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Abstract— This paper presents a novel controller for nonlin-
ear unconstrained systems, coined as Extended Rauch-Tung-
Striebel (ERTS) controller. The controller is derived from
a general framework based on the duality between optimal
control and estimation established by Todorov. The proposed
controller uses Rauch-Tung-Striebel smoother that predicts
(filters) future states by linearizing the nonlinear system around
predicted states and then applies a backward smoothing. The
new controller is applied to solve path following problems of
non-holonomic vehicles and compared with the standard LQR
controller linearizing the model around the desired trajectory
and the iterative LQR (iLQR) controller. The main advantages
of ERTS controller with respect to the alternative techniques
are good control performance and computational efficiency.

I. INTRODUCTION

This article deals with the duality between optimal control
and estimation and particularly with the derivation of a new
controller based on the duality for nonlinear systems. The
fact, that the covariance matrix of the optimal estimator of a
linear system with Gaussian noises and Hessian of the opti-
mal cost-to-go of a linear control problem with a quadratic
loss evolves in time under similar Riccati-like equations, is
known more than fifty years, [5]. Due to this, both solutions
(Kalman Filter, KF, and Linear Quadratic Controller, LQR)
have the same form and as a consequence an algorithm
computing KF can be used as LQR algorithm. This is known
as the (Kalman’s) duality between optimal control and esti-
mation for linear-Gaussian systems. This interesting property
motivated efforts for development of possible extensions
to nonlinear systems, nonetheless, straightforward generali-
zation on nonlinear cases is not known. Theoretical work
introducing satisfactory extension was done in [13], where
the general (Todorov’s) duality between optimal control
and estimation is obtained for slightly reformulated optimal
control problem based on Kullback-Leibler divergence.

The new general duality applied on LQ problem does
not give the same algortihm as the Kalman’s approach.
It is because the estimation problem is different in both
approaches – prediction in Kalman’s case and smoothing in
Todorov’s.
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This paper proposes a new controller, coined as Extended
Rauch-Tung-Striebel (ERTS) controller, derived from the
duality between optimal control and estimation. The new
proposed controller is based on the solution of the dual
estimation problem given by Rauch-Tung-Striebel (RTS)
forward-backward smoother. The computed estimate of next
state is then used for the computation of the optimal control.
This results in an efficient controller with complexity O(N2)
in state dimensions. The controller is optimal for LQ systems
and the extension to non-linear settings is done by linearizion
along predicted trajectory.

The performance of ERTS controller is then illustrated on
the (unconstrained) path following problem. The goal of path
following problem is to track a robot along a desired path by
a control law. Due to wide range of straightforward applica-
tions, e.g. motion planning [3] [1], parking [4], overtaking
and lane changing [10], and vision-based line following
[9], this problem has been studied intensively during last
years. However, proposed controllers are commonly strictly
specialized on particular tasks or contain “artificial” design
parameters (e.g. look-ahead distance) which have to be tuned.
The new method is compared with standard LQR approaches
and the iterative LQR method (iLQR), [14], obtaining sig-
nificant improvement in accuracy and time efficiency.

The paper is organized as follows: Section II introduces
the duality between estimation and control. Section III partic-
ularizes the ideas from previous section and presents ERTS
controller. The controller is applied in Section IV on the
path following problem and its performance is compared
with linearized LQR and iLQR controllers. Conclusions are
drawn in Section V.

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider an stochastic nonlinear dynamic system modeled
as Markov process with known transition probability depend-
ing on the actual state xt and the control action ut

xt+1 ∼ p(xt+1|xt,ut). (1)

For an arbitrary stochastic control given by distribution
πt(ut), the resulting distribution of xt+1 is

xt+1 ∼ pπ(xt+1|xt) =

∫
Rnu

p(xt+1|xt,ut)πt(ut)dut. (2)

Let us consider obtaining a stochastic controller which
optimizes the following expected1 loss

J(x0, s̄0:N, π0:N−1)=E

{
qN (xN , s̄N)+

N−1∑
t=0

lt(xt, s̄t, πt)

}
(3)

1the expectation is taken over realizations of the random variables x1:N .



where sequence s̄0:N , s̄0, . . . , s̄N stands for the desired
quantities related to states (actually, reference trajectories for
some outputs), qN (xN ,sN) is an arbitrary function for the
final cost and the intermediate loss is lt(xt, st, πt).

A. KL-Optimal Control Problem
Similarly as in [13], consider a cost function of the form

lt(xt, st, πt)=qt(xt, st)+KL
(
pπ(xt+1|xt)||p̄(xt+1|xt)

)
(4)

where p̄(xt+1|xt) is a user-defined reference dynamics and
qt(xt, st) is an arbitrary function over the state satisfying∫

Rns
e−qt(xt,st)dst = 1. (5)

The KL stands for Kullback-Leibler divergence [7]

KL(pπ(xt+1|xt)||p̄(xt+1|xt)) =

=

∫
Rnx
log

[
pπ(xt+1|xt)
p̄(xt+1|xt)

]
pπ(xt+1|xt) dxt+1 (6)

between the system dynamics (1) and the user-defined refe-
rence dynamics p̄. The optimal stochastic control minimizing
(3) is computed as a function of the actual state as π∗(ut|xt).

Note that only the first term in (4) depends on the desired
states and KL divergence can be interpreted as “weight” of
a control action, [6].

The minimal loss fulfills the well-known Bellman equation

Jt = min
πt

{
lt(xt, πt, s̄t) +

∫
Rnx
Jt+1 · pπ dxt+1

}
with JN = qN (xN , s̄N ). Here, we used simplified notation
pπ(xt+1|xt) , pπ , p̄(xt+1|xt) , p̄ and Jt(xt, s̄t:N ) , Jt.

For the loss function of the form (4), the following holds

Jt = qt(xt, s̄t) + min
πt(ut)

∫
Rnx

[
Jt+1+log

pπ
p̄

]
pπdxt+1

= qt − log c+ min
πt(ut)

KL
(
pπ||

1

c
e−Jt+1 p̄

)
(7)

where the normalizer c = c(xt, s̄t+1:N ) is equal to

c(xt, s̄t+1:N ) =

∫
Rnx
e−Jt+1(xt+1 ,̄st+1:N )p̄(xt+1|xt)dxt+1.

As KL divergence is always non negative and is zero if
and only if the distributions are equal almost everywhere [7],
this leads to the optimum system behavior with distribution

pπ(xt+1|xt) ∝ e−Jt+1(xt+1 ,̄st+1:N )p̄(xt+1|xt). (8)

The resulting distribution is a rescaled reference dynamics
with a scaling factor favoring states with lower cost-to-go.

If the optimal policy πt(ut) exists so that (8) is satisfied,
the right-most term in (7) vanishes and, after exponentiating
both sides, the optimal cost-to-go satisfies:

e−Jt(xt ,̄st:N ) = e−qt(xt ,̄st)c(xt) =

= e−qt(xt ,̄st)
∫
Rnx
e−Jt+1(xt+1 ,̄st+1:N )p̄(xt+1|xt)dxt+1. (9)

The existence of the optimal policy πt(ut) satisfying
the optimal behavior according to (8) implies that the KL
divergence can be minimized to zero. However, this is not
guaranteed in general and it has to be studied apart.

B. Dual estimation problem

Assume now a state-space model in the form

xt+1 ∼ p̄(xt+1|xt) (10)
yt ∼ p(yt|xt) (11)

where (10) stands for the reference dynamics from the
original control problem and (11) is an observation model.

In [13], the dual estimation problem is defined as back-
ward estimation problem of xt+1 knowing xt and the whole
observation sequence yt+1:N . The estimate satisfies

p(xt+1|xt,yt+1:N ) ∝ p(yt+1:N |xt+1)p̄(xt+1|xt) (12)

due to the chain rule and Markov property. Moreover, it holds

p(yt+1:N |xt+1) = p(yt+1|xt+1)p(yt+2:N |xt+1)

=p(yt+1|xt+1)

∫
xt+2

p(yt+2:N |xt+2)p̄(xt+2|xt+1)dxt+2 (13)

In order to state the duality between the original control
problem and the considered estimation problem, we restrict
the observation model (11) to the form

p(yt|xt) = e−qt(xt,yt). (14)

where qt stands for the state penalization from the original
control problem. Note that due to the restriction (5), the
probability (14) is well defined.

Then, if we write (13) for a particular observation se-
quence yt+1:N , s̄t+1:N , i.e. if we force the observations
in the dual estimation problem to the desired states from the
original control problem, we obtain

p(̄st+1:N |xt+1) =

= e−qt(xt+1 ,̄st+1)

∫
xt+2

p(̄st+2:N |xt+1)p̄(xt+2|xt+1)dxt+2.

The previous equation has the same form as the equation
(9) and due to that duality holds

p(s̄t+1:N |xt+1) = e−Jt+1(xt+1 ,̄st+1:N ). (15)

The equality (15) is the mathematical formulation of the
general duality between optimal control and estimation [13].
As consequence, the optimal behavior (8) is equal to the
smoothed estimate (12)

pπ(xt+1|xt) = p(xt+1|N ). (16)

where we used notation p(xt+1|N ) , p(xt+1|xt, s̄t+1:N ).

C. Deterministic Optimal control

It is well known that the solution to (3) for a linear model
with Gaussian additive noise and quadratic index can be
obtained by solving the deterministic LQR problem assuming
zero future noise.

Solving (3) for nonlinear plants is not an easy problem,
even for deterministic (1). Linearization-based controllers for
nonlinear systems are widely known: the model is linearised
along a set of points and disturbances are assumed Gaussian
additive. Then, the finite-horizon optimal LQR control law



for the resulting linear time-varying plant is proposed to
approximate the nonlinear optimal controller.

The basic problem of such approaches is choosing the
points in which to linearise the system: the most straight-
forward approach would suggest linearising around the refe-
rence trajectory, on the hope that deviations would be small,
and computing the LQR control action. Actually, it is clear
that the optimal linearization points would be those of the
optimal trajectory; however, as they depend on the to-be-
computed control and the control depends on such points,
iterative iLQR algorithms are needed (linearise around first
trajectory estimate, compute control, compute new trajectory,
repeat), see [14]. iLQR improves actual performance with
respect to 1-pass reference-trajectory linearization at a much
higher computational cost.

D. Problem statement

The result (16) brings a theoretical background for a new
controller design based on the transformation of a control
problem to a related dual estimation problem and its solution.

The objective of next section will be particularizing the
above stochastic control result to Gaussian noises and, using
point-wise linearizations, apply them to nonlinear control
problems. Such nonlinear control problems will, hence, be
solved via an “extended” estimator. A detailed algorithm
(to be named ERTS) will be presented and particular cases
discussed.

Actually, the most practically relevant particular case will
be the deterministic quadratic cost index one, presenting an
alternative approach to the proposals discussed in Section
II-C. This is made possible by a suitable choice of “artifi-
cial” auxiliary probability distributions for both (1) and the
probability p̄; then, the proposed methodology will make
it dual to a stochastic estimation problem which will be
solved in just one forward-backward step. In some cases, this
will allow approximately solving the deterministic optimal
control problem with an accuracy almost that of iLQR
without iterations, as a particular path-following kinematic
control example will show. In such example, accuracy and
computational cost of the different LQR, iLQR, ERTS ap-
proaches will be compared.

III. NON-LINEAR QUADRATIC CONTROL VIA ESTIMATION

As discussed above, this section specialises the original
KL-optimal control to affine-in-control nonlinear determin-
istic plants with quadratic cost, proposing a particular al-
gorithm based in the Rauch-Tung-Striebel smoother [11].
We show that there is a related stochastic KL optimal
control problem for an arbitrary deterministic quadratic-
cost problem, [13], which, as a consequence, can be solved
optimally via the duality.

Consider a nonlinear model xt+1 = ft(xt) + Btut for
known functions ft, matrix Bt, and and a quadratic index
J = 1

2eTNQNeN + 1
2

∑N−1
t=0 (eTt Qtet + uTt Rtut), for et =

st −Htxt and known Qt, Rt, Ht.
In order to apply the KL control, a fictitious Gaussian noise

will be added, with variance Vt and, also, a fictitious target

stochastic dynamics will be proposed. Hence, the original
dynamics (1) will be restricted to

p(xt+1|xt,ut) , N (ft(xt) + Btut,Vt) (17)

and the reference dynamics in (4) set to

p̄(xt+1|xt) , N (f̄t(xt), V̄t) (18)

Function f̄t, and matrices Vt, V̄t will be actually derived
from the cost function, in particular V̄t = BtR

−1
t BT

t , and
Vt will be analogous to the Riccati equation solution [13].

The cost function (4) will be stated as the sum of quadratic
state-dependent terms

qt(xt, st) ,
1

2
(st − ht(xt))TW−1

t (st − ht(xt)) + ct (19)

for ht(xt) = Htxt, Wt = HtQ
−1
t HT

t and constant
ct chosen in order to fulfill the restriction (5), plus the
KL divergence term between (17) and (18). From well-
known KL formulae for Gaussian distributions, this choice
of matrices makes (4) identically equal to the above-defined
quadratic index. Hence, duality can be used to solve the
control problem and, in the nonlinear case, linearization-
based smoothers are proposed next.

A. Solution of the dual problem

The estimation problem dual to the previous control prob-
lem requires computing the smoothed probability p(xt+1|N ),
where the desired states s̄t+1:N from the original control
problem are now considered as the observations. The model
in the dual problem is defined by (18) and (19) as

xt+1 ∼ N (f̄t(xt), V̄t) (20)
st ∼ N (ht(xt),Wt). (21)

The control algorithm proposed in this paper uses an ap-
proximation of p(xt+1|N ) computed by Rauch-Tung-Striebel
(RTS) smoother, [11]. The RTS smoother is optimal for
linear models with Gaussian noise and it computes the
smoothed distribution of xt+1 in two steps:

• forward pass realized by Kalman filter computing
p(xτ |xt,yt:τ ) for τ = t+ 1, . . . , N

• backward pass computing the p(xτ |xt,yt:N ) from
p(xτ |xt,yt:τ ) and p(xτ+1|xt,yt:τ ) for τ = N, . . . , t+1

The resulted smoothed distribution p(xt+1|N ) of xt+1 is a
Gaussian distribution with mean value x̂t+1|N and covari-
ance matrix Pt+1|N , see [11].

If functions f̄t, ht are nonlinear, RTS smoother can be used
for the linearized model at each trajectory point; however,
optimality of the proposed estimate is no longer guaranteed.
This is analog to the Extended Kalman filter, and this is
why the nonlinear version of the RTS smoother is denoted
as ERTS [8].



B. Extended Rauch-Tung-Striebel Non-linear Controller

Once the estimation problem has been solved, duality
indicates that the optimal control action should fulfill (16),
taking the result of the ERTS smoother, which provides the
approximation p(xt+1|N )≈N (x̂t+1|N ,Pt+1|N ) to the right-
hand side term of (16).

In the additive Gaussian case in consideration, both mean
and variance should be matched, computing ut in (17) to
match the mean of the ERTS estimate, and setting Vt equal
to the estimate variance. Thus, as above mentioned, Vt

is related to the standard Ricatti equation solution trough
the ERTS algorithm. Hence, the solution is a deterministic
control ût which has to satisfy

ft(xt) + Btût ≈ x̂t+1|N (22)

and a fictitious noise variance to

Vt = Pt+1|N . (23)

The approximation sign in (22) is necessary because on
the right-hand side of (16) we have only an approximation
proposed by ERTS smoother2. Hence, using the left pseudo-
inverse of Bt, denoted as βt = (BT

t Bt)
−1BT

t , we have a
control action given by:

ût=βt(x̂t+1|N−ft(xt)) (24)

as the proposal for the nonlinear control law3.

C. The algorithm of the ERTS controller

The resulting control algorithm, denoted as Extended
Rauch-Tung-Striebel (ERTS) controller, is composed from
two parts: 1) computing x̂t+1|N via ERTS smoother, and 2)
obtaining the approximation of the optimal control (24). The
algorithm of the ERTS controller is summarized in Algorithm
1, using process noise V̄t = BtR

−1
t BT

t and measurement
noise Wt = HtQ

−1
t HT

t . The state xt is assumed to be
known, so the proposed controller is an state feedback one.

Matrices Aτ−1,Pτ |τ−1,Pτ |τ and vectors x̂τ+1|τ computed
during the prediction step are stored in the memory and used
during the backward smoothing step. It should be noted that
our backward smoothing step does not compute matrices
Pτ |T : expression (23) is only needed in the formal problem
solution, but the value of Vt is not needed to solve (22).

D. Unscented Rauch-Tung-Striebel Controller

Similarly, we coin the controller based on the solution of
the dual problem proposed by RTS smoother with Uscented
Kalman filter (UKF) and smoother (UKS) [12] as Un-
scented Rauch-Tung-Striebel (URTS) controller. The URTS
controller’s structure is the identical to ERTS controller’s
structure. During the prediction step with UKF, a set of σ-
points are computed based on augmented state using current
estimate and zero-mean noises. In the smoothing step, a new

2Indeed, the relation becomes equality for linear f̄t, ht.
3If the KL control problem were set with user-defined Vt instead of (23),

a variant of the approach resulting in a probability distribution over control
actions would ensue, see [16].

Algorithm 1 ERTS Controller
1: Initialization
2: x̂t|t = xt, Pt|t = 0
3: Prediction
4: for τ = t+ 1, . . . , N do
5: x̂τ |τ−1 = f̄τ−1(x̂τ−1|τ−1)
6: Linearization
7: Aτ−1 =

∂f̄τ−1

∂xτ−1
|xτ−1 = x̂τ−1|τ−1

8: Hτ = ∂hτ
∂xτ
|xτ=x̂τ|τ−1

9: Pτ |τ−1 = Aτ−1Pτ−1|τ−1A
T
τ−1 + BtR

−1
t BT

t

10: Kτ = Pτ |τ−1H
T
τ (HτPτ |τ−1H

T
τ + HtQ

−1
t HT

t )−1

11: Pτ |τ = (I−KτHτ )Pτ |τ−1

12: x̂τ |τ = x̂τ |τ−1 + Kτ (̄sτ − hτ (x̂τ |τ−1))
13: end for
14: Smoothing
15: for τ = N − 1, N − 2, . . . , t+ 1 do
16: Lτ = Pτ |τA

T
τ P−1

τ+1|τ
17: x̂τ |N = x̂τ |τ + Lτ (x̂τ+1|N − x̂τ+1|τ )
18: end for
19: u∗t = (BT

t Bt)
−1BT

t (x̂t+1|N − ft(xt))

set of σ-points must be computed as well as weights for mean
Wm,i and covariance Wm,i following the ideas of [12]. The
remainder of steps are identical to the ERTS controller.

IV. APPLICATION TO KINEMATIC CONTROL OF
NON-HOLONOMIC WHEELED ROBOTS

In this section, a path following problem for non-
holonomic wheeled robots is stated and solved by the
previously presented ERTS controller. Some other standard
control techniques from literature are tested for comparison.

A. Robot model and cost index specification

A vehicle state xt=(xt, yt, φt, vt, κt)
T in time instant t is

characterized by coordinates (xt, yt), angle (φt), velocity (vt)
and curvature (κt) and it evolves through input ut=(at, εt)

T

given by acceleration (at) and curvature derivative (εt) as

xt+1 = A(xt)xt + But + vt (25)

with noise vt∼N (0, 10−6I) and state-dependent transition
matrix A(xt) and control-to-state matrix B

A(xt) =


1 0 0 cosφt∆t 0
0 1 0 sinφt∆t 0
0 0 1 κt∆t 0
0 0 0 1 0
0 0 0 0 1

 , B =


0 0
0 0
0 0

∆t 0
0 ∆t

 ,

∆t is the simulation step (Euler integration).
The observation model is simply stated as,

yt =
(

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

)
xt +ψt (26)

with noise ψt ∼ N (0, 10−6I). The interpretation is that
only the position and orientation of the vehicle are measured,
other states have to be estimated via an observer.

The aim is to drive a vehicle around a desired path, with a
given reference speed of v̄t. The reference positions, x̄t, ȳt,
orientation φ̄t and curvature κ̄t are taken from the path itself,
based on the reference speed and the simulation time for a



given simulation step. In order to evaluate the performance
of a control algorithm, we introduce a quadratic loss

(xN−̄xN)TQt(xN−̄xN )+

N−1∑
t=0

(
(xt−x̄t)

TQt(xt−x̄t)+uTtRtut
)

(27)
with penalization matrices Qt = diag(100, 100, 1, 1, 1),
Rt = diag(1, 1). The values of the matrices has been taken
with respect to some preliminary simulations and the well
known interpretation of the penalization which states that
the true values are kept on the desired ones with precision
given by Q−1t using zero control with precision R−1t , [6].

B. Estimation

Extended Kalman Filter (EKF) is used for the estimation
of the state. The estimate is Gaussian with mean x̂t =
(x̂t, ŷt, φ̂t, v̂t, ω̂t)

T and covariance matrix Pt. The linearized
transition matrix is

At=
∂A

∂xt
|x̂t=


1 0 −v̂t sin φ̂∆t cos φ̂t∆t 0

0 1 v̂t cos φ̂∆t sin φ̂t∆t 0
0 0 1 κ̂t∆t v̂t∆t
0 0 0 1 0
0 0 0 0 1

 (28)

In the linear case, this would amount to consider sepa-
ration principle: synthesizing the feedback control law with
the max-likelihood point estimate from an observer. In the
nonlinear case, however, separation principle is only an
approximation, as well known.

Note importantly, that the EKF estimator has no concep-
tual relation to the ERTS controller discussed in this work:
the estimated variance from the (causal) EKF filter is not
used in the (non-causal) ERTS smoother because the optimal
control algorithm assumes initial zero variance.

C. Comparison of control strategies

In order to assess the advantages of the proposed duality-
based ERTS control, comparison of three strategies will be
made out in later simulations, as follows.

1) ERTS controller: The presented algorithm is used for
KL optimal control problem given by (17)-(19) with ht=I,
s̄ = x̄t, Wt = Q−1t and the reference dynamics set to
the passive original dynamics. The evaluation of the KL-
divergence (6) results to the quadratic (27). The initialization
of the dual estimation is x̂t|t= x̂t,Pt|t=0. Note that ERTS
controller also uses the linearized transition matrix (28).

2) LQR controller linearized along the desired path: A
common extension of the standard LQR controller is done
by linearization of the system along a desired path. This
method was used for example in [15] where the method is
combined with Rapidly-exploring Random Trees (RRT).

3) Iterative LQR method: An iterative extension of the
classical LQR algorithm was presented in [14]. The iter-
ative Linear-Quadratic (iLQR) method constructs an affine
feedback control law, obtained by minimizing of a quadratic
approximation to the optimal cost-to-go function. Single
iteration of the algorithm consists of:

• application of the control computed in the previous step,
• linearization of the system and cost-to-go function

around the computed trajectory,
• calculation of the optimal perturbation of the control for

the linearized system via LQR-like recursion.
The algorithm ends when the relative improvement of the
simulated cost-to-go is bellow fixed threshold η = 0.001 or
maximum number of iterations Nmax = 100 is reached.

The method is able to solve nonlinear problems with
control constraints and non-convex cost. Under certain as-
sumptions, convergence to a local minimum is guaranteed,
see [14]. The implementation mentioned there is used.

D. Experiment parameters

The target path is defined as the connection line of
the following sequence of (x, y) points: {(0, 0); (2, 0);
(2, 6); (6,−4); (−4, 10); (10, 10); (10, 4); (−3, 4); (−3, 0)}.
The reference speed is v̄t = 5m.s−1 and the discretization
step ∆t = 0.05s. No useful information about the initial
position and orientation is available (the initial state is
initialized randomly) and the initial velocity v0 = 0m.s−1.

The tracking problem will be set up with a receding
horizon policy with horizon N0 = 20 samples. That assumes
a particular segment of the path known in advance; this
is a reasonable assumption in many optimal path-following
scenarios in practice. If an unexpected event or a supervision
level suddenly changes the path (moving obstacles, task
changes...), recalculation is needed and hence, a handful of
past control actions would have been actually non-optimal
for the new path, whatever the choice of control algorithm.

E. Results and discussion

Figure 1 shows a result of a single simulation. It can
be seen that each of the controllers is able to reach and
to keep the vehicle on the desired path. The realized loss
and the time spent during each iteration of algorithms are
listed in Table I. The loss is practically the same for iLQR
and ERTS, however, the time spent is more than 7x higher
for iLQR which makes on-line usage impractical except for
very slow sampling rates. The fastest algorithm is linearized
LQR, however ERTS is only 2x slower and provides a
control with significantly better path following dynamics.
Particularly , when the state is far away from the reference
path, the differences between the LQR (naively linearized at
the reference) and the iLQR and ERTS become larger.

The algorithm of ERTS is approximately 2x slower than
linearized LQR because Algorithm 1 consist of two loops,
one from t to N and other from N to t, meanwhile the
linearized LQR iterates only from N to t. The operations are
comparable in both cases. On the other hand, iLQR iterates
until convergence using LQR-like recursions. In simulation,
iLQR converged after ∼ 13 iterations, which is in accordance
with the time spent listed in Table I.

As a conclusion, ERTS controller is able to successfully
operate outside the desired path, being several times faster
and approximately equally accurate in comparison to iLQR.
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Fig. 1. Qualitative results of tracking along the desired path with the initial
position outside the desired path. The displayed quantities are: coordinates
(xt, yt), angle φt[rad], velocity (vt)[m.s−1], curvature κt[rad.m−1], accel-
eration at[rad.m−2] , and derivative of curvature εt[rad.m−1s−1].

algorithm realized cost time per iter. time per sim.
LQR 74947 0.01 2.38
iLQR 16396 0.14 31.59
ERTS 16284 0.02 4.46

TABLE I
THE TOTAL COST-TO-GO AND THE COMPUTATIONAL TIME[S].

V. CONCLUSIONS AND FUTURE WORKS

A new controller, coined as Extended Rauch-Tung-Striebel
(ERTS) controller, was presented on the bases of the duality
between control and estimation. The ERTS controller solves
the control task via the transformation of the original problem
to the dual estimation problem; the dual problem uses future
reference states as observations and noise variances are
obtained from the primal control cost index definition. The
dual problem is solved by computationally efficient Rauch-
Tung-Striebel smoother for linearized system.

In the linear case, the algorithm produces an exact equiv-
alent to the well-known LQR control. This motivates the
extended linearization-based approach suggested here.

The performance of the controller was studied on the path-
following problem of a 5th-order vehicle and compared with
linearized LQR and iterative LQR controller. ERTS proposes
nearly the same control as iLQR controller after convergence,
but in a fraction of the time. Hence, the combined accuracy
and reduced computational cost makes ERTS an interesting
solution for on-line control with receding horizon policies.

Future work will consider other nonlinear estimation
paradigms such as unscented Uscented Kalman filter and
particle-filter approaches for the dual estimation problem.
We expect that these approaches would propose better perfor-
mance than ERTS controller when more severe nonlinearities
are present. Moreover, as the assumption on Gaussian noises
in the dual estimation problem implies that both state and
control action are unconstrained, the ERTS will fail on
problems with hard constraints. On the other hand, a particle-
filter based controller does not need such assumption. An
implementation of a particle controller and case studies on
problems with constraints are left for future work.
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