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Abstract. The comparison of two groups of decision-making units (DMUs) has
been already subject of scientific reflection. So far, some statistical tests have been
developed. This article addresses estimating the difference between expected out-
puts of two groups of DMUs. In contrast to other efficiency evaluation methods,
this publication focuses on quantitative assessment of this difference, not on the
hypothesis testing. The article focuses on single output DMUs and the designed
statistical tests are examined on various simulated data sets as well as on one real-
world example. Some of them stem from the data envelopment analysis, others
are related to the local regression.

1 Introduction

Efficiency evaluation of decision making units (DMUs) has attracted the attention
since 1957 [1]. Later on, a comparison of two or more groups of decision making
units extended the basic framework of individual efficiencies.
One of the most important efforts was [2] where the statistical foundation of
the data envelopment analysis (DEA) is introduced as well as a statistical test
dedicated to comparison of efficiency offgroups in two groups of DMUs. This
work was extended to 5 alternatives in [3].
This work offers a way how to examine the expected offset between two groups of
DMUs. Some of them are based on simple tests from [3] while others apply local
regression as a benchmark [4, 5]. The two groups of DMUs could correspond
to farms in with green vs. classic approach or branches of two banks. Finally,
those two groups could correspond to operation of two systems (e.g. factories) or
one system with two different configurations (e.g. one factory using two different
production programs). These examples are summarized in Table 1. In this table,
the three first rows focus on the qualitative assessment which was mainly based
on the hypothesis testing. This can be used for determination if there are some
differences in the efficiency between the two groups of the DMUs. The last row in
the table is our contribution, where it is also important to quantify the efficiency in
an explicit way. If a new technology, a decision support system, or an outsourced
service are paid and bought, it is important to quantify the value added by a
new approach. In case of so called performance contracts 1, this quantification

1 See e.g. http://www1.eere.energy.gov/femp/financing/espcs.html
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determines the payments to the provider of the new approach and improves the
competition between providers.

Table 1. Examples of offset measurement of two groups of DMUs

DMUs Inputs Output Groups
differ by

Purpose of offset evalu-
ation

Family farmers
[6]

cultivated area,
working days

net income traditional
vs. green
farming

is green farming suffi-
cient for the families

Coffee retailers
[7]

costs of goods
sold; sales,
general, and ad-
ministrative ex-
penses; depreca-
tion/amortization

revenue fair-trade
vs. others

competitiveness impact
of socially responsible
sourcing

Universities [8] staff; non-
personnel expen-
ditures

students,
publi-
cations,
third party
funds

German
vs. Swiss

evaluation of EU initi-
ated reforms

Operation days
of a building
[5]

daily average of
the ambient tem-
perature

power
consump-
tion

original
vs. new
controller
of the
HVAC
system

evaluation of savings
achieved by the new
technology

At more general level, the efficiency evaluation of DMUs is of high importance in
large-scale distributed systems where the quality of different decision making ap-
proaches has to be evaluated. This can lead to propagation of positive experience
within a DMU network.
The text is organized as follows: Sect. 2 introduces used notation. The notation
is used in Sect. 3 for the problem formulation, i.e. the estimation of output offset
between two groups of DMUs. Consequently, some estimates of the offset are
provided in Sect. 4. Those estimates are examined on both simulated and real
data in Sect. 5. The text is concluded in Sect. 6 by a short summary.

2 Notation

Before we will define specific notation for the addressed domain, we introduce
some general notation. We will use N for natural numbers, R for the set of real
numbers and RN for N dimensional real vectors. The equality by definition is
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denoted by ≡. The conditioned probability density function are denoted as f (·|·)
and are distinguished by their arguments. The conditioned expected value is de-
fined as E [a|b]≡

∫
a f (a|b)da.

Let us consider two groups of DMUs. Each DMU transforms the inputs to output
and each group can use different mechanisms for this transformation. Mathemat-
ically, each DMU has a single output y ∈ R and a vector input x ∈ Rm, having
dimension m ∈ N. For the comparison, we have data in form D = (x(i),yi,ki)

n
i=1

where i are indices of data , x(i) denotes ith vector with components x(i)j , and
ki ∈ {1,2} is an index of the group. We assume that the DMUs within each group
are homogeneous, i.e. the input-output transformation is described by the proba-
bility density function f (y|x,k). This dependency can be modeled using a refer-
ence r output and noise terms, i.e.:

y = r(x)+uk (1)

where r : Rm→R and uk is a general noise term, not necessarily zero-mean. This
model assumes that the noise uk is dependent on the group, but not on the inputs.
The tests introduced in [3] do this assumption which is from our point of view
not very realistic. In the real situations the output variance might depend on the
inputs. Typically, the more input, the higher variance. Therefore, we introduce
also an alternative model instead of (1)

y = r(x)+ vk(x). (2)

where vk is a noise, depending on x.
Furthermore, we assume that each DMU operates under different conditions and
using different inputs. Thus each group has its typical inputs and conditions.
Therefore we assume the inputs to have pdf f (x|k). Finally, we introduce the
probability that a randomly selected DMU will belong to the first group ρ ≡
P(k = 1). Then the marginal pdf of x is

f (x) = ρ f (x|k = 1)+(1−ρ) f (x|k = 2). (3)

3 Problem Formulation

Consider we have a given input x̃ ∈ Rm. We let one DMU from both groups
transform this input. First, the expected difference of outputs for given x̃ is:

δ(x)≡ E [y|x̃,k = 2]−E [y|x̃,k = 1] . (4)

Next, the expected average difference equals:

∆≡ E [δ(x)] =
∫
Rm

δ(x) f (x)dx. (5)

Note that in case of independence of noise on the input (1), it holds

∆ = δ(x) ∀x ∈ Rm. (6)

This proposition can be proved by application of the definition in (1), definitions
of δ and ∆. The application of the additivity to (4) leads to elimination of the
x dependent parts. A formal proof is beyond the scope of this text. We use the
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simpler model (1 because we need to know the analytical value of ∆ which are
carried out in Sect. 5. In case of (2), we it seems to be necessary to approach the
real value of ∆ using intensive Monte-Carlo simulations.

The problem addressed in this text consists in estimating δ(x) and ∆ from avail-
able data. This estimation of the offset between two groups of DMUs can be of
three forms: (i) a point estimate ∆̂, (ii) an interval estimate (∆̂min, ∆̂max), or (iii) a
posterior pdf f (∆|D) where D are the available data.

4 Considered Estimates

In this Sect. we provide information on the considered estimates of ∆. First, we
will introduce the benchmarking models that are data-driven and have minimal
assumptions about the structure of (1) and (2). Note we work with a common
benchmark for data from both groups2. Consequently, we will describe the algo-
rithm for the estimation of ∆ where the benchmarking models are used at the first
step.

DEA Benchmarking. As proposed in [3], the reference r which has been intro-
duced in (1-2) can be estimated as follows, corresponding to the BCC3 model [9]:

r̂bcc(x̃) = max{φ| (7)
n

∑
i=1

λiyi = φ; (8)

n

∑
i=1

λix
(i)
j ≤ x̃ j,∀ j = 1, . . .m; (9)

n

∑
i=1

λi = 1; (10)

λi ≥ 0, ∀i = 1 . . .n} (11)

Let us interpret this reference briefly. For a given x̃, we are looking for a maximal
combined output (8) while the combined inputs are limited by the given one (9).
The allowed combinations are convex as stated in conditions on λ1 . . .λn in (10),
(11).

This estimate can be calculated by solving a linear programming problem. We
mention also usual modification of the basic DEA apprach. First, we consider the

2 It is possible also the creation two benchmarks, but this is not addressed in this article. Else-
where [5], we clarify the motivation for a common benchmark for both groups carefully.

3 BCC stands for Barker, Charnes, and Cooper who were authors of this model.
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FDH4 model [10]

r̂fdh(x̃) = max{φ| (12)
n

∑
i=1

λiyi = φ; (13)

n

∑
i=1

λix
(i)
j ≤ x̃ j,∀ j = 1, . . .m; (14)

n

∑
i=1

λi = 1; (15)

λi ∈ {0,1}} (16)

Then also the basic DEA model denoted as CCR5 [11]

r̂ccr(x̃) = max{φ| (17)
n

∑
i=1

λiyi = φ; (18)

n

∑
i=1

λix
(i)
j ≤ x̃ j,∀ j = 1, . . .m; (19)

λi ≥ 0} (20)

The value of the benchmark can be calculated for each x ∈ RNx using a linear
programming procedure where φ stands for the objective function and the equal-
ities and inequalities for constrains. The DEA approaches differ each other with
respect to the conditions on λi, as it can be seen in (10), (11), (15), (16), and (20).
One can see that conditions for FDH are the most strict while for the CCR are the
less strict. Thus, the FDH will rate more units efficient than BCC or CCR.

Local Regression Benchmarking. Another way how to construct a benchmark
is a local polynomial regression [4] - abbreviated as LPR - of the degree p. We
will use only the single input version, i.e. m = 1:

r̂lpr(x̃) =
n

∑
i=1

λi(x̃)yi (21)

where the vector λ(x)T = (λ1,λ2, . . . ,λn) is calculated as

λ(x̃)T = eT (XT
x̃ Wx̃Xx̃)

−1XT
x̃ Wx̃ (22)

where e = (1,0, . . . ,0) ∈ Rp+1

Xx̃ =


1 x(1)1 − x̃ . . .

(x(1)1 −x̃)p

p!

1 x(2)1 − x̃ . . .
(x(2)1 −x̃)p

p!
...

...
. . .

...

1 x(n)1 − x̃ . . .
(x(n)1 −x̃)p

p!

 (23)

4 FDH stands for free disposable hull.
5 CCR stands for Charnes, Cooper, and Rhodes who were authors of this model.
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and Wx̃ is a diagonal matrix where wi(x̃) = K((x(i)1 − x̃)/h) is the weight. Param-
eter h > 0 is a bandwidth parameter and K is a kernel function. We adopted the
Gaussian kernel:

K(z) =
1√
2π

exp
(
− z2

2

)
(24)

Other applicable kernels, like Epanechnikov kernel, as well as general properties
of kernel functions are described e.g. in [4].
In contrast to DEA approaches, the local polynomial regression has two param-
eters, namely the bandwidth h and p and the quality of fit depends on them. The
optimization of p can be done using systematic search since the set finite and
small. For each p, the bandwidth h can be optimized using leave-one-approach,
details are provided in [4].

Estimating Offset between Two Groups of DMUs. Now, we are about to
describe the method itself. We will do it an a step-by-step way:

1. Benchmark on data - we use the data D to calculate the r̂(x(i)). We can use
one of the benchmarking models provided in the previous paragraphs.

2. Calculation the residuals - we introduce residuals as

ei = yi− r̂(x(i)) ∀i = 1, . . . ,n(.)

3. Fitting the residuals - we calculate the regression model. We adopted the
ordinary least square approach with an indicator (dummy) variable as used
in [3] that is applicable in the case of model (1).

ei = β0 +β11(ki = 2)+ξ

where 1(ki = 2) is indicator that the ith DMU belongs to group 2 and ξ is a
zero mean noise.

4. Point estimate of the offset - we interpret a regression parameter as a point
estimate, namely the regression parameter β1 can be interpreted as an esti-
mate of ∆ because it expresses the average difference between both groups
of DMUs.

5. Estimating the variance of the offset - we use usual statistical inference on
linear regression parameters for variance of the offset, since linear regres-
sion [12] estimates β1 and consequently its variance, too. The estimate will
be denoted as b1 and the variance SE(b1). It is calculated as follows:

SE(b1) = s
√

n

n∑
n
i=1(k

2
i )−

(
∑

n
i=1 ki

)2

where

s =

√
∑

n
i=1(ei− êi)2

n−2
.

with êi being output from the regression model in (25)
6. Construction of interval estimate of the offset - using this pdf, we can

provide the interval estimate as

∆min = b1 + tn−2(α/2)SE(b1)

∆max = b1 + tn−2(1−α/2)SE(b1)

for given level of significance α∈ [0,1] where tn−2 denotes the cdf of Student
distribution with n degrees of freedom.
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7. Density estimation of the offset - finally, the pdf of ∆ is as follows:

f (∆|D) = fn−2

(
∆−b1

SE(b1)

)
(25)

where fn−2 is pdf of Student distribution with n−2 degrees of freedom and
SE(b1) is defined in (25).

5 Comparison on Simulated Data

In this Sect. we evaluate the proposed methods on the simulated data so we can
evaluate their quality. The data are simulated from models like (2). The evaluation
methods use the simulated data only without any knowledge of the models used.
We examine general methods for the offset estimation without any prior knowl-
edge and we test if the methods are able to fit the unknown model sufficiently.
The use of the simulated data allows us to calculate the offsets analytically from
the models and compare them with the data-driven estimates.

5.1 Simulated Data

The following examples are dedicated to the numerical tests and our primary
focus is not their real interpretation6.

Example 1 offers a monotonous, concave function, as expected for the DEA
estimation [2] and the noise uk is left-half-normally distributed.

r(x) = −x2 +2x+15

u1 = −|d1| d1 ∼N (0,σ1)

u2 = −|d2| d2 ∼N (0,σ2)

ρ = 1/2

f (x) = 1 ∀x ∈ [0,1]

In this case ∆ = δ(x) = E [U2]−E [U1] = (σ2−σ1)
√

2/π. For the experiments
we used σ1 = 1 and σ2 = 2. The number of instances is n = 200.

Example 2 modifies the noise of the previous one so

u1 ∼ N (µ1,σ1)

u2 ∼ N (µ2,σ2)

Then ∆ = µ2−µ1. We use µ1 = 1 and µ2 = 2 and σ1 = σ2 = 1.

Example 3 has same structure as Example 1, but r(x) = 4x for k = 1 and
r(x) = 5x otherwise. Furthermore, σ1 = σ2 = 0.2. From definition (6), it can
easily inspected ∆ = 0.5 for this case.

6 Possible interpretation of those models can relate to companies in a segment. The input x can
be interpreted as the market share of a company. The output can be the operational costs of the
company.
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Evaluation Approach We have formulated a set of problems, where the exact
values of ∆ are analytically known. To compare quality of the proposed estimates,
we run the identification procedure ns = 100 times. Thus, we obtain ns estimates.
We want to calculate how they match the exact values. We measured:

– The quality of the point estimate using MSE = 1
ns

∑
ns
s=1(∆̂s − ∆)2 which

should be as small as possible,
– The quality of interval estimate using scores whether the exact value is

within the interval [∆s,min,∆s,max]

I =
1
ns

ns

∑
s=1

1(∆̂s,min ≤ ∆≤ ∆̂s,max)

and it holds that I ≥ 1−α is a good result and I = 1−α is a very good result.
We used the level of significance α = 0.05.

– The probability distribution function as the logarithm of the joint probability
L = ∑

ns
s=1 log f (∆|D) which should be as big as possible.

Results Tables 1–3 show the results for given tests on the formulated examples.
Table 1 shows quite good results in the MSE and high L for all methods with
the exception of CCR which fails in all examples7. The interval estimates seem
not to be very satisfactory since the value should be 0.95 or greater. Only FDH
with the value of 0.88 approaches this value. Table 2 shows results for normally
distributed noise which are not so good as in the previous case. Table 3 is the only
one where CCR was successful. It could be assumed since CCR is dedicated to
proportional dependencies between inputs and outputs.

Table 2. Results for Example 1

Approach MSE I L
BCC 0.052 0.640 -5.180
CCR 1.2e8 0.980 -1.2e10
FDH 0.036 0.880 -.3.640
LPR 0.135 0.510 -13.464

5.2 Real Data

We used the same data as in [5] where we assessed the savings achieved by im-
proved control of a heating, air-conditioning and ventilation system. The data set
consists of 200 records from an HVAC control system containing (i) daily gas
consumption y, (ii) average daily ambient weather x, and index of strategy used
during given day k. Since the lower temperature, the higher heating, we used neg-
ative values of the ambient temperature. From Fig. 1 it can be seen the CCR leads

7 The success in the interval estimates for CCR is given by a very wide variance.
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Table 3. Results for Example 2

Approach MSE I L
BCC 3.982 0.000 -398.246
CCR 9.0e5 0.960 -9.05e7
FDH 4.142 0.000 -414.182
LPR 3.383 0.000 -338.336

Table 4. Results for Example 3

Approach MSE I L
BCC 1.01 0 -175.74
CCR 0.99 0 -173.93
FDH 1.24 0.32 -4.39
LPR 0.92 0 -199.14

to very flat pdf. Other methods demonstrate the savings, but their estimates of
f (∆) differ.
From the practical applicability of this evaluation framework, following conclu-
sion can be drawn: if the average achieved savings ∆ would be a part of a contract
(e.g. the customer pays a ratio of the savings back to the provider), the used eval-
uation method have to be specified.

6 Conclusions and Future Work

In this text we introduced offset between two groups of DMUs and discussed
ways how to estimate it. These estimates have been tested on three examples. We
have shown that DEA based estimates are more appropriate for cases where the
usual DEA assumptions (one sided noise) are satisfied. The local regression ap-
proaches are applicable where those assumptions are not satisfied. Next research
shall focus on the estimates of δ(x) that are of practical importance for evaluation
of changes in particular DMUs. Theoretical aspects of the proposed tests shall
be subject of deeper investigation since the estimates are not very satisfactory in
two of the three examples. Finally, the generalization for multiple-output models
shall be addressed.
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Fig. 1. Pdfs of ∆ for particular approaches. BCC and LPR seem to be informative while CCR is
practically flat. The achieved savings are very likely between 100 and 300.
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