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Abstract. This article provides an algorithm that is dedicated to re-
peated trajectory optimization with a fixed horizon and addresses pro-
cesses that are difficult to describe by the established laws of physics.
Typically, soft-computing methods are used in such cases, i.e. black-box
modeling and evolutionary optimization. Both suffer from high dimen-
sions that make the problems complex or even computationally infeasi-
ble. We propose a way how to start from very simple problems and - after
the simple problems are covered sufficiently - proceed to more complex
ones. We provide also a case study related to the dynamic optimization
of the HVAC (heating, ventilation, and air conditioning) systems.

Keywords: Empirical function minimization, black-box modeling, sim-
plification, refining, dynamic building control.

1 Introduction

Real world application scheduling and planning suffers from the lack
of knowledge of the system structure as well as from the well known
curses of dimensionality [1, p. 3-6]. There are already some approaches,
addressing these issues. For the modeling part, black-box models can
be mentioned: e.g. neural networks [2], Gaussian mixtures [3], Gaussian
processes [4], or local regression [5]. All those black-box approaches to
modeling reach their limits whenever the number of parameters is high
in contrast to the quantity and quality of available data.

Another curse of dimensionality is related to complexity of the optimiza-
tion problems. In case of black-box modeling, it is not possible to assure
that the derived optimization problem will be linear, convex, or with-
out local optima. For such cases, wide class of evolutionary techniques
has arisen, including differential evolution [6], particle swarm optimiza-
tion [7] or covariance matrix adaptation [8]. There are also numerous
attempts to optimize those optimization techniques, e.g. [9] or [10]. In
case of dynamic problems, techniques of approximate dynamic program-
ming are being improved continuously [1]. Even though those methods



and approaches lead to improved results both in testing suites and prac-
tical applications, the essential issue remains: the higher dimensions, the
more difficult problem.
This paper provides no new method of black-box modeling or evolu-
tionary optimization. We offer a way how to make complex problems
computationally feasible while the user might decide about the simpli-
fication. After the system is able to solve simpler problems, the input
space might be step-by-step refined, possibly to the original problem.
The paper is organized as follows: We start in Sect. 2 with a very sim-
ple case study that motivates the methodology. In Sect. 3, we introduce
formal notation that is used in Sect. 4 for the problem formulation. Con-
sequently, the basic approach is provided in Sect. 5 and extended in
Sect. 6. Then, the case study in Sect. 7 is used for numerical illustration
of the approach. The work is concluded in Sect. 8 where also further
work is sketched out.

2 Case Study

We introduce the case study before the formal notation in order to im-
prove the readability of the abstract definitions. Let us consider a build-
ing control system with indoor zone temperature Tza which stands for
the temperature in the room. We will assume a hot season and the upper
zone temperature Tzau. The control is considered for the whole day, i.e.
24 time instants. Thus we write Tza,t and Tzau,t, where t = 1, 2 . . . , 24.
The comfort that have to be assured is defined as Tza,t ≤ Tzau,t. When-
ever Tza,t > Tzau,t, chillers are started in order to cool the zone down
so Tza,t = Tzau,t. There is related power consumption and cost to this
operation. Typically, the Tzau,t is defined as high as allowed, i.e. Tzau,t =
Tmax,t. However the pre-cooling, i.e. choosing Tzau,t < Tmax,t might be
beneficial due to more appropriate ambient profiles of dynamic power
prices. This fact motivates the optimization of Tzau,t, see also [11].
The goal of this case study is to determine (Tzau,t)

24
t=1 that will minimize

the overall costs of the building operation while keeping Tzau,t in bounds,
i.e.:

Tmin,t ≤ Tzau,t ≤ Tmax,t (1)

Note that the case study omits important facts which are considered in
other publications, such as internal heat gains, or indoor thermal ca-
pacity [12], since we are striving to provide an approach that is able to
optimize the system with limited knowledge only.

3 Notation

In this Section, formal notation is introduced and demonstrated in the
relationship to the above discussed case study.

Definition 1 (Trajectory). Let nx ∈ N and nt ∈ N. The matrices
X ⊂ Rnt,nx are called trajectories, their row indices are called times and
column indices inputs. The elements of the trajectories will be denoted
as xt,i.



In our case study, we have nx = 1, nt = 24, xt ≡ Tzau,t, and X is given
by (1).

Definition 2 (Conditions). Let (Ω,Σ, P ) be a probability space called
conditions where Ω is a sample space containing all possible outcomes,
Σ is set of events where event is subset of Ω, and P : Σ → [0, 1] assigns
probabilities to all events.

The conditions in the considered case study can be both internal (oc-
cupancy) and external (weather) factors that influence the operation of
the system during next 24 hours.

Definition 3 (Cost function). Let c : X×Ω → R be a mapping called
cost function.

The costs in the case study are the costs that the building owner will pay
to the utility company. These costs are given by the chiller input power
and actual power price.

Definition 4 (Evidence). Let e be a random vector of size ne over
(Ω,Σ, P ), such that exists be called evidence. Let set E ⊂ Rne satisfying
P (E) = 1 and ∀Ē ⊂ Rne hold E ⊂ Ē.

Obviously, E is set of all considerable evidences, other have zero proba-
bility. The evidence provides information about the future conditions.
The evidence in the case study can be embodied as a sequence of weather
forecast T̂oa,t. The more precise weather forecast, the more valuable the
evidence will be.

Definition 5 (Optimal Trajectory). If a trajectory x∗ ∈ X satisfies
for a given evidence e the following condition:

x∗ = arg min
x∈X
E [c|e, x] (2)

we call it optimal for the evidence e.

Definition 6 (Data). Let us define data as a sequence of triples D =
(x̃(j), ẽ(j), c̃(j))

nj

j=1 where
– matrix x̃j is a trajectory used for xj j-th experiment,
– vector ẽj is the evidence available for the j-th experiment, and
– scalar c̃j is the realized cost for the given trajectory and evidence.

The examples of the optimal trajectory and data for given case study
are straightforward: the goal is to set-up the indoor temperature profile
minimizing the expected costs. The data records involve the profile used,
corresponding weather forecast, and related costs.

4 Problem Formulation

The challenge addressed in this work has two aspects. The first one is
that the model of c|e, x is not known exactly (as well as its structure)
and we have only limited data set D available. Next issue is related to



the fact that nt and nx are relatively large3. The first issue makes it
difficult to formulate the mathematical problem (2), while the second
complicates the search of the optimal solution.
To resolve these issues, we introduce two more concepts:

Definition 7 (Data-Centric Model). Let c|e, x,D be for each e, x,D
a random variable. We denote it as data-centric model.

Note that this definition involves wide class of models, including those
that have been mentioned in the introduction.

Definition 8 (Simplification). Let s = (sx, se) be a pair of mappings
where sx : Vx → X where Vx ⊂ Rnsx . Next, se : E × D → Ve, where
Ve ⊂ Rnse and D set of all possible data sets. We call s simplification and
the set of all considerable simplifications S. A trajectory x ∈ X satisfies
given simplification s ∈ S iff ∃v ∈ Vx : sx(v) = x.

The concept of simplification is intended to reduce the dimension of both
black-box modeling and consequent reconstruction of relevant trajectory.
Thus, typically nsx + nse � ne + nt · nx.
In the case study, the simplification is considered as

sx(vx) =


vx for t = 1, 2, . . . 8
24 for t = 9, 10, . . . 22
30 otherwise

(3)

where 15 ≤ vx ≤ 30. The se could return e.g. the average temperature
of the past day (depends on data D) and average value of the forecast
for the next day (depends on evidence e). For the visualization purposes
we will adopt the average temperature of the past day only.
The quality of the simplification impacts the quality of suboptimal data-
centric optimal simplified trajectory, defined as follows, in terms of rea-
lized cost:

Definition 9 (Data-Centric Optimal Simplified Trajectory). Let
s ∈ S be a simplification. Let D be a given data set where all x̃j sat-
isfy the simplification s. Let c|x, e, d be a data-centric model for given
simplification and given data set. The trajectory x∗ ∈ X satisfying

x∗ = sx(arg min
v∈Vx

E [c|v, se(e,D), Ds]) (4)

where we assume all records in D contain a trajectory satisfying the sim-
plification s and Ds stands for data D transformed by the simplification
se, s

−1
x , is called data-centric optimal simplified trajectory or DCOS tra-

jectory.

DCOS trajectories are the objective of the proposed method. In the case
study, we will focus on the optimization of the Tzau,t for t < 9, i.e. the
upper bound between midnight and time when first occupants arrive.

3 The case study can be extended to optimization of 10 zones with 15 minutes sam-
pling, i.e. nt = 24 · 4 = 96 and nx = 10. Empirical optimization of trajectories with
960 parameters is numerically infeasible.



5 Basic Algorithm

The basic approach can be summarized in the following steps:

1. Define the simplification s ∈ S.

2. Define the data set as empty, i.e. D = ∅.
3. Set j = 1

4. Generate a random trajectory x̃(1) satisfying s, store the related
evidence ẽ(1).

5. Apply the trajectory x̃(j) to the system and observe the costs c̃(j).

6. Extend the data set D by new (x̃(j), ẽ(j), c̃(j)).

7. Obtain and store new evidence ẽ(j+1)

8. Optimize the new DCOS trajectory x̃(j+1) for given s, D, and ẽj+1.
This involves:

(a) Simplification of the data using s+ and se to Ds.
(b) Identification of the model c|v, se(ẽ(j), D), Ds

(c) Solution of v∗ = arg minv∈Vx E
[
c|v, se(ẽ(j), D), Ds

]
.

(d) Putting back from the simplified world, i.e. x̃(j+1) = sx(v∗)

9. Set j = j + 1 and go to 4.

Note that during the whole optimization the data are limited to trajec-
tories x̃j that satisfy the given simplification s.

6 Refining and More Complex Trajectories

We propose to extend the basic algorithm by application of refining to
the used simplification. Let us define us the concept first:

Definition 10 (Refining). Let s, s̃ ∈ S be two simplifications. Iff ∀x ∈
X where s is satisfied also s̃ is satisfied, and there is a surjective mapping
γ : Ṽe → Ve, then s̃ is a refining of s.

The refining might lead to broader set Vx and might lead to better results
approaching closer to the minimizer of (2). In the algorithm, the refining
can be applied between step 8 and 9. First, it has to be tested whether
the refining may be applied. Consequently, the refining has to be chosen.

An example of the simplification in the case study would be s̃ = (s̃x, s̃e)
where s̃e ≡ se and Ṽx ≡ [15, 30]2 and

s̃x(ṽx) =


ṽx,1 for t = 1, 2, . . . 4
ṽx,2 for t = 5, 6, . . . 8
24 for t = 9, 10, . . . 22
30 otherwise

(5)

In an analogical way, this refining can be refined again to dimension 4
and again to dimension 8.



6.1 Testing for Refining

Before refining the actual simplification, it has to be assured that the
procedure achieves for the given simplification the best possible results.
For this purpose we propose the application of the following test. How-
ever, other tests can be considered, too. Let ρ ∈ R+, let nb ∈ N. Let bj
be defined as follows:

bj =


0 if j = 1
bj−1 + 1 if ||x̃j − x̂j || < ρ
0 otherwise

(6)

where x̂j is the DCOS found for ẽ(j), s, and dataD\(x̃(j−1), ẽ(j−1), c̃(j−1)).
The refining is carried out after bj > nb. The value of nb will be discussed
in numerical examples in Sect. 7.

6.2 Ways of Refining

The refining is related either to the trajectories X or evidences E. In both
cases the refining consists in adding more information into the problem
definition. In case of trajectories, the simplification restricts the trajec-
tories to X1 and the refining uses X2 ⊃ X1. In case of evidences, the
refining consists in involving additional information. In both cases the
refining leads to an increase of the dimension of the black-box model for
cost c.
Of course, some refining might lead to no improvements, therefore some
testing can be carried out and the simplification might be rejected and
another can be tried. However, deeper discussion on this topic is out of
the scope of this paper.

7 Numerical Example

The case study has been introduced step-by step in the previous sections.
In order to demonstrate the results numerically, we provide basic infor-
mation about the set-up since detailed description is beyond the scope
of this work. At the end of this section, achieved results are discussed.
First, a first-principle simulation model has been adopted for a single
zone building with one chiller. We adopted a version of [13] where the
thermal capacity of the zone is influenced by ambient air temperature,
heat gains from the occupants (people in the zone), internal thermal iner-
tia given by gains and the chiller itself. The parameters have been deter-
mined based on experience of modeling of large-scale single zone build-
ings. The weather profile have been used from a real building, slightly
shifted so it had values between 20 and 35◦C.
The adopted surrogate black-box model was based on local polynomial
regression with Gaussian kernel with covariance matrix Ci,i = 1 and
Ci,j = 0, i 6= j and degree 2 (quadratic regression). More details can
be found in [14]. The considered model had single output, namely the
costs c and several regressors: first was related to the data D while the



others represented vx. The first regressor was the first PCA [15] compo-
nent from data containing: (i) weather profile from the last day and (ii)
internal temperatures (zone air, building construction). As a procedure
for optimization of vx, the covariance matrix adaptation [8] was selected
and the limit of iterations was 200 for each optimization.

We worked with 30 days and carried out 2 experiments with different set-
tings as illustrated on Fig.7. The first experiment with the setting nb = 0
and ρ = 1 leads to fast refining and the problem has comparable com-
plexity as if the 8-dimensional problem would be addressed directly. The
other experiment with nb = 5 leads to slower refining. It can be observed
that better results, i.e. lower costs, are obtained when the dimensionality
grows slowly with increasing information in the data.
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Fig. 1. Comparison of fast and slow refining.

8 Conclusions and Further Work

In this paper, we have addressed the trajectory optimization problem
for cases when the prior knowledge about the problem is limited. We
offered an approach based on simplification in both actions (using a set
of simplification s) and states (using first PCA factors). The theoretical



approach has been illustrated in a case study related to optimal cooling
in a building. It has been demonstrated that slow refining leads to better
results than addressing the high-dimensional problem directly.
The promising results challenge further research. From the theoretical
point of view, more precise statistical tests for next refining shall be es-
tablished. Next, the applicability of alternative black-box models and
optimization algorithms shall be evaluated. Then, more extensive tests
shall provide more evidence about the benefits of the proposed method-
ology, especially on comparison to model predictive control. Finally, the
approach might be applied also in another domains, such as inventory
management.

References

1. Powell, W.B.: Approximate Dynamic Programming: Solving the
Curses of Dimensionality. John Wiley & sons (2007)

2. Rojas, R.: Neural Networks - A Systematic Introduction. Springer-
Verlag, Berlin (1996)

3. Xu, L., Jordan, M.: On convergence properties of the em algorithm
for gaussian mixtures. Neural Computation 8(1) (1996) 129–151

4. Rasmussen, C.E., Williams, C.: Gaussian Processes for Machine
Learning. MIT Press (2006)

5. Cleveland, W.: Robust locally weighted regression and smoothing
scatterplots. American Statistical Association 74(368) (1979) 829–
836

6. Storn, R., Price, K.: Differential evolution - a simple and efficient
heuristic for global optimization. Journal for Global Optimization
11(341-359) (1997)

7. Kennedy, J., Eberhart, R.C.: Particle swarm optimization, Piscat-
away, NJ, IEEE Int. Conf. on Neural Networks (1995) 1942–1948

8. Hansen, N., Ostermeier, A.: Adapting arbitrary normal mutation
distributions in evolution strategies: The covariance matrix adap-
tation. In: Evolutionary Computation, 1996., Proceedings of IEEE
International Conference on, IEEE (1996) 312–317

9. Tvrd́ık, J.: Adaptation in differential evolution: A numerical com-
parison. Applied Soft Computing 9(3) (2009) 1149 – 1155
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