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Abstract—The contribution presents the results of a collabo-
rative R&D effort of two private companies and two national
research institutions, joined at the European level. It was aimed
to develop an enhanced on-line predictor of the strip thickness in
the rolling gap. The issue dealt with is the absence of a reliable
delay-free measurement of the outgoing strip thickness or the gap
size, making the thickness control a challenging task. Although
several satisfactory solutions have been used for decades, and
modern control theory has been exploited as well, the pervasive
competition in the field of metal strip processing emphasizes the
need of a novel, more precious measuring method. The solution
developed within the completed project is based on a parallel
run of several adaptive Bayesian predictors whose outputs are
continuously mixed to provide the best available rolling gap size
prediction. The system was already tested in open loop in a
real industrial environment for two reversing cold rolling mills
processing steel and copper alloys strips, respectively.

I. INTRODUCTION

Thickness control (Automatic Gauge Control – AGC)
counts traditionally among key and challenging tasks in the
field of cold rolling of metal strips. Its well elaborated so-
lutions have been routinely used for decades but permanent
competition and economic pressures motivate research for
even slight improvements of control quality, especially for
initial phases of rolling and for dealing with non-standard
situations.

A company with two decades long expertise in control
of rolling mills joined forces with two renowned research
institutes and another automation-oriented company in order
to design an innovative method, combining a group of existing
solutions within a novel framework based on Bayesian treat-
ment of uncertainty. The main achievement of the completed
project accomplished by the Czech-Slovenian consortium is
a functional sample of the so-called Probabilistic Bayesian
Soft Sensor (ProBaSensor). This sample was extensively tested
in two industrial plants. The present paper describes main
principles and achievements.

II. NATURE OF THE PROBLEM

A. Reversing cold rolling mill

A reversing cold rolling mill is a machine serving for
reduction of the metal strip thickness during one or several
passes through the rolling gap while alternating direction of
rolling – see Fig. 1.

Fig. 1. Scheme of a four-high rolling mill.

The problem is that exact and reliable measurement of the
rolling gap size which directly influences the outgoing strip
thickness is not available. The roll positioning system provides
just measurement of the position z of its actuator against the
mill frame and the output strip thickness H2 is measured with
a significant transport delay.

Values of z and corresponding H2 differ principally because
of significant stretch of the rolling mill due to applied rolling
force. Elongation of the rolling mill frame can reach more
than 2 millimetres while the required strip thickness tolerance
counts in tens of microns or even less, depending on parame-
ters of the strip. Among usually measured signals belong also
the input and output strip speeds v1 and v2, respectively, the
rolling force F (or at least hydraulic pressures for its indirect
evaluation), electric currents of the main and coiler drives and
input and output strip tensions in some cases. Mostly, the input
strip thickness H1 can be measured as an auxiliary variable.

B. Existing solutions

Basic feedback-type AGC based entirely on measurement of
the output strip thickness H2 suffers from obvious limitations
imposed by the transport delay. Another classical method for
evaluation of the gap size, known as the gaugemeter, uti-
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lizes an empirically determined approximative stretch function
F(F, z) to estimate the actual size of the rolling gap. Yet an-
other method based on the so called mass-flow principle relies
on theoretical equality of ratios of input–output thicknesses
and output–input speeds,

H1

H2

.
=

v2
v1

.

These principles can be considered as members of a wide fam-
ily of model-based methods, which utilize relevant measured
signals in various combinations. There exist also other more
or less successful approaches, whose description would exceed
the scope of this paper.

The model-based methods [1] often employ a regression-
type models of the form

h2(k) = P ′(k) D(k) + e(k), (1)

where k = 1, 2, . . . stands for discrete time index, h2(k) is
deviation of the output thickness from its nominal value,

D(k) = [d1(k), d2(k), . . . , dm−1(k), 1]
′

is the regression vector of length m (the last term represents
the offset) and

P (k) = [p1(k), p2(k), . . . , pm(k)]′

is the vector of m unknown parameters. The stochastic variable
e(k) ∼ N (0, r(k)) stands for Gaussian white noise.

Under appropriate choice of a particular model type, for in-
stance the classical ARX, the main advantage of this approach
is the possibility of recursive estimation of model parameters
Θ(k) = {P (k), r(k)}, in the ARX case using the least squares
method.

ProBaSensor exploits four proven models Mi, i = 1, . . . 4,
from which M1 and M2 represent the gaugemeter and mass-
flow principles respectively. Models are uniquely represented
by regressors (time indices k are omitted):

M1 : D1 = [F(F, z), z, 1] (2)

M2 : D2 =

[
v1
v2

h1,
v1
v2

, 1

]
(3)

M3 : D3 = [h1, z, 1] (4)

M4 : D4 =

[
h1, z,

v1
v2

, 1

]
(5)

III. PROBASENSOR’S MAIN IDEA

The classical approach to AGC and to evaluation of the
rolling gap size is model switching, that is choosing a single
most suitable model according to actual working conditions
(initial phase, stable rolling, rolling of welds, final part of the
strip, non-standard situations, etc.).

The idea of the novel approach consists in model averaging
[1]. All models are run in parallel and at each time instant,
their estimates of the gap size (equivalently of the actual non-
delayed output thickness) are mixed in a form of a convex

combination, whose weights are proportional to models’ like-
lihoods.

Generally speaking, the idea prefers mixing of all available
information to selection of the best piece of it.

A. Employed theory – Bayesian approach

The Bayesian approach expresses the model (1) of h2(k)
given Θ(k) and D(k) in the form of a conditional probability
density function (pdf) [2]

f (h2(k)|Θ(k), D(k)) . (6)

Its parameters Θ(k) = {P (k), r(k)} are modelled with an-
other distribution with pdf f(Θ(k)|D1:k−1,H1:k−1

2 ), where

D1:k−1 = {D(1), . . . , D(k − 1)}
H1:k−1

2 = {h2(1), . . . , h2(k − 1)}
are used as an accumulated knowledge of the past develop-
ment. Verbally it expresses the distribution of our knowledge
about model parameters Θ(k), based on our observations of
pairs ’previous regressor–previous measurement’. The Bayes’
rule then recursively corrects this knowledge and gradually
updates the distribution by incorporation of new data,

f(Θ(k)|D1:k,H1:k
2 )

=
f (h2(k)|Θ(k), D(k)) f

(
Θ(k)|D1:k−1,H1:k−1

2

)

f
(
h2(k)|D1:k,H1:k−1

2

) .

(7)

The denominator in (7) serves as a normalizing constant,
independent of Θ(k). If the prior parameter pdf is chosen to
be conjugate to the model, the posterior attains the same form
as the prior and can be used as the prior in the next time
instant [3]. Furthermore, the existence of sufficient statistics
implies that the knowledge is aggregated without increasing
the dimension.

The predictive pdf f
(
h2(k + 1)|D(k + 1),D1:k,H1:k

2

)
pro-

vides the Bayesian prediction. It follows from the marginal-
ization equation

f
(
h2(k + 1)|D(k + 1),D1:k,H1:k

)

=

∫
f(h2(k + 1)|Θ(k), D(k + 1)) f

(
Θ(k)|D1:k,H1:k

2

)
dΘ(k),

(8)

cf. with the denominator in (7). The point estimate is then
equivalent to the mean of the distribution.

B. Parameter estimation in regressive models

The Bayesian regressive models (6) equivalent to the deter-
ministic model (1) has the form of a normal distribution

h2(k)

∣∣∣∣P (k), r(k), D(k) ∼ N
(
P ′(k)D(k), r(k)

)
. (9)

Under the lack of knowledge of r(k), the conjugate prior
to this model is of the normal inverse-gamma distribution
N iG(V (k), ν(k)) with the extended (symmetric square) in-
formation matrix V (k) of dimension N = m + 1 and scalar
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degrees of freedom ν(k) as hyperparameters, i.e. a compound
distribution where the normal part serves for estimation of
regression coefficients P given r and h2, and the inverse-
gamma part is used for the unknown variance r.

The Bayes’ rule (7) updates the hyperparameters by new
data,

V (k) = V (k − 1) +

[
h2(k)
D(k)′

] [
h2(k)
D(k)′

]′
(10)

and
ν(k) = ν(k) + 1. (11)

The point estimator of P (k) is [2]

P̂ (k) =




V21

...
VN1




′ 


V22 . . . V2N

...
. . .

...
VN2 . . . VNN


 (12)

where N is dimension of the positive definite square matrix
V (k). The point prediction of h2(k + 1) given the regressor
D(k + 1), equivalent to the mean of the predictive pdf (8) is
then

ĥ2(k + 1) = P̂ (k)D(k + 1). (13)

The relation (12) is equivalent to the recursive least squares
(RLS), as can be found together with other details in [2]. Since
the information matrices are often ill-conditioned and their
inversions can lead to significant numerical issues, they are
usually evaluated in factorized forms, e.g. Cholesky’s LU or
LDL′ (the latter is used in ProBaSensor).

The described approach to modelling neglects the poten-
tial variability of estimated parameters P (k), r(k). If the
parameters vary slowly, they can be estimated using various
techniques, e.g. the exponential forgetting [2], directional
forgetting [4] or partial forgetting [5]. Another possibility is
finite data window approach, however, at the cost of higher
computational burden.

It is often advisable to restrict estimates of the parameters
based on knowledge of the modelled process. The idea of
bounded estimation consists in running two models, one
ordinary and the other reduced. When the ordinary model’s
parameter of interest exits the set of allowed values, the
reduced model takes the responsibility for further estimation,
leaving the problematic parameter fixed. Sensitive parts of
the algorithm [6] lie in situations when the estimates cross
their boundaries.

ProBaSensor enables to switch manually among three types
of estimators differing in concrete implementation of the
above-mentioned principles.

C. Model mixers

The model mixer follows the idea of dynamic model averag-
ing [1]. Assume, that the models M1, . . . ,M4, i.e. (2) – (5), are
run in parallel and that their suitability for online prediction
of the variable of interest is uncertain. This uncertainty can

be reflected by weights wi(k), i = 1, . . . , 4, expressed as the
probability that the true model M̃(k) at time k is the ith one,

wi(k) = Pr
(
M̃(k) = Mi(k)|D1:k

i ,H1:k
i

)
.

Clearly,

wi(k) ∈ [0, 1] and
4∑

i=1

wi(k) = 1. (14)

The Bayes’ rule then incorporates the predictive ability of each
model (measured by likelihood, cf. (7) and (8)) into its weight,

wi(k) ∝ wi(k − 1)fi (h2(k)|D(k)) ,

where ∝ denotes proportionality, i.e. equality up to a normal-
izing constant, ensuring (14). Similarly to the estimation of
models’ parameters, it is necessary to reflect a potential drift
of weights wi in time. Again, exponential or other forgetting
methods can be used.

Finally, the ProBaSensor’s output is the point estimate of
h2, yielded by the convex combination of point predictions
ĥ2,i of models Mi, i = 1, . . . , 4,

h2(k) =

4∑

i=1

wi(k)ĥ2,i(k).

It was shown in [7] that averaging over several available
models leads to better average predictive ability than any single
model.

Model mixing is potentially sensitive to transition states,
when a measured variable, used in a dominating model,
accidentally changes its value. During the stabilization phase,
the dominant model and its weight continually adapt to
the new state. To smoothen the prediction of h2, it can be
advantageous to add yet one more modelling level. The
autoregressive model was tested for this purpose in [8].

Again, ProBaSensor offers alternatives in the form of two
available mixer types differing in the way how to guarantee
the conditions (14).

IV. IMPLEMENTATION

The ProBaSensor’s framework described above was imple-
mented into industrial hardware in the form of a software pack-
age, deployed together with a set of supportive applications as
a part of the rolling mill control system. The structure and its
integration is shown in Fig. 2.

The actual ProBaSensor system runs on a dedicated com-
puter under the real-time Linux OS. ProBaSensor MMI (Man-
Machine Interface) node runs a monitoring application which
provides on-line information about the system and enables
adjustments of various options and parameters.

Analysis of the network traffic showed that the network load
is still well bellow its limits even for the shortest intended
sampling period of 2 ms and that provisional extension of the
existing control system has no negative impact on its operation.

Block diagram of the ProBaSensor core can be seen in
Fig. 3. Data buffers are realized by the memory resident
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Fig. 2. Scheme of the experimental integration of new nodes into a real
control system of a rolling mill.

database which includes interfaces for both local and remote
(networked) types of access, comprising the mutex (mutual
exclusion) and FIFO queuing mechanisms. Main modules of
the system are executed at the kernel level of the operating
system to ensure hard real-time timing.
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Fig. 3. Block diagram of the ProBaSensor core.

The module responsible for data selection and pre-
processing provides – together with the delay elimination
module – data for particular models, parameters of which are
estimated recursively and used for evaluation of predictions.
The mixer includes estimation of weights of each of the
models and constructs the overall weighted prediction of the
variable in question. The modules enable various settings con-
cerning types of estimators, inclusion or exclusion of particular
models, introduction of the externally computed offset, forget-
ting factors, limits, etc. These options and parameters can be
selected or changed in the supporting monitoring application
whose main window is shown in Fig. 4. Here the situation

corresponds to experiments on the rolling mill producing
relatively thick copper strips (see below). The prediction of
the output thickness is displayed in microns by the largest
numbers while the other labels display various groups of input
data, estimated model parameters, etc.

Fig. 4. Main window of the monitoring application.

V. TESTS

The ProBaSensor system was in the first instance tested
within a simulated environment on real data originating from
various rolling mills. Afterwards, the system was successively
integrated into the control system of two real rolling mills.
The first set of experiments was conducted on the four-high
reversing rolling mill S processing steel strips. The second on
the rolling mill C with similar arrangement of rolls processing
copper, brass and other copper alloys strips. Each testing
period lasted several weeks.

A. Combinations of settings

As mentioned above, the experimental ProBaSensor system
is able to switch among 3 types of estimation algorithms for
each process model and 2 types of the model mixer. Together
with other options, there exist altogether 256 theoretical com-
binations of system settings. A reasonably smaller subset of
combinations was selected for experiments.

B. Real-data tests within simulated environment

Initial period of testing exploiting real data within the sim-
ulated environment alternated successively 30 most promising
combinations of settings. Two examples comparing predicted
output thickness with its measured values can be seen in Fig.
5 and 6.

The first plot in Fig. 5 shows the predicted deviation of
thickness in the rolling gap by the red line while the actual
measured value h2 is drawn in blue. Both signals were shifted
in time to allow direct comparison. Here the prediction is
almost excellent when we disregard the obviously increased
high frequency noise in the predicted value which would be
naturally filtered by dynamic properties of the roll positioning
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Fig. 5. Example of predictions and model weights for one of favorite settings
of the system.

system in case of a feedback control. Achievement of the
proper synchronization of the prediction and h2 is the most
important. The plot bellow shows progress of weights wi of
particular predictions hg i which are plotted separately in the
right column.
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Fig. 6. Another example of predictions and model weights for one of favorite
settings of the system.

Fig. 6 shows another situation with a fair prediction of a
”wave” of h2. Single predictions are not so different when we
neglect increased noise of the second one.

Fig. 7 corresponds to the best combination of settings
among the 30 tested adjustments and it depicts the proportion
of successfulness of particular process models. The biggest
plot represents histogram of identified model weights, the bar
plot shows averages of model weights and the pie plot enables
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Fig. 7. Winning model for the best group of settings.

to evaluate how successful were the models in average.

C. Tests on the rolling mill S
After statistical analysis of preceding results and their

visual inspection, the number of combinations for the first
period of industrial tests on rolling mill S was decreased
to 14. Histograms of prediction errors shown in Fig. 8 for
various configurations of settings were used to allow simple
comparison of results. Again, this statistical method was just
a basic one, additional expert evaluation was unavoidable.

The left plot shows histograms of prediction errors for all 14
tested combinations while the right plot represents the winning
adjustment.
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Fig. 8. Histograms of prediction error for experiments on the rolling mill S.

D. Tests on the rolling mill C
Fig. 9 shows histograms for experiments on the rolling mill

C for which the number of tested settings was decreased again
to 5. The results for particular combinations do not differ
dramatically here but they are noticeably worse in comparison
with the preceding set of experiments because of different
processed material and thicker target thicknesses prescribed
for the rolling mill C.
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Fig. 9. Histograms of prediction error for experiments on the rolling mill C.

VI. CONCLUSION

Extensive tests were accomplished to evaluate functionality
of the ProBaSensor system. The system enables number of
various adjustments which were compared in the evaluation.
Main purpose of accomplished industrial experiments was to
compare prediction of the strip thickness in the rolling gap
with its measured value taking the inherent transport delay
into account. The system must be further elaborated to allow
unsupervised operation in closed loop, that is, to be used for
automatic gauge control.

The experiments proved functionality of the developed
system. At the same time, they confirmed the expectation that
coping with uncertainty close to the level of measurement
accuracy leads rarely to clear determination of the best method
to be utilized. Continuous decision making from a set of few
favorite methods seems to provide the best possible results.
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