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The article concerns reliability estimation in modern dynamic systems. It introduces a
novel approach, exploiting a network of several independent spatially distributed sen-
sors, actively probing the monitored system. A dedicated network element – the fusion
centre – is then responsible for processing the information provided by sensors and eval-
uation of final reliability estimate. On the base of computational abilities of sensors, we
propose two conceptually different reliability estimation scenarios: (1) the computa-
tionally cheaper dummy sensors scenario, in which the sensors send raw data to the
fusion centre; and (2) the smart sensors scenario, when the data are processed locally
by sensors, and the fusion centre subsequently merges their resulting information. The
local processing allows to obtain ‘low-level’ reliability estimate from a particular sen-
sor, which is of interest in large networks with communication constraints. In both
cases, the emphasis is put on recursiveness, adaptivity and robustness of solutions. The
Bayesian paradigm was adopted for consistent information representation, its adaptive
dynamic processing and fusion.

Keywords: Bayesian modelling; sensor network; reliability; dynamic system
monitoring

1. Introduction

Recent advances in networked communications and computing performance of electronic
devices enabled rapid development of low-cost multifunctional sensor networks, in which
the nodes effectively sense, communicate and process obtained data to evaluate the most
accurate measurements. Unless there are special requirements (disaster management, space
exploration, factory automation, etc.) [1], the topology of sensor networks is usually very
flexible and the position of particular sensors need not be engineered nor predetermined [2].
Besides this, the sensor network provides more information about the observed system than
a single sensor [3] and allows for fault tolerance and graceful degradation [4,5], robustness,
etc. Several surveys are given, e.g. see [2,6,7]. The novelty of this article consists in the
use of sensor network for reliability estimation.

We consider a network of spatially distributed sensors S1, S2, . . . , SK with a fusion
centre (Figure 1), devoted to monitoring a dynamic system (e.g. a computer cluster)
and evaluating its reliability πt ∈ [0, 1] in discrete time instants t = 1, 2, . . .. Generally,
the International Organization for Standardization defines reliability as ‘the characteristic
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Figure 1. Sensor network: active probing of a system by a network of K sensors S1, . . . , SK , sending
their information to a fusion centre, FC.

of a product, or any component thereof, expressed as a probability that it would per-
form its required functions under defined conditions for specified operating periods’ (ISO
9001:2008). In our conception (following the ISO definition), reliability is understood as a
probability that the monitored system successfully responds to each request. That is,

π = reliability = number of successess

number of all requests
. (1)

From the variety of classical reliability estimation methods, e.g. based on queuing
theory [8], combinatorial models and Monte Carlo methods [9], Markov models [10] and
Bayesian approaches [11,12], we choose the Bayesian paradigm for its appealing con-
sistency and versatility. The exploited monitoring principle is known as active probing
[13,14]; the packet-probing technique is an example of its application in computer net-
works [15,16]. Active probing consists in periodic sending of short request messages to the
monitored system, followed by awaiting reply messages to be received within predefined
time periods.

On this base, two novel network-based reliability estimation methods reflecting
computational abilities of sensors are proposed:

• Dummy sensors setting – all sensors send raw measurements (numbers of failures) to
the fusion centre. It evaluates the reliability estimates using the weighted likelihood
principle [17]. This is computationally cheap and requires only low-cost sensors.

• Smart sensors setting – all sensors process their measurements locally and then pro-
vide the posterior information to the fusion centre. It builds and subsequently reduces
a finite mixture of these posteriors [18]. Besides the global estimate, a (partial) infor-
mation is available at each node and can be exploited, e.g. if the fusion centre or its
links fail. This is of interest in mission critical applications. The computational bur-
den in sensors is low and requires only slightly more expensive hardware than in the
case of dummy sensors. The burden in the fusion centre is higher due to the mixture
reduction.

In both cases, it is possible to process data in bursts instead of one-by-one and therefore
to save sensor network’s resources. It is also possible to formulate an intermediate setting:
separate processing of dummy sensors’ raw measurements in the fusion centre, followed
by composing a mixture and its subsequent reduction. However, this special case only
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Mathematical and Computer Modelling of Dynamical Systems 3

increases the computational burden in the fusion centre without providing the benefits of
the smart sensors setting.

The consistent dynamic Bayesian treatment of available information makes both meth-
ods easily tunable – the only user-dependent setting parameters are forgetting factors,
driving the effective number of past data that should be used for modelling. A higher num-
ber of data leads to more stable estimation, at the cost of slower response to changes (and
vice versa). The inevitable fact that the sensors and their links are subjects to degrada-
tion and failure, both increasing the number of missing replies, is also properly reflected.
This in turn allows easy addition and removal of sensors during the runtime. The pro-
posed methods are the first steps towards more sophisticated setting, in which the replies
to probes are categorized (e.g. fast/slow/no response) and probabilities of these categories
are adaptively evaluated.

The organization of the article is as follows: Section 2 presents the main principle
of dynamic Bayesian reliability modelling with a single sensor; Section 3 formulates
two methods for adaptive data processing – for dummy and smart sensors, respectively.
Algorithms are provided for both methods. Finally, Section 4 provides an illustrative exam-
ple. Since the authors are not aware of any similar sensor network-based approach for
reliability estimation, the example only compares the two proposed methods.

2. Bayesian setting of the problem

For the sake of clear exposition, the ensuing text first introduces the classical principles of
Bayesian reliability modelling with a single sensor (e.g. [12]), standing also for information
processing unit. With the necessary theory, we proceed to the more complicated multiple
sensors case.

We emphasize that the time instants t = 1, 2, . . . relate to data processing. The mon-
itoring period may be shorter, which means that the number of requests nt ≥ 1 may be
processed at each t, yielding the number of failures mt ≤ nt and the number of successes
(nt − mt). These numbers are referred to as measurements at time t. After their processing,
mt is reset to 0.

2.1. Single sensor case

Based on the active probing monitoring scheme, we can model the number mt of missing
reply messages (regardless whether the monitored system effectively sent them or not) at
time instant t with the binomial distribution, mt ∼ Bi(nt,πt), where nt ≥ 1 is the number
of all request messages and πt ∈ [0, 1] is the probability of failure. If nt = 1, then the bino-
mial distribution is a Bernoulli distribution. The Bayesian paradigm then advocates the
beta distribution as the natural conjugate prior to this type of model under unknown πt, i.e.
πt ∼ β(rt, st), where rt and st are real positive hyperparameters at time t, accumulating the
number of failures and successes, respectively. They drive the shape of the beta distribu-
tion, allowing for left- and right-skewness, high or low kurtosis and even a flat shape of
the uniform distribution. Let q(mt|πt, rt, st) be the conditional probability density function
(pdf) of mt, i.e. its binomial model,

q(mt|πt, rt, st) =
(

nt

mt

)
π

mt
t (1 − πt)

nt−mt . (2)

and p(πt|rt, st), the beta prior pdf of πt,
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4 K. Dedecius and V. Sečkárová

p(πt|rt, st) = 1

B(rt, st)
π

rt−1
t (1 − πt)

st−1,

where

B(rt, st) =
∫ 1

0
zrt−1(1 − z)st−1dz = �(rt)�(st)

�(rt + st)
, rt, st > 0

is the beta function. The initial values r0, s0 are either preset by the user or a flat noninfor-
mative beta distribution β(1, 1) is chosen. The Bayes’ theorem [19] recursively updates
the prior beta distribution by new binomially distributed data, yielding again the beta
distribution as the posterior pdf,

p(πt|rt, st) ∝ q(mt|πt−1, rt−1, st−1)p(πt−1|rt−1, st−1), (3)

where ∝ denotes proportionality, i.e. equality up to a normalizing factor. It is straightfor-
ward to check that the theorem simply evaluates hyperparameters rt, st as follows:

rt = rt−1 + mt, st = st−1 + (nt − mt), (4)

i.e. rt and st are incremented by the numbers of failures and successes, respectively. The
actual estimate of reliability πt is given by the expectation, defined for the beta-distributed
variable as

E [πt|rt, st] = st

rt + st
. (5)

This directly coincides with the reliability definition (1). It is important to notice that the
reliability estimates lie in interval (0, 1), with 0 and 1 as limit cases. This corresponds with
reality: no real system can be considered absolutely perfect and there is no natural need to
monitor completely failed systems.

2.2. Adaptivity of a single sensor

The incoming measurements accumulated in the beta distribution augment statistical
knowledge of reliability under the situation when the sensor and communication links
are perfectly reliable and the monitored system has either constant or very slowly vary-
ing reliability. Since these conditions are rather rare, most applications call for adaptive
solutions. To make the given approach adaptively reflect the temporal evolution of reliabil-
ity πt → π+

t , we would need a probabilistic evolution model, e.g. in the form of a Markov
model with a transition kernel K(πt,π

+
t ). However, it is practically unreachable. The way

around the issue consists in continuous discounting of old and potentially outdated infor-
mation from posterior pdf p(πt|rt, st). It turns reliability estimation into reliability tracking.
We exploit the celebrated exponential forgetting [20,21] (for other methods, see, e.g. [22]
and the overview therein), transforming the posterior pdf into a pdf with a higher variance,

p(π+
t |r+

t , s+
t ) ∝ [p(πt|rt, st)]

λ , (6)

where λ ∈ (0, 1] is called forgetting factor.
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Mathematical and Computer Modelling of Dynamical Systems 5

Table 1. Number d of effective samples for given forgetting factor λ.

λ 0.999 0.998 0.995 0.99 0.98 0.95

d 1000 500 200 100 50 20

It is straightforward to see that the exponential forgetting (6) applied on the pos-
terior pdf from (3) modifies hyperparameters of the underlying distribution by their
multiplication,

r+
t = λrt, s+

t = λst. (7)

The resulting pdf is determined by hyperparameters from (7) and can successively enter
the Bayes’ theorem (3) as the prior pdf for the next time step.

Similarly to the fixed-size data window approaches, the choice of the forgetting factor λ
determines the effective window size d = (1 − λ)−1, e.g. see [21]. It expresses the number
of past measurements stored in rt and st used for subsequent modelling. Some selected
pairs of values of λ and d are depicted in Table 1.

3. Sensor network

Suppose now the existence of a sensor network with K sensors S1, . . . , SK . We will present
two scenarios for information fusion, one suitable for dummy sensors providing the fusion
centre with raw measurements (mt and, if not fixed, nt) and the other for smart sensors with
computational abilities, sending pre-processed information. The fusion centre calculates
own pdf (denoted by g), comprising weighted information from all involved sensors. The
reliability estimate is then inferred from this pdf.

The quality of estimation with both dummy and smart sensors heavily depends on the
ability of the fusion centre to prevent spoiling the reliability estimator by corrupted infor-
mation. This is likely to happen if one or more sensors degrade or fail, or if a link between
a sensor and the monitored system is affected by high noise or in any sense broken. Such
cases call for adaptive suppression or complete elimination of related sensors’ contribution.

3.1. Dummy sensors

The dummy sensors scenario exploits the weighted likelihood principle [17], providing
means for combination of statistical models, in our case of type (2). The fusion centre
is responsible for evaluation of both the Bayes’ rule (3) and the forgetting step (6). The
sensors only provide raw measurements of the number mt of failures (and if not preset,
also nt). In this setting, the Bayesian update (3) changes its form to

g(πt|Rt, St,At) ∝ g(πt−1|Rt−1, St−1,At−1)
K∏

i=1

q(mi;t|πt−1, ri;t−1, si;t−1)αi;t , (8)

where g(πt−1|Rt−1, St−1,At−1) is the prior beta distribution with scalar real hyperparame-
ters Rt−1 and St−1. It is kept by the fusion centre. At = {α1;t, . . . ,αK;t} is a set of relative
weights of sensors S1, . . . , SK , taking values in [0, 1] and summing to unity. They express
the degree of belief of the fusion centre in information provided by each of the sensors.
Their adaptive evaluation will be described below.
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6 K. Dedecius and V. Sečkárová

It is easy to see that the Bayesian update (8) recomputes the hyperparameters of the
beta distribution local to the fusion centre by new measurements from the sensor network
similarly to (4):

Rt = Rt−1 +
K∑

i=1

αi;tmi;t, St = St−1 +
K∑

i=1

αi;t(nt − mi;t).

The exponential forgetting (6) preserving adaptivity of the reliability estimation takes an
equivalent form,

R+
t = λRt, S+

t = λSt, λ ∈ (0, 1].

With these hyperparameters, the resulting ‘forgotten’ pdf enters (8) as the prior pdf for the
next update. The reliability estimate counterpart of (5) is then the mean value of the fusion
centre’s beta distribution,

E [πt|Rt, St,At] = St

Rt + St
. (9)

Note that the reliability estimate follows the general definition (1). Here, the numbers of
successes and requests are represented by convex combinations of sensors’ measurements,
reflecting the degree of belief in them.

This approach allows to use very simple sensors, effectively represented by incremental
counters of failures and (potentially) successes for all trials.

3.1.1. Evaluation of weights αi;t

Each of the weighted likelihood components is assigned a weight αi;t ∈ [0, 1]. The Bayes’
rule updating these weights reflects how the actual measurements fit the model kept by the
fusion centre,

αi;t ∝ αi;t−1q(mi,t|Rt−1, St−1). (10)

The model on the right-hand side of (10) is the predictive pdf of the fusion centre,

q(mi,t|Rt−1, St−1) =
∫

q(mi,t|πt−1, Rt−1, St−1) g(πt−1|Rt−1, St−1,At−1)dπt−1.

We exploit the fact that mi,t is conditionally independent of weights At−1. Since the weights
in (10) are updated according to actual measurements, the method is close to model
switching.

Obviously, (10) updates the weights by the predictive pdfs with respect to the sensors’
data. Up to here, the situation when all sensors work well is reflected and it remains to take
their potential malfunctioning into account. The complete lack of a temporal evolution
model for sensors’ degradation immediately resembles that one in Section 2.2. Again, it is
convenient to address the problem by exponential forgetting,

α+
i;t = αωi;t, ω ∈ (0, 1].
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Mathematical and Computer Modelling of Dynamical Systems 7

Algorithm 1 Dummy sensors

1 Fusion centre initialization:
2 Set prior hyperparameters R0 and S0.
3 Set prior weights A0, e.g. uniformly α1;0 = α2;0 = . . . = αK;0.
4 Set forgetting factors λ and ω, Table 1.

5 Online steps: for t = 1, 2, . . . do
6 Sensors:
7 for all the sensors Si (i = 1, . . . , K) do
8 Set mi;t = 0.
9 Send nt requests.

10 Count mi;t failures.
11 end
12 Fusion centre:
13 Input: mi;t, nt(i = 1, . . . , K).
14 Update weights αi;t by measurements, Equation (10).
15 Update Rt and St by measurements.
16 Estimate πt, Equation (9).
17 Forget Rt and St.
18 end

3.2. Smart sensors

In the smart sensors case, each sensor evaluates the Bayes’ rule (3) and forgetting (6) inter-
nally. The fusion centre only merges their posterior distributions at each t. It exploits a
convex combination of sensors’ posterior beta distributions, i.e. a mixture, which is eval-
uated by the fusion centre [18]. The mixture represents a consensus of individual sources.
Its use in reliability modelling with beta-binomial distributions in a different realm was
proposed, e.g. in [23].

After the sensors process their measurements, they send the hyperparameters to the
fusion centre to construct the mixture of posterior pdfs,

g(πt|Rt,St,At) =
K∑

i=1

αi;tp(πt|ri;t, si;t), (11)

where the sets Rt = {r1;t, . . . , rK;t} and St = {s1;t, . . . , sK;t} formally represent the hyper-
parameters of all K sensors. Identically with the dummy sensors scenario, the set At =
{α1;t, . . . ,αK;t} stands for relative weights of the sensors, such that αi;t ∈ [0, 1] for all
i = 1, . . . , K are summing to unity.

Now, the counterpart of the reliability estimates (5) or (9) is the merged point estimate.
It is the expectation of the mixture (11),

E [πt|Rt,St,At] =
K∑

i=1

αi;tE
[
πt|ri;t, si;t

] =
K∑

i=1

αi;t
si;t

ri;t + si;t
. (12)

In this scenario, the reliability estimate at each sensor follows the definition (1), more
concretely (5). The result (12) is then a convex combination of all these estimates.
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8 K. Dedecius and V. Sečkárová

3.2.1. Evaluation of weights αi;t

Recall that the contribution of each sensor to the estimator (12) is driven by weights αi;t.
Since, in this scenario, the fusion centre does not have access to raw measurements, it is
impossible to use (10) for weights evaluation. Alternative approaches may consist in sensor
elimination using a change-point detection, adaptive tuning based on time series analysis
of hyperparameters and/or moments, or exploiting measures of dissimilarity between the
ideal and true sensors’ states. We focus on the last approach.

As the dissimilarity measure we exploit a member of the f -divergences family, namely
the Kullback–Leibler divergence [24]. It is a natural choice in the Bayesian realm.

If f (x) and g(x) are two pdfs of a random variable X , acting on a common Borel set X ,
their Kullback–Leibler divergence is defined as the functional

D (f ||g) =
∫
X

f (x) log
f (x)

g(x)
dx.

The functional D (f ||g) takes nonnegative values with equality if f (x) = g(x) almost
everywhere. It is a premetric, its lack of symmetry, i.e. D(f ||g) �= D(g||f ) and noncon-
formity with the triangle inequality prevents it from being a metric. Properties of the
Kullback–Leibler divergence can be found, e.g. in [19].

The Kullback–Leibler divergence of two beta distributions β(r, s) and β(r′, s′) with pdfs
f , g, respectively, is

D(f ||g) = log
B(r′, s′)
B(r, s)

+ (r′ − r) [ψ(r + s) − ψ(r)] + (s′ − s) [ψ(r + s) − ψ(s)] (13)

where ψ(·) is the digamma function. The formula (13) is easy to prove. In terms of entropy
H(f ) and cross-entropy H(f , g), the divergence D(f ||g) = H(f , g) − H(f ) and from [25] it
follows

H(f ) = log B(r, s) + (r − 1) [ψ(r + s) − ψ(r)] + (s − 1) [ψ(r + s) − ψ(s)] ,

H(f , g) = log B(r′, s′) + (r′ − 1) [ψ(r + s) − ψ(r)] + (s′ − 1) [ψ(r + s) − ψ(s)] .

The previously described divergence will be exploited in the following way: as a step
towards metric, we first symmetrize the Kullback–Leibler divergence as proposed in the
original paper [24],

D̃ (f ||g) = D(f ||g) + D(g||f ). (14)

With the help of (14), the actual information carried by sensors, represented by posterior
pdf p(πt|ri;t, si;t), is then compared to ideal time-invariant pdf p(πI |rI , sI ). Its fixed hyper-
parameters rI and sI represent the ideal scenario when there is no failure (rI = 1) in the
data window of length d, i.e. sI = d + 1. The rule for αi;t then reads as

αi;t ∝ 1

D̃ (
p(πt|ri;t, si;t)||p(πI |rI , sI )

) . (15)
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Mathematical and Computer Modelling of Dynamical Systems 9

Algorithm 2 Smart sensors

1 Initialization of sensors:
2 for all the sensors Si (i = 1, . . . , K) do
3 Set prior hyperparameters ri;0 and si;0.
4 Set forgetting factor λ, Table 1.
5 end
6 Initialization of fusion centre:
7 Set prior weights A0, e.g. uniformly α1;0 = α2;0 = . . . = αK;0.
8 Online steps: for t = 1, 2, . . . do
9 Sensors:

10 for all the sensors Si (i = 1, . . . , K) do
11 Set mi;t = 0.
12 Send nt requests.
13 Count mi;t failures.
14 Update ri;t and si;t, Equation (4).
15 Output: ri;t, si;t

16
17 Forget ri;t, si;t, Equation (7).
18 end
19 Fusion centre:
20 Input: ri;t, si;t (i = 1, . . . , K).
21
22 Update weights αi;t, Equation (15).
23 Estimate πt, Equation (12).
24 end

Since the pdfs p(πt|ri;t, si;t) carry the information brought by the effective data window,
there is no need of any form of additional forgetting. Rather than model switching, this
scenario is close to model averaging. The drawback of this method follows from proper-
ties of the Kullback–Leibler divergence, preventing much stronger suppression of partially
failing sensors (as shown in Section 4). We conjecture that other divergence measure could
yet improve the estimator properties.

4. Example

In this short example, we model reliability of a system using three distributed sensors prone
to errors, processing nt = 5 requests each step of t. The length of the data is 1500 samples,
πt = 0.99 for t = 1, . . . , 300 and πt = 0.6 for the rest. The first two sensors work well
while the third sensor degrades at t = 150, causing the measurements to indicate false
reliability corresponding to half of the true value. To show recovery, the third sensor starts
working well at t = 900. The simulation starts from informative prior pdf corresponding
to the state that everything works well; all forgetting factors are 0.98. The evolution of
estimated reliability is depicted in Figure 2, statistics of the estimation error (E[πt|·] − πt)
are given in Table 2.

The dummy sensors setting leads to an estimator with smaller bias compared to smart
sensors. This is connected with the model switching property of the weights evaluation
method. The smart sensors setting, measuring the divergence of the actual pdf from the
ideal pdf, has faster response to abrupt changes, at the cost of higher bias. In both cases,
the response is good and can be further tuned by forgetting factors. The degradation of a
single sensor at t = 150 is quickly reflected by both approaches; the estimation is stable.
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10 K. Dedecius and V. Sečkárová

0 200 400 600 800 1000 1200 1400
t

0.4
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0.6
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0.8

0.9

1.0 Dummy sensors

Smart sensors

Figure 2. Estimated reliability.

Table 2. Error statistics of dummy and smart sensors setting, respectively.

Dummy Smart

Mean of errors 0.016 −0.011
Median of errors 0.005 −0.015
Standard deviation 0.058 0.053
Maximum negative error −0.048 −0.081
Maximum positive error 0.393 0.386

0 200 400 600 800 1000 1200 1400
0.0

0.2

0.4

0.6

0.8

1.0

Figure 3. Dummy sensors setting: evolution of weights αi;t. Degrading node’s weight is grey.

Also, the recovery of this sensor at t = 900 causes no instabilities. The switching and
averaging properties of dummy and smart sensor settings are evident from Figures 3 and 4,
respectively.

5. Conclusion and future work

We have presented a novel method for dynamical system monitoring with spatially dis-
tributed sensors, developed within the Bayesian statistical framework. It belongs to a class
of centralized methods, in which each sensor collects and potentially processes data. The
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Figure 4. Smart sensors setting: evolution of weights αi;t. Degrading node’s weight is grey.

data or the processed information is then transmitted to a dedicated network element,
called fusion centre, responsible for final computations and reliability estimation. The
method is dynamic; it allows to recursively incorporate information carried by new data
and adaptively reflect changes of the observed reality.

The fact that the sensors and their links to the monitored system are subject to degra-
dation and failure is properly reflected. An unsolved question is how to reflect potential
delays in communication between the sensors and the fusion centre. A suitable solution of
this issue would further improve robustness of the method and broaden its applicability in
large global networks. An alternative solution, consisting in partial or full decentralization
of reliability estimation is planned as well.

The proposed methods are the first steps towards more complicated setting, in which
the responses to probes are categorized (e.g. fast/slow/no response) and the probabilities
of these categories are adaptively estimated.
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[3] S.S. Ram, V.V. Veeravalli, and A. Nedić, Distributed and recursive parameter estimation, in

Sensor Networks, Signals and Communication Technology, G. Ferrari, ed., Springer, Berlin,
Heidelberg, 2009, Ch. 2, pp. 17–38.

[4] L. Paradis and Q. Han, A survey of fault management in wireless sensor networks, J. Netw.
Syst. Manag. 15 (2007), pp. 171–190, doi:10.1007/s10922-007-9062–0.

[5] I. Dietrich and F. Dressler, On the lifetime of wireless sensor networks, ACM Trans. Sen. Netw.
5 (1) (2009), pp. 5:1–5:39.

[6] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, Wireless sensor networks: a
survey, Comput. Netw. 38 (4) (2002), pp. 393–422.

[7] C. Raghavendra, K. Sivalingam, and T. Znati, Wireless Sensor Networks, Springer, New York,
2004.

D
ow

nl
oa

de
d 

by
 [

D
r 

K
. D

ed
ec

iu
s]

 a
t 0

5:
18

 2
7 

M
ay

 2
01

3 



12 K. Dedecius and V. Sečkárová
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