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Dynamic Diffusion Estimation in
Exponential Family Models

Kamil Dedecius and Vladimíra Sečkárová

Abstract—This letter proposes a new dynamic diffusion estima-
tion method for a collaborative inference of a common model pa-
rameter using a distributed network of cooperating nodes. Unlike
the existing single problem-oriented diffusion methods, it is formu-
lated abstractly for the exponential family of models. The resulting
advantage—its easy and straightforward application to the family
members—is demonstrated on three selected cases: i) the diffusion
autoregression, ii) the diffusion Poissonmodelling and iii) the diffu-
sion estimation of a Bernoulli process with unknown proportions.
The first case is shown to coincide with the diffusion recursive least
squares.

Index Terms—Diffusion estimation, distributed estimation, pa-
rameter estimation, sensor networks.

I. INTRODUCTION

W E address the dynamic distributed estimation of an un-
known parameter of interest from noisy measurements

by a diffusion network. Each node exchanges information on
observations and estimates with its adjacent neighbors and in-
corporates it locally into its own statistical knowledge. This sig-
nificantly improves the statistical properties and robustness of
the estimation process under regular conditions [1]. Unlike the
consensus algorithms and their variations, e.g. [2]–[5], the diffu-
sion algorithms do not require multiple intermediate iterations
between two subsequent measurements, see, e.g. [1]. Further-
more, Tu and Sayed [6] show that the diffusion strategies can
outperform the consensus strategies in dynamic environments.
The diffusion solutions are mostly least-squares (LS) ori-

ented, for instance the diffusion least mean squares (LMS) [7],
[8], recursive least squares (RLS) [1] or the Kalman filter [9].
Although otherwise sound, they are strongly single-problem
oriented and their reformulation for other tasks, e.g. non-LS
oriented, is limited or even impossible by nature. The goal of
this letter is to overcome this shortcoming. By exploiting the
consistent theory of the Bayesian inference, we formulate a
new dynamic diffusion estimation method in an abstract way,
theoretically independent of a particular model type. The only
assumption is its membership in the exponential family. Ex-
amples are the normal regression models, Poisson (shot noise)
model, Bernoulli, Weibull, Pareto and many other models.
We note that the dynamic estimation of a varying parameter
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coincides with the (Bayesian) parameter tracking. Since the
proposed distributed estimation method is rooted in this realm,
it is directly possible to use most of the elaborated Bayesian
tracking methods, for instance forgetting, e.g. [10], [11] and the
references therein.

II. BAYESIAN ESTIMATION IN EXPONENTIAL FAMILY

Consider discrete-time dynamic modelling of an observed
variable determined by an unknown fixed parameter and,
if exists, a known explanatory variable (e.g. regressor) .1

are time indices. From the probabilistic viewpoint,
the model can be represented by a conditional probability
density function (pdf) . Estimation of is based on
the knowledge of past data and
the prior pdf , obtained, e.g., from an expert, based on
historical data, or alternatively being a flat noninformative pdf.
The Bayesian approach to estimation recursively updates the
prior pdf by new data via the Bayes’ rule [12],

(1)

Here stands for proportionality, i.e. equality up to a normal-
izing factor. We call (1) the sequential variant. Equivalently, for
time horizon , the batch estimation reads

(2)

Analytical tractability of recursions (1), (2) is guaranteed if
the model is an exponential family distribution and
the prior pdf is conjugate to it, as defined below [12] (with time
indices dropped):
Definition 1 (Exponential Family of Distributions): An expo-

nential family of distributions of a variable with a parameter
and an explanatory variable is a family of distributions with
pdf of the form

(3)

where is a known function, is a known normaliza-
tion function, is a natural parameter and is a suffi-
cient statistic.
Definition 2 (Conjugate Prior pdf): A conjugate prior pdf for

a parameter with the hyperparameters of the same dimension
as and has the form

(4)

where is a normalization function and has the same
form as in the exponential family.

1For the sake of generality, the variables are considered real, possibly multi-
variate and with compatible dimensions.
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The dimension-preserving sufficient statistic accumulates all
statistical knowledge necessary to compute an estimate of , re-
gardless of the data sample size. It has the form for the
sequential variant (1), and for the
product in the batch variant (2). The sequential update modifies
the prior hyperparameters as follows:

(5)

similar rules hold for (2). For simplicity, we stick with the se-
quential variant in the sequel. The modifications for the batch
variant are straightforward.
The point estimate of can be obtained from the posterior

pdf using standard formulas. Usually it is the mean value; some-
times the median or the mode are preferred. The estimation un-
certainty is often expressed by the estimator variance.

III. DIFFUSION ESTIMATION

The diffusion network is an undirected connected graph of
spatially distributed nodes (e.g. sensors). Each node

can directly exchange informationwith adjacent nodes
forming its closed neighborhood of a cardinality ; also
. The exchanged information relates to (i) observations (adapt

step) and (ii) estimates (combine step). Since the information
from the nodes may have different credibility from the
th node’s viewpoint, nonnegative relative weights summing to
unity are used to reflect this.

A. Adapt Step

Each network node employs the same form
of an exponential family model as above. Fixing
and , we may regard for as a complete
system of hypotheses about the true model at . From the th
node’s viewpoint, these are valid with probabilities , called
weights, summing to unity due to the completeness. The Kull-
back-Leibler (KL) divergence [12] defined in Appendix in the
role of the loss function then provides the way to approach the
true model by pdf as follows:
Proposition 1: Given pdfs with weights , , the

best approximating pdf optimal in the KL sense, minimizing
the cumulative loss

has the form

Proof: By definition of the KL divergence

The minimum of the KL divergence is attained when its argu-
ments agree.
The KL-optimal model is given by the geometric mean of

available hypothetical models. The initial choice of exponen-
tial family models yields the appealing consequence of analyt-
ically tractable recursive diffusion update rules similar to (5).
The Bayes’ theorem (1) with updates the hyperparam-
eters according to the following proposition.
Proposition 2 (Adapt-Posterior pdf): Given sufficient statis-

tics , , the adapt step updates the th node’s
hyperparameters and as follows

(6)

The proof is trivial.
Remark 1: The KL divergence is a well founded measure of

pdfs’ dissimilarity [12]. The chosen zero-forcing order of its ar-
guments brings the salient feature of analytically tractable com-
putations in the exponential family due to the geometric mean,
at the potential cost of variance underestimation. The alterna-
tive order (zero-avoiding divergence) would yield the arithmetic
average of pdfs, raising computational issues and potential vari-
ance overestimation [13].

B. Combine Step

The combine step follows the adapt step in order to further
improve the statistical properties of individual estimators. We
propose two principally different methods, one combining
whole adapt-posterior pdfs, the other combining only the point
estimates.
a) Whole adapt-posterior pdfs: the th node combines the

adapt-posterior pdfs with the hyperparameters (6) of nodes
in the KL-optimal sense prescribed by Proposition 1 (with

the posterior pdfs and weights in the roles of and ).
The resulting combine-posterior pdf has the following hy-
perparameters,

(7)

These hyperparameters completely characterize the distribution
of . It is usually very easy to evaluate its moments, quantiles
etc. using standard formulas. Furthermore, the combine-poste-
rior pdf can serve as the prior for the next adapt step at .
b) Point estimates: if the th node has access only to the point

estimates provided by nodes , for instance the means
and optionally the related variances , it is possible to directly
combine them as follows:

(8)

This approach, motivated by the mixture-based estimation [14],
is slightly computationally cheaper, because it avoids interme-
diate combination of pdfs. The adapt-posterior pdfs remain un-
modified and enter as the prior.
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TABLE I
WEIGHTS BEFORE NORMALIZATION. .

THE SAME WEIGHTS CAN BE USED FOR

C. Choice of Weights

The purpose of weights and is to express the th node’s
degree of belief in information from the nodes . For fixed
, both and sum to unity. There exist several (mostly
static) methods for their determination, some of them are given
in Table I, see, e.g. [15] and references therein. An additional
feature of the chosen probabilistic framework is the prospect of
theoretically justified information-based methods for dynamic
weights. For instance, it is possible to exploit local modelling
and sharing of the observations/estimators variances at each
node or to measure the fit of the data/estimates using the like-
lihoods. However, this issue is beyond the main message of the
letter and will be addressed in the future.

IV. EXAMPLES

A. Diffusion Autoregression

Consider a th order autoregressive model

where the explanatory variable
is a known column regression vector, is ad-
ditive white noise and is a column
vector of unknown regression coefficients. Its estimation pro-
vides, among others, the least squares (LS) method via the
normal equations; the recursive variant is RLS. The same
point estimator follows from the Bayesian modelling with

and a normal prior distribution for the
parameter ; the associated uncertainty is an inherent
part of the solution. We focus on a bit more complex normal
inverse-gamma prior distribution , providing an
additional advantage of variance estimation with .
Its hyperparameters standing in the roles of and are the
extended (symmetric) information matrix
and the degrees of freedom [12].
Let us demonstrate the ease of derivation of the diffusion es-

timator. The model pdf in the vector form reads

A rearrangement of the terms according to (3) reveals the suffi-
cient statistic connected with time ,

(9)

Hence the update (5) of the hyperparameters takes the form

Recall that the autoregressive recursion begins with
, imposing the initialization with and . For

, the point estimators of and are easily reachable
after partitioning the matrix into blocks [10]

Then

(10)

The diffusion estimator is as follows: The adapt step pre-
scribed by Proposition 2 has the form

(11)

The combine step is a direct application of the prescribed rules,
too. The first case, the whole adapt-posterior pdfs combination
using (7) and (11) reads

The point estimates combination puts (10) into (8).
This diffusion autoregression (with the point estimates com-

binemethod) coincides with the diffusion RLS proposed by Cat-
tivelli et al. [1]. This is proved and discussed in Supplemen-
tary material. Additionally, it provides the noise variance es-
timator, which can be potentially useful for dynamic determi-
nation of the relative degree-noise variance weights (Table I).
The notable benefit of the proposed Bayesian approach over the
non-Bayesian one lies in the ease and straightforwardness of its
application to a chosen problem while still completely retaining
all theoretical consistency.

B. Homogeneous Poisson Process

The homogeneous Poisson process (alias homogeneous shot
noise) is a random process of the counts ,
starting with and with independent stationary Poisson
distributed increments satisfying

(12)

The rate parameter coincides with the mean and vari-
ance of . The process characterizes, e.g., the number of pho-
tons or other particles incident on a detector.
Considering the sequential variant with and rewriting

(12) to the form (3) reveals the sufficient statistic
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The conjugate prior for is the gamma distribution
with shaping hyperparameters in the roles of and ,
respectively. Their update (5) has the form [12]

(13)

The point estimator of is well known to be with
the variance .
Now we easily derive the diffusion estimator. The adapt step

according to Proposition 2 reads

(14)

The combine step for whole adapt-posterior pdfs (7) reads

(15)

If only the combination of point estimates is required, then (8)
with the above given point estimators is used.

C. Estimation of Bernoulli Process Proportions

This example studies the Bernoulli process exploited, e.g.,
in the queuing theory, reliability analysis and finance. It is
a discrete-time stochastic process yielding a sequence of in-
dependent identically distributed binary random variables
taking values 0 or 1 (failure or success). It follows the Bernoulli
distribution,

where is the probability of success . Clearly
. The conjugate prior for unknown parameter

is the beta distribution with the hyperparameters
in the roles of and , respectively. Their update (5)

is

(16)

The point estimator is known to be with the variance
.

Note the appealing fact arising from the Bayesian estimation
of exponential family models with conjugate priors: the recur-
sions (13) and (16) are identical although the underlying dis-
tributions are not. The diffusion estimation adapt and combine
steps would accordingly agree with (14) and (15) (or the com-
bination of point estimates (8)).

V. ESTIMATORS PROPERTIES

Generally, the (unique) Bayes estimators are admissible in
that there exists no other rule that dominates them with respect

to the selected risk function. For instance, under MSE, the
Bayes’ rule is unique and admissible. Furthermore, it is also
asymptotically unbiased, consistent and efficient. More on
this can be found, e.g., in [16]. If the nodes provide correct
information on the estimated parameter, then the properties
hold in the diffusion algorithm as well; otherwise, the result
is a shrinkage estimator [16]. A deep study of the diffusion
estimator statistical properties is a part of further research.

APPENDIX
KULLBACK-LEIBLER DIVERGENCE

Given two pdfs and , their Kullback-Leibler (KL) diver-
gence is the nonnegative functional

Properties: iff a.e. and
if . The triangle inequality does not hold.
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