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Abstract— The paper deals with fuel consumption optimiza-
tion under condition of keeping the recommended speed. The
presented approach is based on data currently measured on
a driven vehicle and on external observations. Using adaptive
optimal control algorithms under Bayesian methodology, a com-
promise between fuel consumption minimization and keeping
the recommended speed is reached. Research is performed in
collaboration with Škoda Auto (www.skoda-auto.com).

I. INTRODUCTION

Reducing of fuel consumption and CO2 emission is a
significant problem concerning both economical and eco-
logical parts of society life. With a gradual emergence of
hybrid and electric vehicles in the market a solution might
seem to be found, see e.g., [1]. The price of oil is increased
and hybrid and electric vehicles promise significant fuel
savings in exploitation. From an ecological viewpoint it also
seems to be the most appropriate solution: with zero or
minimal emissions they are suitable for low-emission zones
established in some cities.

Nevertheless, conventional vehicles with combustion mo-
tors are still demanded in the market too. Firstly, purchase of
hybrid or electric vehicle is still rather expensive (although
in recent times reduction of prices is observed) that compen-
sates fuel savings. Moreover, other factors such as (i) natural
need of any new technology in refining and improving; (ii)
slowly appearing network of charging stations, especially
out-of-town; (iii) significant environmental pollution during
production and disposal of electric vehicles, etc., realistically
predispose to exploitation of conventional vehicles too.

A series of papers can be found in this area, e.g.,[2], [3],
[4]. Many of the proposed approaches are based on physical
model of fuel consumption taking into account surrounding
traffic conditions, see, for example, [5], [6].

The presented paper applies a systematic, generally ap-
plicable approach of dynamic programming to optimization
of driving based on data currently measured on a driven
vehicle and on external observations. The key features of
the approach are as follows: (i) reaching a compromise
between minimizing the fuel consumption and keeping the
recommended speed; (ii) using pre-programmed setpoints;
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(iii) superordinate deterministic control for ensuring safety
speed limits; (iv) involving prior knowledge.

The layout of the papers is organized as follows. Section II
formulates a problem and describes generally known solution
of dynamic programming of the modified form with pre-
programmed setpoints. The main emphasis of the paper is on
Section III that applies general solution to the optimization
of fuel consumption. Section IV demonstrates results of
experiments. Section V provides remarks and future plans.

II. THEORETICAL BACKGROUND

A. Problem Formulation

Let’s consider a system that at discrete time instants t ∈ t∗
produces observable outputs yt influenced by control inputs
ut. The task to design the inputs so that to push the outputs
as close as possible to their given set-points st.

B. Dynamic Programming

The system is described by the conditional probability
density function (pdf)

f (yt|ψt,Θ) , (1)

taken in the form of multivariate regression model

yt = θ′ψt + et, (2)

where
• ψt = [ut, yt−1, ut−1, . . . , yt−n, ut−n, 1]′ is a regression

vector of the nth model order,
• θ = [b0, a1, b1, . . . , an, bn, k]′ is a vector of regression

coefficients,
• et is a normally-distributed noise with zero mean value

and fixed variance r, and {θ, r} ≡ Θ.
Model parameters Θ are unknown and have to be esti-

mated. Bayesian estimation [7] is used for parameter esti-
mation using the following relation:

f(Θ|d(t)) ∝ f (yt|ψt,Θ) f(Θ|d(t− 1)), (3)

where the data dt denote {yt, ut}; d(t) = {d0, d1, . . . , dt},
where d0 ≡ d(0) corresponds to prior information about
the system; ∝ means proportionality (quality up to the
normalization constant) and f(Θ|d(t − 1)) denotes a prior
pdf at the time instant t. In case of the normal regression
model (1) the parameter estimation (3) takes the form of
a recursive computation of statistics with a conjugated prior
Gauss-inverse-Wishart pdf. This technique can be found, e.g.,
in [7], [8]. Here, it is used both for the model pre-estimation
from prior data and for on-line estimation from currently
measured data.
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During the control design, the point estimates of parame-
ters are used. This corresponds to a suboptimal solution to
the adaptive control [9].

At each time instant t, we define penalization of devi-
ations of outputs from given setpoints and penalization of
increments of inputs as follows

Jt = (yt − st)
′
ω(yt − st) + (ut − ut−1)

′
λ(ut − ut−1) (4)

where ω and λ are penalization matrices. The task is to
design a control minimizing the penalization.

The control strategy can be obtained by minimization of
the criterion

E

[
T∑
t=1

Jt|d (0)

]
(5)

where T denotes a finite control horizon, {u1, u2, · · · , uT } =
u(T ) and E denotes expectation.

To obtain causal control, the criterion is minimized back-
ward, starting at time t = T . Each step of minimization
t = T, T − 1, T − 2, . . . , the unknown data (output) at the
time must be subdued to expectation on condition of the
present output and older data. After expectation the current
input is computed so that the criterion is minimized. Thus,
the minimization goes recursively against the time.

min
u(T )

E

[
T∑
t=1

Jt|d (0)

]

= min
u(T−1)

min
uT

E

[
JT +

T−1∑
t=1

Jt|d (0)

]

= min
u(T−1)

E

[
min
uT

E [JT |uT , d (T − 1)] +
T−1∑
t=1

Jt|d (0)

]
= (†) , (6)

and denoting

ϕT = E [JT |uT , d (T − 1)] (7)
and ϕ∗T = min

uT

ϕT → u∗T (8)

we obtain the following expression, continuing (6) :

(†) = min
u(T−1)

E

[
ϕ∗T +

T−1∑
t=1

Jt|d (0)

]
. (9)

Inserting ϕ∗T+1 = 0 into (5), we can see that the result has
of the same form as the criterion. Thus, the computation
is recursive and can be summarized into the following
algorithm:

Set ϕ∗T+1 = 0
for t = T, T − 1, . . . , 1 do

expectation
ϕt = E

[
ϕ∗t+1 + Jt|ut, d (t− 1)

]
minimization

ϕ∗t = min
ut

ϕt → u∗t

end
where u∗t is a function of data d(t− 1).

C. Setpoint Pre-programming

For model (2) of the second order and penalization (4) we
are going to use pre-programmed setpoints st, i.e., known
at time instant t = T for backward minimization of the
criterion. For this aim, from computational reasons it is
advantageously to transform the model into the state-space
form

yt
ut
yt−1

ut−1

1


︸ ︷︷ ︸

xt

=


a1 b1 a2 b2 k
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1


︸ ︷︷ ︸

M


yt−1

ut−1

yt−2

ut−2

1


︸ ︷︷ ︸

xt−1

+


b0
1
0
0
0


︸ ︷︷ ︸

N

ut +


et
0
0
0
0


︸ ︷︷ ︸

εt

, (10)

yt = [1, 0, 0, 0, 0]︸ ︷︷ ︸
A

xt (11)

that allows to easier calculate the subsequent recursion.
Rearranging (4) for the state xt, we denote

Jxt
= (xt − st)′Ω (xt − st) + (ut − ut−1)′ λ (ut − ut−1) .

(12)
In (12) the output setpoint st must be rearranged as vector
[st, 0, 0, 0, 0]′ in order to correspond to the system state xt
from (10). Similarly, Ω is a diagonal matrix with ω of the
appropriate dimension at the beginning of the diagonal (i.e.,
corresponding to the dimension of yt) and with zeros instead
of the rest of diagonal entries. After substitution of model
xt = Mxt−1 + Nut + εt into (12) and some algebraic
rearrangements the obtained result takes the form of the
following algorithm

set A, B,C,D, E , F = 0
set ω, λ
for t = T, T − 1, . . . , 1 do

R = M ′ (A+ ω)M,
S = M ′ [(A+ ω)N + C] ,
W = (N ′AN + 2N ′C +B + λ)−1

,
U = N ′D + E −N ′ωst,
V = M ′ (D − ωst) ,
A = R− SWS,′

B = λ− λ′Wλ,
C = SWλ,
D = V − SWU,
E = λ′WU,
F = G− U ′WU,
ut = −W (S′xt−1 − λut−1 + U) ,

end
where the pre-programmed setpoints st at time t = T are
used for the backward minimization at time t = T − 1. It
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enables to design the control input ut knowing setpoints in
advance.

III. APPLICATION TO FUEL CONSUMPTION
OPTIMIZATION

General approach described in the previous section is
widely spread and successfully applied in many areas. Using
the setpoint pre-programming, we decided to apply it to the
specific task of optimization of fuel consumption. Within
the current project the control algorithms based on the fully
probabilistic design [10] have been already exploited [11]
as well its combination with a PID controller [12]. Here
we focus on application of dynamic programming with pre-
programmed setpoints.

A. Control Aim

Firstly, we have to define the aim of the control task
which seems to be obvious: to design a control which would
minimize fuel consumption. However, an intuitive solution of
this task leads to a reducing speed of a vehicle until full stop.
Thus, a compromise between minimizing fuel consumption
and keeping reasonable (recommended for the route and not
exceeding limits) speed should be reached. A balance of
these generally contradicted demands makes the optimum
of the solved task.

B. Selection of Variables and Construction of Model

For a considered task, we obtained real data measured on
a driven vehicle for a selected route provided by Škoda auto
(see www.skoda-auto.com). To ensure necessary dynamics,
the data were measured for various economic and not too
economic driving styles (8 data samples) with a sampling
period 0.2 seconds. The considered route is of a length about
38 kilometers out of Prague with parts of a speed highway,
out-of-town roads and roads passing through small towns
with corresponding speed limits.

Originally, the available data samples contained significant
number of variables. Considering a driver-vehicle system for
application of the described approach, we have to select mod-
eled (controlled) outputs yt, primarily related to a vehicle
itself. Among them, we have the outputs to be optimized,
i.e., with our demand to push them as close as possible to
our desired values, and the outputs not to be optimized,
nevertheless bringing the useful information to construct
a model of the first ones. Then we have to define input
variables ut that can influence the modeled outputs. Another
group is the external variables like altitude, approaching road
turn, vehicle position coordinates, etc.

After series of experiments within the project, we selected
the following most informative data. For the second order
model (2), the output yt is a five-dimensional vector includ-
ing the following entries:
The optimized part:
• y1;t – fuel consumption [µl],
• y2;t – average rear wheels speed (identified with the

vehicle’s speed) [km/h].
The non-optimized part:

• y3;t – engine torque [Nm],
• y4;t – engine speed [rpm],
• y5;t – distance traveled from the last measurement [m].

The control input ut represents pressing the gas pedal. The
external variable vt added to the regression vector is road
altitude [m].

Tailored to the context, the control aim is formulated as
follows:
• design the control ut expressing how much the gas pedal

should be pressed, so that to
• push the fuel consumption y1;t and the vehicle speed
y2;t as close as possible to their setpoints s1;t and s2;t
respectively

under natural constraints of the control input: pressing the
gas pedal from 0 till 100%.

The required compromise between reducing the fuel con-
sumption and preserving the recommended speed is for-
mulated in the control aim via tracking both the setpoints
simultaneously.

C. Choice of Setpoints

The setpoints used in the control criterion are chosen in
the following way. The setpoint s1;t for the fuel consumption
is taken from the measurements with the lowest average fuel
consumption as 85% of the actual fuel consumption at each
time instant t.

The setpoint s2;t for the vehicle speed is the recommended
speed provided by experts. It represents the speed from
the data sample with the lowest average fuel consumption
with the applied speed restrictions according to the vehicle
position coordinates. It should be noted that currently the
task is solved for a known route which means that the rec-
ommended speed is prepared beforehand (i.e., all setpoints
for the whole route as well). Modelling the recommended
speed for unknown route is planned for future work.

The vehicle position coordinates are available at each
time instant. It enables to determine the current location
and the recommended speed for the current location, as
well as for the next one and for the whole route. It means
that the setpoints are known in advance and used as pre-
programmed, entering the control criterion at time t for
its backward minimization. This allows to provide faster
reaction of pressing the gas pedal and higher control quality
that is especially critical in the case of abrupt changes of
the recommended speed. Rather sensitive settings of the
penalization matrices ω and λ help to find the balance
between tracking both the setpoints simultaneously.

D. Logic Control Block

The presented algorithm optimizes pressing the gas pedal
as the control variable, but not the brake pedal. It happens
due to the fact that in prior data the brake pedal is not
practically used and the model is badly excited. Moreover,
when braking is realized by the brake pedal, it is mostly
caused by some deterministic traffic event (a sharp turn, a
road downhill, etc.).
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For such situations, we place a deterministic logic control
block in the time cycle after the optimization. It consists of
group of logical conditions “if ..., then ...” based on general
advices from eco-driving experts, where the main principle
is evaluating values of external variables on the route and
difference between speed and the permitted speed. However,
another important reason to add this deterministic control
block is ensuring strict verification of traffic restrictions. The
main goal of this block is to provide pressing the brake pedal.
Nevertheless, in the case of exceeding the permitted speed
it can also correct pressing the gas pedal, even at the cost
of losing the optimality. Thus, this block is superordinate
to the optimization provided by the dynamic programming.
Currently it considers the following driving situations: (i)
approaching sharp turns which should be driven with low
speed; (ii) exceeding the permitted speed downhill and on
the flat road; (iii) driving downhill without pressing the gas
pedal; (iv) approaching speed limits; (v) smooth driving after
braking or stopping in previous situations; (vi) prohibition of
simultaneous pressing the gas and the braking pedal.

Selection of gear is computed as the control variable based
on ranges of engine speed and vehicle speed. The logic
control block provides a selection of the highest gear always
when it is possible as well as the neutral gear choice with a
corresponding engine speed. However, optimization of gear
selection is a complicated task, which will probably need
estimation of a model based on logistic regression. We plan
to consider this task in our future research.

Finally all these three variables – pressing the gas and the
braking pedals and the selected gear – are used as the control
inputs in the time cycle.

IV. RESULTS

The described control scheme is implemented in Matlab.
Via serial ports it is connected with a vehicle real-time
simulator provided by Škoda auto. The simulator is a separate
software based on physical model of a vehicle. It represents
a vehicle driven on the route shown in Figure 1 (top).

The data sample about 12000 data items is necessary in
order to have the vehicle passed through the whole route with
the speed close to the recommended one. For the control
purpose, one of the data samples can be selected and then
used for comparison with the obtained results. Figure 1
(bottom) demonstrates the route passed by the controlled
vehicle corresponding to Figure 1 (top).

We can set the penalization matrix ω in the control
criterion according to our actual preferences. With the help
of settings of the penalizations we can choose whether we
wish to drive faster, but with a higher fuel consumption, or
otherwise to drive economically, but slower. It is reached
by the choice of bigger penalizations of deviations either
of the speed from its setpoint or of the fuel consumption.
Results of experiments with various settings of penalizations
are provided below. The penalization matrix λ for the input
increments remains invariant during the experiments. For
better illustration the fragment with 5000 data items are
presented.
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Fig. 1. The top plot provides a screenshot from the simulator with a
map of the selected route and a transparent view of a vehicle. The red
circle shows a location of the vehicle on the route. The bottom plot shows
UTM coordinates for vehicle position after passing the whole route by the
simulated vehicle.

A. Results for Control with Faster Speed Preference

Figure 2 shows the speed (top) and the fuel consumption
(bottom) with bigger penalization of the speed compared
with the recommended and the original real speeds. The
controlled speed is really close to the recommended one,
however, due to the penalization also of the fuel consumption
it is a bit lower. A difference between the controlled speed
and the original real speed is explained by the fact that the
real speed was faster (than recommended) in the beginning
of the route and therefore the time of arrival at some position
was accelerated. The fuel consumption in Figure 2 (bottom)
does not track its setpoint as close as possible, however, the
average fuel consumption obtained for this experiment is 5.2
L/100km that is lower than the real average fuel consumption
from the tested data sample: 6.3 L/100km.

Figure 3 (top) demonstrates the pressing the gas pedal
that has a smoother course in comparison with the real
data. Figure 3 (bottom) provides pressing the brake pedal
restricted from 0.8 to 25 bar according to minimal and
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Fig. 2. Speed (top) and fuel consumption (bottom) with bigger penalization
of speed deviations.

maximal pressure in the vehicle brake system. Usage of the
brake pedal in Figure 3 (bottom) corresponds to the low
speed in Figure 2 in places with sharp turns on the route.
The obtained selection of gear is not shown here to save
space, but it corresponds to general advices of eco-driving
experts implemented in the logic control block to choose the
highest gear where is possible with the current ranges of the
engine speed and the vehicle speed.

B. Results for Control with Lower Fuel Consumption Pref-
erence

For this experiment we prefer slower economical driving,
i.e., with a lower fuel consumption. Thus we set the bigger
penalization for the fuel consumption. However, in this
case the obtained speed is very low. To reach lower fuel
consumption with the reasonable speed, we have to very
slightly increase the penalization of the consumption, but
remain the previous penalization of the speed.

Figure 4 shows the speed (top) and the fuel consumption
(bottom) obtained with the increased penalization of the fuel
consumption deviations. The obtained speed is lower than
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Fig. 3. Pressing the gas (top) and the brake (bottom) pedals with bigger
penalization of speed deviations

the recommended one, however it is only slightly lower than
the real one. The average fuel consumption obtained in this
case is 4.9 L/100km that is lower both than the real fuel
consumption and the previous result.

Figure 5 presents pressing the gas (top) and the brake
(bottom) pedals obtained with the increased penalization
of the fuel consumption deviations. Their plotted courses
correspond to general rules of eco-driving and are smoother
than in Figure 3. However, the selected gear (not shown here
to save space) is mostly low due to the low controlled speed.

C. Discussion

A difference between the obtained results in the presented
experiments might seem insignificant. However, it should be
noted that even very slight changes in penalizations can bring
results in the form of reducing fuel consumption or better
preserving the recommended speed. The presented results
also confirm the summary obtained using other control
approaches within this project [11], [12].
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Fig. 4. Speed (top) and fuel consumption (bottom) with the increased
penalization of the fuel consumption deviations

V. CONCLUSIONS

In this paper we presented the intermediate results of our
project aimed at development of algorithms for optimization
of driving based on currently measured data. The future work
we plan is to test the algorithms on the hardware simulator
of a vehicle provided by Škoda auto.
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