front-end modules 
suitably adapting algorithm input signals. The modules due 
to a signal adaptation enable GPC to solve field weakening 
and current limitation subtasks. The both modules and appro-
priate GPC algorithm form one compact generalized predictive 
controller. Developed GPC algorithms as controllers were 
experimentally verified at a speed control task [1], [9]. 
Performed experiments are documented by the time histories 
illustrated in oscillogram screenshots and figures. 

The organization of the paper is as follows. Section II. 
outlines a suitable mathematical model for model-based control 
design. Section III. introduces basic schemes of predictive 
control, including field weakening and current limitation 
modules, and standard vector PI control for comparison. 
Section IV. focuses on the principles of GPC algorithms and 
Section V. clarifies solution of field weakening and current 
limitation within GPC design. Finally, Section VI. shows data 
from real experiments for both proposed GPC algorithms. 
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II. MATHEMATICAL MODEL FOR CONTROL DESIGN 
A suitable mathematical model for a control design follows 

from the voltage distribution in individual phases of three AC 
phase system and from torque equilibrium equation. The model 
of PMSM (using Clarke and Parke transformations) is defined 
by the following set of the equations (1) - (3) in d - q rotating 
field coordinate system or rotating reference frame: 

 SqeqSddSdSSd iLi
dt
dLiRu ω−+=  (1) 

 eMSdedSqqSqSSq iLi
dt
dLiRu ωψω +++=  (2) 

where RS, Ld, q , (= LS for surface PM) and Mψ  are motor para-
meters (see TABLE I.), SqSd uu ,  are d - q voltages (system 
inputs), iSd, Sq  are d - q currents, eω  is the electrical rotor speed 
(mechanical speed pem /ωω = ; p  is a number of pole pairs), 

 LeSqMe pBipJ τωψϑ −−= 2

2
3  (3) 

where BJ ,  are other motor parameters (see TABLE I.), eϑ  is 
the electrical rotor position, Lτ is a load torque. 

The model (1) - (3) can be rearranged in a state-space like 
form [4], (for used motor: Ld = L q = LS ;  i.e. surface PMSM): 
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)()()()( ttt
dt
d

CeC uBxAx += ω  (5) 

where )( eC ωA  is a variable state-space matrix relative to eω , 
CB  is a constant input matrix. The two nonlinear terms  ωe iSq  

and  ωe iSd  in (1) and (2) are decomposed in (4) according 
to the idea of a specific linearizing decomposition described 
in [6]. The state-space model (4) or (5) represents suitable 
form for model-based control design. 

III. BASIC CONROL SCHEMES 
In this section, the differences of standard cascade vector PI 

control scheme and GPC scheme are introduced. The schemes 
are intended for speed control task, .min,; →→ SqSdewe iiωω  

The cascade control approach consists of fourth separate 
PI controllers (Fig. 1). In contrast, the predictive control is 
represented only by one GPC controller block, which is pre-
ceded by two input-adapting modules of field weakening FWM 
and current limitation CLM (Fig. 2). 

 
Fig. 1. Standard control scheme of cascade vector PI control.  

 

 
Fig. 2. Primary control scheme of Generalized Predictive Control. 

In the scheme of PI control in Fig. 1, the controllers interact 
without any optimization. In GPC scheme in Fig. 2, the control 
action computation is performed only in one compact block. 
This block covers one lumped complex optimization for all 
user control requirements, i.e. required reference signals: 

• electrical rotor speed  weω  

• field weakening  ( maxI||||0;0 SSdwSdwe ii <<≠→↑↑ω ) 

• current limitation  maxI22
SSqSd ii ≤+  

The optimization procedure is based on specific evaluation 
of one criterion cost function. The principle of the design 
and computation of control actions will be explained in next 
section. 

The modules FWM and CLM form a simple extension 
or suitable input adaptation for GPC design. The module FWM 
follows usual procedure of the field weakening. However, 
the module CLM, adapting currents for their limitation, 
is developed with features of predictive control parameters. 
The both modules will be described in Section V. 
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IV. PREDICTIVE CONTROL ALGORITHMS 
The GPC algorithms are usually implemented as discrete 

(digital) procedures [2], which provide computation of control 
actions within one optimization calculation. In general, the cal-
culation employs predictions of expected future output values 
mathematically defined by equations of predictions. Those 
equations are closely related to the form of a cost function. 
At a predictive control design, the quadratic cost function 
is used. Its form may be various. It depends on used equations 
of predictions or control targets. In this paper, two specific 
GPC algorithms are considered. They differ in the number 
of included integrators. Their features will be obvious from ex-
periments. They are expressed in a compact matrix notation. 

• 1st GPC algorithm: The cost function form is as follows [4] 

 222 ||||||ˆ||||)ˆ(|| uQyQwyQ uyyw ∆∆ ∆∆ ++−=kJ  (6) 

Optimization of this function leads to the 1st GPC algorithm 
with one integrator (single integration – I. integrator): 
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where a rectangular matrix M  serves for row selection 
corresponding to control actions in time-instant k . The for-
mula (7) can be reshaped to the form of control law (8): 
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The quadratic function (6) and control actions ku∆ (7) or gains 
eK  and xKd  in control law (8) exploit the following equa-

tions of predictions involving output equation yk = C xk : 
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where matrices 1f  and 1G  are defined as follows 
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and 2f  and 2G  are similar, only their each element includes 
the element from row above, as indicated in (11) 
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• 2nd GPC algorithm: The cost function form is considered 
in the following way 

 222 ||||||ˆ||||)ˆˆ(|| uQyQewyQ uyyw ∆∆ ∆∆ ++−−=kJ  (12) 

where predictions of particular jŷ are defined as follows: 
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Optimization of function (12) leads to the 2nd GPC algorithm 
with two integrators (double integration): 
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which is transformed to the form of control law and comple-
mented by equations of topical control error ke , its 
cumulative value ke  (I. integrator) and equation for control 
actions ku from their increments (II. Integrator) as follows 
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The quadratic function (12), expression of control actions ku∆  
(14), and determined control gains eK  and xKd  in (15), 
arise from the following proposed equations of predictions: 
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where matrices 1f  and 1G ; and 2f  and 2G  are identical 
with their previous definitions. The matrices 3f  and 3G  are 
defined by analogy as indicated in (17) 
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For the considered speed control task, the GPC or proposed 
algorithms in this section replace the conventional cascade 
structure by one numerical calculation. 
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Note finally that the GPC algorithms are implemented 
as discrete (digital) procedures. Therefore, due to linearized 
model form, the model (5) is the earliest discretized by usual 
way to the form: 

     kkkk uBxAx +=+1 ,        kk xCy =  (18) 

V. FRONT-END MODULES OF GPC 
In terminal situations, the physical limits are crucial [10]. 

They must be considered in GPC design. The GPC generates 
control, which corresponds to the ideal situation with no limits 
and constrains. The constraints and modifications are usually 
solved in GPC design via quadratic programming [2]. That is 
a time-consuming procedure unsuitable for a fast real-time 
control of PMSM drives. The following two subsections 
propose simple fast solution tailored to PMSM keeping explicit 
form of GPC explained in the previous section. 

A. Field Weakening Module - FWM 
If further increase of rotor speed is required and supply 

voltage cannot be appropriately increased too, just due to vol-
tage supply limits, then the field weakening is necessary. Since 
the direct control of magnetic flux is not possible with respect 
to permanent magnets, the field weakening is provided 
by incorporating a negative d - component of current  Si . 

That is the usual way, which requires meeting the following 
condition: 

 maxI22
SSqSdS iii ≤+=  (19) 

where maxI S  is admissible maximum stator current. The stan-
dard realization within control scheme is seen in Fig. 1. 

The described idea of the field weakening can be used 
also in GPC design. However, the value of Sdi  represents new 
specific reference value wSdi  being negative if weakening is 
necessary, otherwise being zero. This is the core of a Filed 
Weakening Module FWM in front of GPC block – see Fig. 2. 
The module FWM algorithm is expressed as follows: 
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where maxSU  is admissible maximum stator voltage, wfk  
is a field weakening gain and ubik  is a margin coefficient. 
The gain wfk  suppresses the chattering in transition states, 
the coefficient ubik  serves for keeping a space for current Sqi . 

B. Current Limitation Module - CLM 
The current limitation is key issue of every control design 

of PMSM drives. The current sum may not exceed admissible 
stator current ISmax, otherwise current overshoot can cause 
a drive malfunction or activation of current breakers leading 
to an undesirable drive operation interruption. The following 
algorithm of a Current Limitation Module CLM (see Fig. 2) 
‘multiplies’ the magnitudes of current d - q components so that 
to be reflected in the appropriate cost function during its opti-
mization in GPC design. 
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where spk  is suitable selected exponent; and currents SdEi  
and SqEi  are modified absolute inputs of GPC. Outlined 
algorithm causes that the appropriate real current components 
will be intensively suppressed by weighting matrices ywQ  
in appropriate cost function (6) or (12). Therefore, artificial 
proportional extension of appropriate current component 
appears as a big outlier against other terms in the criterion 
and optimization predominantly suppresses this outlier. 
From a practical point of view, the changeable lower limit  
√( 22

maxI SdwS i− ) in (21) is reasonable to be held above some 
meaningful level so that the condition will be feasible. 

Note, finally, that this solution gives acceptable results. 
However, it is not represent hard limitation, but only soft limi-
tation, which comes close to hard limitation. From GPC design 
point of view, the proposed algorithm (21) does not change 
control design or tuning of control parameters, it only modifies 
selected inputs to the GPC controller. 

VI. HARDWARE IMPLEMENTATION AND EXPERIMENTS 
The algorithms were implemented in the control system 

developed at University of West Bohemia. The system is based 
on DSP TMS320f28335. This DSP works with floating point 
arithmetic and single precision format. The control system 
is connected to the laboratory PMSM drive of rated power 
10.7 kW. The drive parameters are listed in the Table I. 
The testing stand with PMSM drive is shown in Fig. 6. 

The individual gains of GPC are realized as functional 
approximation with parameter eω  (analogy with [4]): ),(e eωK  

)( eωxKd  for the 1st algorithm and gains )(w),(e ee ωω KK  
)(,)(y),(w eee ωωω xKKK ds k

 for the 2nd GPC algorithm. 
The gains are selected on-line from the approximation. Thus, 
the computation of appropriate control actions by explicit con-
trol laws (8) or (15), supplemented by FWM and CLM modules, 
is fast and usable for real-time control of PMSM drives. 

2833



 
Fig. 3. GPC: comparison of 1st algorithm (left) and 2nd algorithm (right) for high triangular command speed signal; command speed ± 2000 rpm; 
ch1: iSd current (25A/1V), ch2: iSq current (25A/1V), ch3: command el. rotor speed (135Hz/1V), ch4: measured el. rotor speed (135Hz/1V).  
 

 
Fig. 4. GPC: current limitation and field weakening by 1st algorithm for supply voltage – Uc = 200V (left), Uc = 70V (right) and step signal; command speed 
± 1000 rpm; ch1: iSd current (25A/1V), ch2: iSq current (25A/1V), ch3: command el. rotor speed (135Hz/1V), ch4: measured el. rotor speed (135Hz/1V). 
 

 
Fig. 5. GPC: comparison of 1st algorithm (left) and 2nd algorithm (right) for fast low triangular command speed signal; command speed ± 800 rpm; 
ch1: iSd current (25A/1V), ch2: iSq current (25A/1V), ch3: command el. rotor speed (135Hz/1V), ch4: measured el. rotor speed (135Hz/1V). 

Experiments were realized for high triangular speed refe-
rence signal (ramp slope 4080 rpm/s), rectangular (step) signal 
and for fast low triangular signal (ramp slope 8000 rpm/s). 

The experiments are demonstrated by time histories of the state 
variables (iSd, iSq, 60/2 npe πω = ) of both GPC algorithms: 
1st - single integration, 2nd - double integration. 
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Parameters of GPC are in TABLE II. and TABLE III.  
for Fig. 3 and Fig. 4 in the column “Value (A)” and for Fig. 5 
in the column “Value (B)”. 

Fig. 3 demonstrates both algorithms when triangular speed 
profile is required. Speed reference profile passes through field 
weakening region bounded approx. by 900 rpm. The both GPC 
algorithms ensure reliable function in full speed operating 
range with similar behavior as standard cascade vector control 
[4]. The 1st algorithm slowly drifts from the reference slope. 
It is caused by only one integrator in the control circuit or con-
trol algorithm. The 2nd algorithm follows the ramp segments 
more closely owing to double integrator. 

In Fig. 4, there are details of a behavior of the 1st algorithm 
specifically for two selected admissible levels of DC voltage 
at step speed reference signal. In the left subfigure, the current 
limitation of the iSq is obvious. The input DC terminal voltage 
was 200V. This powerful limitation is achieved by front-end 
CLM module (see subsection V.-B.). The limitation depends 
on the selection of specific coefficient-exponent ksp. The pro-
posed solution proves hard limitation character. However, 
respecting the principle exploiting features of control pa-
rameters of GPC (cost function weight, penalization Qyw), 
the limitation represents soft constraint approaching closely 
hard constraint only. In the right subfigure, the behavior 
for low supply voltage (only 70V) is shown. In that subfigure, 
it is clear, that the algorithm cannot reach required speed pro-
file. Thus, the tested drive is deeply in field weakening region 
and torque part of current vector is very restricted to meet 
the maximum current limitation. The presented transient re-
sponse demonstrates that the proposed algorithm can operate 
the drive in field weakening region appropriately as well. 

Finally, the Fig. 5 shows both proposed GPC algorithms 
at fast low triangular speed reference signal. It is evident that 
double integrator (2nd algorithm, left) has positive influence [8]. 
In the case of triangular or ramp reference signals, the asym-
ptotic tracking of the 2nd algorithm can be expected against 
1st algorithm, which always leads to steady-stare error (offset). 

VII. CONCLUSION 
Benefit of this paper consists in the compact solution 

of current limitation (subsection V.-B.), reliable filed weak-
ening (subsection V.-A.) and in explicit predictive algorithms 
(section IV.). The solution is proved by experiments on deve-
loped PMSM drive prototype of rated power 10.7kW. The ex-
periments confirmed simple implementation of the proposed 
algorithms and at least their same performance and compu-
tational demands as the conventional cascade vector PI control. 

 
Fig. 6. Testing stand with PMSM drive. 

TABLE I. PARAMETERS OF THE USED PMSM DRIVE 

Symbol Description Value 
P rated power 10.7 kW 
Uc supply voltage 200 V 
nmax maximum speed 3000 rpm 
Rs stator resistance 0.28 Ω (Ohm) 
Ls stator inductance 0.003465 H (Henry) 
ψM PM rotor magnetic flux 0.1989 Wb (Weber) 
B viscous coef. of load 0 s-2 
p number of pole pairs 4 
J moment of inertia 0.04 kg m2 
τL load torque 0 N m 

TABLE II. PARAMETERS OF THE 1ST GPC ALGORITHM 

Symbol Description Value (A) Value (B) 
N horizon of prediction  4 4 
Qyw output penalization diag(2, 1, 2) diag(10, 10, 30) 
QΔy out. incr. penalization diag(100, 20, 2) diag(20, 80, 5) 
QΔu input incr. penalization diag(14, 7) diag(5, 3.5) 
Ts sampling period 0.000125 s 0.000125 s 
kfw field weakening gain 104 104 
kiub margin coefficient 0.9 0.9 
ksp current limitation exponent 40 40 

TABLE III. PARAMETERS OF THE 2ND GPC ALGORITHM 

Symbol Description Value (A) Value (B) 
N horizon of prediction  4 4 
Qyw output penalization diag(10, 5, 4) diag(10, 5, 10) 
QΔy out. incr. penalization diag(140, 80, 1) diag(20, 80, 1) 
QΔu input incr. penalization diag(20, 8) diag(10, 8) 
Ts sampling period 0.000125 s 0.000125 s 
kfw field weakening gain 4×104 4×104 
kiub margin coefficient 0.9 0.9 
ksp current limitation exponent 100 50 
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