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Abstract-The paper deals with Generalized Predictive Control
algorithms applied to the electric drives employing Permanent
Magnet Synchronous Motors (PMSM). The Generalized Pre-
dictive Control (GPC) belongs to the multi-step model-based
control design. The presented GPC algorithms are arranged
in a specific explicit form for direct application in PMSM drives.
The algorithms are supplemented with two front-end modules,
which enable GPC algorithms to solve tasks of field weakening
and current limitation. The design and implementation of pro-
posed explicit GPC solution including modules are explained
in the paper. The solution was experimentally verified at a speed
control task. Performed experiments are documented by the time
histories in oscillogram screenshots and figures.
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I. INTRODUCTION

Nowadays, advanced types of electrical drives are based
on 3-phase Permanent Magnet Synchronous Motors (PMSM).
Due to few mechanical elements leading to long operation life
with minor demands on maintenance, those motors have great
potential in wide range of applications in traffics, robotics
and mechatronics in general.

From control point of view, the PMSM require to control
simultaneously amplitude and frequency of all three terminal
Alternate Currents (AC) in Pulse-Width-Modulation (PWM).
Input to the PWM is amplitude and phase of stator voltage.
Those values are generated by control algorithms. Usual solu-
tion is based on PI controllers coupled in cascade loops [4].
That cascade configuration represents set of autonomous PI
controllers, where mutual relations mean external disturbances.
The setting of PI controllers is limited only on several static
constants. Their fixed configuration does not give any space
for some possible improvements or e.g. modifications solving
further control requirements. The configuration drawbacks
consist especially in the behavior in limit or changeable states
and in constant controller setting without any adaptation.
It causes that cascade control, due to essentially limited band-
width, can be prone to violation in dynamic applications [3].
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This paper deals with methods of a model-based approach,
specifically with a model-based Generalized Predictive Control
(GPC) [2], which represents a popular way due to its flexibility
and clarity. It can naturally consider all available pieces of in-
formation from a mathematical model and user requirement
in a control design within one optimization task [4], [5].
The GPC or its computation procedures can be formulated
as a multi-objective optimization involving different control
targets [1], [2].

The paper follows from previous works of authors [4], [6],
in which the design principles of GPC algorithms to PMSM
were introduced. The contribution of this paper consists in no-
vel addressing of the field weakening and current limitation
problems [10] and in novel GPC algorithms in a specific
explicit form suitable for direct use in real PMSM drive
applications. The proposed algorithms differ in the number
of involved integrators (one or two) suppressing control offset
[7], [8]. The explicit form employs fixed control laws, gains
of which are pre-computed off-line for a specific range of mo-
tor speed (electrical rotor speed). The proposed explicit
algorithms are supplemented with two front-end modules
suitably adapting algorithm input signals. The modules due
to a signal adaptation enable GPC to solve field weakening
and current limitation subtasks. The both modules and appro-
priate GPC algorithm form one compact generalized predictive
controller. Developed GPC algorithms as controllers were
experimentally verified at a speed control task [1], [9].
Performed experiments are documented by the time histories
illustrated in oscillogram screenshots and figures.

The organization of the paper is as follows. Section II.
outlines a suitable mathematical model for model-based control
design. Section III. introduces basic schemes of predictive
control, including field weakening and current limitation
modules, and standard vector PI control for comparison.
Section IV. focuses on the principles of GPC algorithms and
Section V. clarifies solution of field weakening and current
limitation within GPC design. Finally, Section VI. shows data
from real experiments for both proposed GPC algorithms.
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II. MATHEMATICAL MODEL FOR CONTROL DESIGN

A suitable mathematical model for a control design follows
from the voltage distribution in individual phases of three AC
phase system and from torque equilibrium equation. The model
of PMSM (using Clarke and Parke transformations) is defined
by the following set of the equations (1) - (3) in d-g rotating
field coordinate system or rotating reference frame:
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where Ry, L, ,, (= Ls for surface PM) and y,, are motor para-
meters (see TABLE L), ug, u, are d-g voltages (system
inputs), is; s, are d-q currents, @, is the electrical rotor speed
(mechanical speed @, = @,/ p; p is a number of pole pairs),
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where J, B are other motor parameters (see TABLE 1.), § is
the electrical rotor position, 7, is a load torque.

The model (1) - (3) can be rearranged in a state-space like
form [4], (for used motor: L, =L ,=Lg; i.e. surface PMSM):
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where A _(w,) is a variable state-space matrix relative to @, ,
B, is a constant input matrix. The two nonlinear terms @, is,
and @, ig; in (1) and (2) are decomposed in (4) according
to the idea of a specific linearizing decomposition described
in [6]. The state-space model (4) or (5) represents suitable
form for model-based control design.

III. BASIC CONROL SCHEMES

In this section, the differences of standard cascade vector PI
control scheme and GPC scheme are introduced. The schemes

are intended for speed control task, w, > @,,; iy, i, — min.

l

The cascade control approach consists of fourth separate
PI controllers (Fig. 1). In contrast, the predictive control is
represented only by one GPC controller block, which is pre-
ceded by two input-adapting modules of field weakening FWwm
and current limitation CLwm (Fig. 2).
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Fig. 1. Standard control scheme of cascade vector PI control.
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Fig. 2. Primary control scheme of Generalized Predictive Control.

In the scheme of PI control in Fig. 1, the controllers interact
without any optimization. In GPC scheme in Fig. 2, the control
action computation is performed only in one compact block.
This block covers one lumped complex optimization for all
user control requirements, i.e. required reference signals:

e electrical rotor speed @,

o field weakening (@, 1t — iy, #0; 0<]|ig, || <]

Sdw smax )

e current limitation /i, +ig, <TI0

The optimization procedure is based on specific evaluation
of one criterion cost function. The principle of the design
and computation of control actions will be explained in next
section.

Sdw

The modules FWm and CLm form a simple extension
or suitable input adaptation for GPC design. The module FWwm
follows usual procedure of the field weakening. However,
the module CLwm, adapting currents for their limitation,
is developed with features of predictive control parameters.
The both modules will be described in Section V.
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IV. PREDICTIVE CONTROL ALGORITHMS

The GPC algorithms are usually implemented as discrete
(digital) procedures [2], which provide computation of control
actions within one optimization calculation. In general, the cal-
culation employs predictions of expected future output values
mathematically defined by equations of predictions. Those
equations are closely related to the form of a cost function.
At a predictive control design, the quadratic cost function
is used. Its form may be various. It depends on used equations
of predictions or control targets. In this paper, two specific
GPC algorithms are considered. They differ in the number
of included integrators. Their features will be obvious from ex-
periments. They are expressed in a compact matrix notation.

o I GPC algorithm: The cost function form is as follows [4]
J,=1Qu-WI" + 1Qua¥ " + [[Q,aul’  (6)

Optimization of this function leads to the 1" GPC algorithm
with one integrator (single integration — I. integrator):

an, =M (G, Q,, G,+G/Q,, G, +Q,,)"

(7
x(G; Q,, (Iy, +f, ax, -w)+G/ Q, (f, Ax,))
where a rectangular matrix M serves for row selection
corresponding to control actions in time-instant k. The for-
mula (7) can be reshaped to the form of control law (8):
€ =W, — Y,
au, = Kee, — Kgx Ax, (®)

u =1u

k + Au,
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The quadratic function (6) and control actions Au, (7) or gains
K. and Kjx in control law (8) exploit the following equa-
tions of predictions involving output equation y;, = C X :

Ay = f Ax, + G, Au

. )
y=1y, +f, Ax, + G, Au
where matrices f, and G, are defined as follows
CA C B--- 0
f= : |, G,= oo (10)
CA" CA"'B---CB

and f, and G, are similar, only their each element includes
the element from row above, as indicated in (11)

CA CB 0
B CA+CA CB+CAB CB

27 2 3| 2: 2 (11)
CA+CA+CA CB+ CAB+CAB

e 2" GPC algorithm: The cost function form is considered
in the following way

Jo=1Q,F-w=-&) + [[Quay¥ [ + [[Qau]’ (12)

where predictions of particular y , are defined as follows:

J
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Optimization of function (12) leads to the 2" GPC algorithm
with two integrators (double integration):

Au, =M ((G2+G3)T Qyw (G2+G3)+G]T QAyG1+QAu)"
x{(G,+G,)" Q,, (I+f,) y, (14)
+(f, +,) ax, 1€, —w-w,) + G/ Q, (f, Ax,) }

which is transformed to the form of control law and comple-
mented by equations of topical control error e, , its
cumulative value e, (I. integrator) and equation for control
actions u, from their increments (II. Integrator) as follows

€, =W, =Y,

e =e¢_ te,

s, = Kg e, + Kww + Ky wg (15)
- Kyk Yi— KdXAXk

u, = u,, + Au,

k-1
The quadratic function (12), expression of control actions Au,
(14), and determined control gains K, and Kgx in (15),
arise from the following proposed equations of predictions:

Ay = f, Ax, + G, Au
y= Iy, +f, Ax, + G, Au (16)
e=le, +f y, +f Ax, +G, Au

where matrices f, and G,; and f, and G, are identical
with their previous definitions. The matrices f, and G, are
defined by analogy as indicated in (17)

0 o 0 -0
CA CB
f,= 2 |» G,= . (17)
2CA+CA 2CB+CAB . 0
: : CB 0

For the considered speed control task, the GPC or proposed
algorithms in this section replace the conventional cascade
structure by one numerical calculation.
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Note finally that the GPC algorithms are implemented
as discrete (digital) procedures. Therefore, due to linearized
model form, the model (5) is the earliest discretized by usual
way to the form:

X, =A, X, +Bu,, vy, =Cx, (18)

V. FRONT-END MODULES OF GPC

In terminal situations, the physical limits are crucial [10].
They must be considered in GPC design. The GPC generates
control, which corresponds to the ideal situation with no limits
and constrains. The constraints and modifications are usually
solved in GPC design via quadratic programming [2]. That is
a time-consuming procedure unsuitable for a fast real-time
control of PMSM drives. The following two subsections
propose simple fast solution tailored to PMSM keeping explicit
form of GPC explained in the previous section.

A. Field Weakening Module - FWu

If further increase of rotor speed is required and supply
voltage cannot be appropriately increased too, just due to vol-
tage supply limits, then the field weakening is necessary. Since
the direct control of magnetic flux is not possible with respect
to permanent magnets, the field weakening is provided
by incorporating a negative d - component of current i, .

That is the usual way, which requires meeting the following
condition:

.2 .2
Iy =4/ls +lSq < Ismax (19)

where I .+ is admissible maximum stator current. The stan-
dard realization within control scheme is seen in Fig. 1.

The described idea of the field weakening can be used
also in GPC design. However, the value of i, represents new
specific reference value iy, being negative if weakening is
necessary, otherwise being zero. This is the core of a Filed
Weakening Module FWw in front of GPC block — see Fig. 2.
The module FWw algorithm is expressed as follows:

g,
if ug 2 Usmaxo

i = Usmax —Us) kfw ;

if ligs, 1> Lmnaxs isa =~ Limax ki 5 end (20)
else

i, =0;

Sdw

— 2
Ug = 4Jug,

end

where U pax is admissible maximum stator voltage, kfyy
is a field weakening gain and k;, is a margin coefficient.
The gain kfy, suppresses the chattering in transition states,
the coefficient kj, serves for keeping a space for current i .

B. Current Limitation Module - CLu

The current limitation is key issue of every control design
of PMSM drives. The current sum may not exceed admissible
stator current Ismax, otherwise current overshoot can cause
a drive malfunction or activation of current breakers leading
to an undesirable drive operation interruption. The following
algorithm of a Current Limitation Module CLm (see Fig. 2)
‘multiplies’ the magnitudes of current d - g components so that
to be reflected in the appropriate cost function during its opti-
mization in GPC design.

Lsag = Loa s
Logr = Lsg 5

kS
. — lig )"
if Nlig, 112 VG max —fon > s = [Iq i3 @D

elsel_f‘ || iSzl H > IsmaX kiuh > iSdE =

end

where ksp is suitable selected exponent; and currents i,
and iy, are modified absolute inputs of GPC. Outlined
algorithm causes that the appropriate real current components
will be intensively suppressed by weighting matrices Q,,
in appropriate cost function (6) or (12). Therefore, artificial
proportional extension of appropriate current component
appears as a big outlier against other terms in the criterion
and optimization predominantly suppresses this outlier.
From a practical point of view, the changeable lower limit
V(12 pax —i2,) in (21) is reasonable to be held above some
meaningful level so that the condition will be feasible.

Note, finally, that this solution gives acceptable results.
However, it is not represent hard limitation, but only soft limi-
tation, which comes close to hard limitation. From GPC design
point of view, the proposed algorithm (21) does not change
control design or tuning of control parameters, it only modifies
selected inputs to the GPC controller.

VI. HARDWARE IMPLEMENTATION AND EXPERIMENTS

The algorithms were implemented in the control system
developed at University of West Bohemia. The system is based
on DSP TMS320f28335. This DSP works with floating point
arithmetic and single precision format. The control system
is connected to the laboratory PMSM drive of rated power
10.7 kW. The drive parameters are listed in the Table I.
The testing stand with PMSM drive is shown in Fig. 6.

The individual gains of GPC are realized as functional
approximation with parameter @, (analogy with [4]): Kq(@,),
Kgx(w,) for the 1* algorithm and gains Kg(w,), Kw(®,)
Kw, (0,), Ky (0,) , Kgx(®,) for the 2 GPC algorithm.
The gains are selected on-line from the approximation. Thus,
the computation of appropriate control actions by explicit con-
trol laws (8) or (15), supplemented by FWwm and CLm modules,
is fast and usable for real-time control of PMSM drives.
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Fig. 3. GPC: comparison of 1 algorithm (left) and 2" algorithm (right) for high triangular command speed signal; command speed + 2000 rpm;
chl: igs current (25A/1V), ch2: ig, current (25A/1V), ch3: command el. rotor speed (135Hz/1V), ch4: measured el. rotor speed (135Hz/1V).
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Fig. 4. GPC: current limitation and field weakening by 1* algorithm for supply voltage — Uc = 200V (left), Uc = 70V (right) and step signal; command speed
+ 1000 rpm; chl: ig current (25A/1V), ch2: ig, current (25A/1V), ch3: command el. rotor speed (135Hz/1V), ch4: measured el. rotor speed (135Hz/1V).
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Fig. 5. GPC: comparison of 1% algorithm (left) and 2™ algorithm (right) for fast low triangular command speed signal; command speed = 800 rpm;
chl: igs current (25A/1V), ch2: i, current (25A/1V), ch3: command el. rotor speed (135Hz/1V), ch4: measured el. rotor speed (135Hz/1V).

Experiments were realized for high triangular speed refe- The experiments are demonstrated by time histories of the state
rence signal (ramp slope 4080 rpm/s), rectangular (step) signal ~ variables (i, is,, ®, =27pn/60) of both GPC algorithms:

e

and for fast low triangular signal (ramp slope 8000 rpm/s). 1% - single integration, 2" - double integration.
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Parameters of GPC are in TABLE II. and TABLE III.
for Fig. 3 and Fig. 4 in the column “Value (A)” and for Fig. 5
in the column “Value (B)”.

Fig. 3 demonstrates both algorithms when triangular speed
profile is required. Speed reference profile passes through field
weakening region bounded approx. by 900 rpm. The both GPC
algorithms ensure reliable function in full speed operating
range with similar behavior as standard cascade vector control
[4]. The 1% algorithm slowly drifts from the reference slope.
It is caused by only one integrator in the control circuit or con-
trol algorithm. The 2" algorithm follows the ramp segments
more closely owing to double integrator.

In Fig. 4, there are details of a behavior of the 1" algorithm
specifically for two selected admissible levels of DC voltage
at step speed reference signal. In the left subfigure, the current
limitation of the iy, is obvious. The input DC terminal voltage
was 200V. This powerful limitation is achieved by front-end
CLm module (see subsection V.-B.). The limitation depends
on the selection of specific coefficient-exponent ks. The pro-
posed solution proves hard limitation character. However,
respecting the principle exploiting features of control pa-
rameters of GPC (cost function weight, penalization Q,,),
the limitation represents soft constraint approaching closely
hard constraint only. In the right subfigure, the behavior
for low supply voltage (only 70V) is shown. In that subfigure,
it is clear, that the algorithm cannot reach required speed pro-
file. Thus, the tested drive is deeply in field weakening region
and torque part of current vector is very restricted to meet
the maximum current limitation. The presented transient re-
sponse demonstrates that the proposed algorithm can operate
the drive in field weakening region appropriately as well.

Finally, the Fig. 5 shows both proposed GPC algorithms
at fast low triangular speed reference signal. It is evident that
double integrator ™ algorithm, left) has positive influence [8].
In the case of triangular or ramp reference signals, the asym-
ptotic tracking of the 2™ algorithm can be expected against
1* algorithm, which always leads to steady-stare error (offset).

VIL

Benefit of this paper consists in the compact solution
of current limitation (subsection V.-B.), reliable filed weak-
ening (subsection V.-A.) and in explicit predictive algorithms
(section IV.). The solution is proved by experiments on deve-
loped PMSM drive prototype of rated power 10.7kW. The ex-
periments confirmed simple implementation of the proposed
algorithms and at least their same performance and compu-
tational demands as the conventional cascade vector PI control.

CONCLUSION

Fig. 6. Testing stand with PMSM drive.

TABLE L

PARAMETERS OF THE USED PMSM DRIVE

Symbol Description Value
P rated power 10.7 kW
Uc supply voltage 200 V
Nomax maximum speed 3000 rpm
Ry stator resistance 0.28 Q (Ohm)
Ly stator inductance 0.003465 H (Henry)
Wit PM rotor magnetic flux 0.1989 Wb (Weber)
B viscous coef. of load 0s”
p number of pole pairs 4
J moment of inertia 0.04 kgm?®
7 load torque 0Nm
TABLE II. PARAMETERS OF THE 1*" GPC ALGORITHM
Symbol Description Value (A) Value (B)
N horizon of prediction 4 4
Qe output penalization diag(2, 1, 2) diag(10, 10, 30)
Q4 out. incr. penalization diag(100, 20, 2) | diag(20, 80, 5)
Qu input incr. penalization diag(14, 7) diag(5, 3.5)
Ts sampling period 0.000125 s 0.000125 s
kfw field weakening gain 10* 10*
kiyp margin coefficient 0.9 0.9
ksp current limitation exponent | 40 40
TABLE 111 PARAMETERS OF THE 2™ GPC ALGORITHM
Symbol Description Value (A) Value (B)
N horizon of prediction 4 4
Q,w output penalization diag(10, 5, 4) diag(10, 5, 10)
Q4 out. incr. penalization diag(140, 80, 1) | diag(20, 80, 1)
Q. input incr. penalization diag(20, 8) diag(10, 8)
Ts sampling period 0.000125 s 0.000125 s
kfw field weakening gain 4x10* 4x10*
kiup margin coefficient 0.9 0.9
ksp current limitation exponent | 100 50
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