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Abstract: This paper presents automatic fuel consumption optimization with simultaneous
keeping the recommended vehicle’s speed. These tasks are closely related since a simple mini-
mization of fuel consumption leads to stopping a vehicle. The proposed “double” optimization
is performed online using combination of two controllers. The first of them is based on fully
probabilistic design (FPD) under Bayesian methodology. It optimizes the “driver-vehicle” closed
loop with the aim to save fuel and keep the recommended speed, using externally given setpoints.
Optimized values serve as setpoints for PID controller, which provides necessary setpoint
tracking. Research is performed in collaboration with Škoda auto (www.skoda-auto.com).
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1. INTRODUCTION

Automotive industry invests a lot in development and
support of various approaches to reduce fuel consumption
and CO2 emission. Environment protection and the in-
creasing price of oil are a main motivation for this, see
e.g., Barkenbus [2010], Sivak, Schoettle [2012].

Modern conceptual solutions proposed nowadays by au-
tomotive industry are mostly found in a form of hybrid
and electric vehicles, see Manzie [2010], Wirasingha,
Emadi [2011], Moura et al. [2011]. They obviously have
a huge potential and probably will become vehicles of
future. However, the purchase price both of hybrid and
electric vehicles is still rather high, although in recent
times reduction of prices is observed. It compensates fuel
savings. Other factors such as (i) natural need of any new
technology in refining and improving; (ii) slowly appearing
network of charging stations, especially out-of-town; (iii)
significant environmental pollution during production and
disposal of electric vehicles, etc., indicate that conventional
vehicles with combustion motor will still be demanded in
the marketplace too.

A series of research problems joins both conventional and
hybrid and electric vehicles. Modeling an optimal eco-
driving strategy is a task desired for all of them since (i)
conventional vehicles need it to reduce fuel consumption
and emissions; (ii) hybrid vehicles should be driven opti-
mally not to lose a benefit of the use of hybrid powertrain;
(iii) electric vehicles need to model a travel range before
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recharging. This paper focuses on general solution of eco-
driving adopted to conventional vehicles’ context.

A series of studies confirms relevance of the discussed
topic, starting from Ericsson [2001], who investigates
which driving pattern factors (speed profile, gear changing,
etc.) have main effect on emissions and fuel consumption.
Beusen et al. [2009] evaluate the long-term impact of an
eco-driving training course by monitoring driving behavior
and fuel consumption for several months before and after
the course.

Papers found in this area include, for example, the works
of Barth and Boriboonsomsin [2009], Raubitschek et al.
[2011], Ben Dhaou [2011]. They are mostly devoted to
algorithms based on physical description of fuel consump-
tion, taking into account surrounding traffic conditions.

The presented paper proposes a systematic, generally ap-
plicable and dynamic, approach to modeling an eco-driving
strategy. It is based on data continuously measured on a
driven vehicle and on external observations. Extension of
general solution up to the hybrid and electric vehicle con-
text is straightforward and is related to available measured
data.

A compromise between two contradictory demands – the
fuel consumption reducing and the recommended speed
tracking – is reached using the presented double optimiza-
tion. It includes a combination of two controllers. The first
one is based on the approach called the fully probabilistic
design (FPD) described by Kárný and Guy [2006], Kárný
and Kroupa [2012] under Bayesian methodology adopted
in Kárný et al. [2005]. The FPD-based controller optimizes
the whole “driver-vehicle” closed loop with the aim to save
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fuel and keep the recommended speed, using externally
given setpoints (zero consumption and prescribed speed).
The resulting FPD-optimized values are used as online
generated setpoints for PID controller, which provides
more precise setpoint tracking for fuel consumption and
speed. The described combination of controllers is used
from a reason of high safety requirements and better
quality of vehicle’s control. A block of logical conditions
ensures the post-optimization check of safety constraints.

A remainder of the paper is organized as follows. Section 2
describes a model of the considered “driver-vehicle” closed
loop and formulates the problem. Section 3 presents the
fuel consumption optimization via the mentioned combi-
nation of controllers. Results are provided in Section 4.

2. “DRIVER-VEHICLE” CLOSED LOOP

Consider a “driver-vehicle” closed loop which in discrete
time instants t ∈ {1, . . . , T} ≡ t∗ produces the fol-
lowing observed variables: an output vector yt, which is
influenced by a control input vector ut and an exter-
nal variable vt. The controlled output vector yt includes
[y1;t, y2;t, y3;t, y4;t, y5;t]′, where [y1;t, y2;t]′ is the optimized
output (to be pushed to setpoints as close as possible) and
[y3;t, y4;t, y5;t]′ is the non-optimized output, about those
there are no user’s demands. Namely, they are as follows:

• y1;t – the fuel consumption;
• y2;t – average rear wheels speed (identified with the

vehicle’s speed);
• y3;t – engine torque;
• y4;t – engine speed;
• y5;t – travelled distance;

The control input vector is ut ≡ [u1;t, u2;t, u3;t]′, where

• u1;t is a pressing the gas pedal;
• u2;t is a pressing the brake pedal;
• u3;t is a selected gear of transmission;

The external variable vt is a road altitude.

The considered closed loop is described by the joint
probability density function (pdf)

F =
∏
t∈t∗

f (yt, ut|φt−1) =
∏
t∈t∗

f (yt|ut, φt−1)︸ ︷︷ ︸
system model

f(ut|φt−1)︸ ︷︷ ︸
controller

,(1)

where φt−1 = [yt−1, ut−1, . . . , vt] and which is factorized
according to the chain rule, see Peterka [1981].

2.1 Problem Formulation

The fuel optimization task is formulated as the following
servo problem:

• design the control values u1;t expressing how much the
gas pedal should be pressed, u2;t related to pressing the
brake pedal and u3;t defining a gear to be selected so
that to

• push the fuel consumption y1;t towards its setpoint
ys1;t = 0 and the vehicle speed y2;t as close as possible
to the recommended speed ys2;t

under the following constraints on the control inputs:
pressing the gas pedal from 0 till 100%, pressing the brake
pedal from 0.7 till 25bar, gear from 0 (neutral) to 6.

The currently used recommended speed is provided by
experts for a known route. It is obtained from available
measurements with the lowest fuel consumption under
existing speed limits.

3. FUEL CONSUMPTION OPTIMIZATION

It can be seen that the proposed problem formulation calls
simultaneously for minimization of the fuel consumption
and tracking the recommended speed. This compromise is
proposed to be reached via a combination of the following
two controllers.

3.1 FPD Controller

The first controller is based on the FPD. This approach
brings generality and dynamics to the solution. Here
it is presented within the eco-driving context, however,
this general approach is not limited by this application.
Universality and advantages of the FPD in comparison
with other tools are in detail described in Kárný and
Kroupa [2012], here they are omitted to save space.

The main idea of the FPD is to select the optimized
controller which pushes the “driver-vehicle” closed loop
model (1) as close as possible to its ideal model FI . The
ideal model of the closed loop is given by a user, using
externally given setpoints (zero fuel consumption and the
recommended speed). Having the same form as (1), FI is
similarly factorized in a product of the ideal system model
and the ideal controller.

The optimization criterion is a minimization of the
Kullback-Leibler divergence (KLD), see Kullback and
Leibler [1951], between F and FI

D(F||FI) ≡
∫

y∗t ,u
∗
t

F ln
(
F
FI

)
d[yt, ut]. (2)

over {f(ut|φt−1)}Tt=1. The used form of the KLD is known
to be the optimal tool within the adopted Bayesian
methodology, see Bernardo [1979]. The control task with
such a criterion is solved using the dynamic programming.
General solution for pdfs provides the following form of
the optimizing controller:

f(ut|φt−1) =
f I(ut|φt−1) exp [−ω(ψt)]∫
f I(ut|φt−1) exp [−ω(ψt)] dut︸ ︷︷ ︸

γ(φt−1)

, t ∈ t∗,

ω(ψt) ≡
∫
f(yt|ψt) ln

(
f(yt|ψt)

γ(φt)f I(yt|ψt, yst )

)
dyt, (3)

where ψt ≡ [u′t, φ
′
t−1] is a regression vector. Evaluations

run against the time course, i.e., for t = T, . . . , 1 and start
with γ(φT ) = 1. The factorized form of all pdfs (up to
individual vector entries) is used. Proof of this statement
is available in Kárný et al. [2005].

3.2 FPD Controller for Normal Models

Throughout this paper, linear normal autoregression mod-
els are used for the closed loop description. In this case, the
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FPD coincides with a widely spread quadratically optimal
control, see Kárný et al. [2005], where penalizations in
the squares of variables in the optimality criterion are
the main control options. These penalizations are taken as
the inversions of the noise variances of the corresponding
factors of the closed loop factorized pdf.

In this case, the system model in the closed loop (1) takes
a form of a multivariate normal autoregression model

f(yt|ψt) = Ny(ψ′tθ, r), (4)

where θ are regression coefficients and r are the noise
variances of factors. They are estimated at each step of
the time cycle with a subsequent substitution of the point
estimates during the control synthesis. It means that for
the control they are taken as fixed. Parameter estimation
is performed using Bayesian approach, see, e.g., Peterka
[1981].

The optimized controller (3)
f(ut|φt−1) = Nu(η, s) (5)

is a part of the closed loop (1) obtained via minimization
of the KLD, also in the normal form with expectations η
and variances s.

The ideal closed loop model structurally stems from the
considered closed loop. However, its individual factors
should express the control aims. The ideal system model
can be chosen, e.g., as the first order autoregression model

f I(yt|ψt, yst ) = N I
y (yst , R) (6)

with some relatively quick dynamics and constant. Using
the factorized form, it can be written as

yi;t = aiyi;t−1 + ki + ei;t, (7)

where the parameter ai provides dynamics, and the con-
stant ki is set so that the steady-state value of the output
entry yi;t is the corresponding value of the setpoint ysi;t.
It means that according to the setpoint, the constant is
obtained as

ki = ysi;t(1− ai). (8)

For non-optimized outputs the results of estimation are
used for construction of corresponding factors of the ideal
model. The ideal system model noise ei;t in (7) expresses
the expected deviations of the ideal values from those pro-
duced by the deterministic model. Inversions of their corre-
sponding variances R form penalizations in the quadratic
control criterion.

The ideal controller takes the following form, using the
input reference values ust = [us1;t, u

s
2;t, u

s
3;t]
′ obtained from

measured data:
f I(ut|φt−1, u

s
t ) = Nu(ust , S). (9)

It can be chosen as a static model for respective factors
ui;t = usi;t + εi;t, (10)

or for the input increments
ui;t − ui;t−1 = εi;t. (11)

The chosen ideal controller ((10) or (11)) generates the
input values, where inversions of the noise variances S

correspond to the inputs penalizations in the control
criterion in the case of (10) or to the input increments
penalizations with the use of (11).

Under assumption of normality and using the discussed
models (4), (6) and (9), the optimized controller f(ut|φt−1)
(5) minimizes the KLD (2) over all admissible control
strategies {f(ut|φt−1)}Tt=1. This formulation leads to the
dynamic programming with penalizations of the corre-
sponding factors, resulting in distribution (5), where η are
expectations used as the generated inputs.

According to Feldbaum [1961], the dual problem is not
feasible. This suggests some suboptimal solution to the
adaptive control to be used. For the control implemen-
tation, a methodology of receding horizon, see Kárný
et al. [2005], can be used, where the newly computed point
estimates of parameters are used as fixed for the control
design on a given control interval. After realization of one
step of control, new data are measured and used for an-
other estimation. The mentioned estimation is performed
on-line for the closed loop model including (4) and (5).
The ideal system model (6) and the ideal controller (9)
are fixed with the exception of the noise variances which
are taken from the mentioned closed loop estimation, i.e.,
in (6) R = r from (4), and in (9) S = s from (5). Thus,
the required penalizations in the control criterion become
adaptive. Results obtained in Suzdaleva et al. [2012] show
that the stabilized values of adaptive penalizations provide
better control quality in the considered context. The IST
(iterations spread in time) method is recommended, where
the repeated solutions to the Riccati equation do not start
from initial conditions but from the result achieved in the
previous step, see Kárný et al. [1985]. Due to this, a very
short control interval can be used.

At each time instant the FPD provides the optimized
values of the involved variables obtained with the aim to
save fuel and keep the recommended speed. Because of the
safety requirements it is extremely important to provide
necessary tracking the speed in places with sharp turns and
abrupt changes of the speed. To ensure this, it is proposed
to use the resulting FPD-optimized values as the setpoints
for PID controller.

3.3 PID Controller

A standard PID controller uses the FPD setpoints for
speed and fuel consumption at each time instant. Pa-
rameters for the PID controller are actually provided by
experts.

The PID controller can be also switched between a driver’s
preference to keep the recommended speed only (that
already includes its FPD-optimized setpoint) or both to
save the fuel and keep the recommended speed (double
optimization).

3.4 Logical Post-Optimization Block

The described automatic control provides driving where
braking is realized mostly by engine. To ensure check
of strict safety constraints and also for situations, where
braking by engine is not sufficient, a block of logical
statements “if, then do it” is placed in the time cycle after
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the optimization. These logical conditions are based on
general advices from experts in the eco-driving field. So far,
the logical block corrects pressing the gas and the braking
pedal and selection of gear for the following situations:

• exceeding the maximal speed downhill and on the flat;
• approaching to the sharp turns with low speed;
• smooth starting after braking or stopping;
• driving downhill without pressing the gas pedal;
• approaching to speed limit points;
• prohibition of simultaneous pressing the gas and the

braking pedal.

4. RESULTS

Data and a software vehicle simulator are provided by
Škoda Auto (see www.skoda-auto.com). Measurements
were conducted on a selected route about 40 kilometers out
of Prague. Eight data samples with different types of driv-
ing dynamics (slower fuel-saving or faster) are available.
A period of sampling is 0.2 seconds. The recommended
speed obtained from the data samples with the lowest fuel
consumption in the route is provided with the applied
speed restrictions (i.e., the speed is cut when it meets
them). The proposed approach is implemented in Matlab.
Results are provided below.

4.1 Results for driver’s preference to keep the recommended
speed only

Here results are demonstrated for combination of the
FPD and the PID controllers with the PID switched to
driver’s preference to keep the recommended speed only.
The obtained average fuel consumption is 5.6 L/100km,
which is compared to the original average fuel consumption
for the used real data – 6.33 L/100km.

Figure 1 demonstrates the speed tracking for the whole
considered route with parts of highway, roads and villages.
It can be seen that the FPD setpoint is a bit lower the
recommended speed since it is optimized to save the fuel.
The PID tracks this setpoint. However, in the places with
the very low speed (sharp turns) the FPD does not give
the speed low enough to drive through this turn. Here, the
combination of the FPD and PID ensures safe driving. In
order to show how the course of the speed changes while
driving on the whole route, the speed tracking in Figure 1
is shown almost for the whole data sample. However, a rest
of data (except for the speed) is not so illustrative, and
figures with them for the whole route increase drastically
the presented file size to be uploaded. Thus, to save space
and for better illustration a fragment of results for 1000
data items is shown for the rest of the data.

Figure 2 shows results for the fuel consumption. It should
be noted that despite the driver’s preference to keep the
speed, the average fuel consumption is lower than the
original one. This is obtained due to the FPD optimization.
Figure 3 displays pressing the gas pedal (top), braking
(middle) and gear (bottom). The braking in Figure 3
(middle) is corrected by the logical block according to the
travelled distance. It is performed after the optimization
that is why sometimes it does not coincide with the FPD
setpoint.
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Fig. 1. The speed tracking with driver’s preference to keep
the recommended speed only
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Fig. 2. The fuel consumption optimization with driver’s
preference to keep the recommended speed only

4.2 Results for driver’s preference both to the fuel saving
and the speed keeping

The following results are obtained using combination of
the FPD and the PID controllers with the PID switched
to driver’s preference both to save the fuel and to keep the
recommended speed. The obtained average fuel consump-
tion is obviously lower than in the previous case, it is 5.04
L/100km. The original average fuel consumption for the
used real data is the same – 6.33 L/100km.

Figure 4 plots the speed tracking. Due to the chosen
driver’s preference the resulting speed is lower. However, it
satisfies to safety requirements. Again, in the places with
very low speed (sharp turns) the combination of the FPD
and PID proves itself.

Figure 5 demonstrates the resulting fuel consumption,
which is lower than in the previous case, Figure 6 –
pressing the gas pedal (top), braking (middle) and gear
(bottom). Again, the braking in Figure 6 (middle) around
7500 time periods is corrected by the logical block to
ensure meeting the speed limits.
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Fig. 3. Pressing the gas pedal (top), braking (middle),
gear (bottom) with driver’s preference to keep the
recommended speed only
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Fig. 4. The speed tracking with driver’s preference both to
the fuel saving and the speed keeping

4.3 Discussion

It can be said that, even with the driver’s preference
to keep the recommended speed switched in the PID
controller, the FPD optimization still gives desired fuel

7000 7100 7200 7300 7400 7500 7600 7700 7800 7900 8000
0

5

10

15

20

25

30

35

fu
el

 c
on

su
m

pt
io

n 
(L

/1
00

km
)

time (periods)

 

 
fpd+pid
real
fpd

Fig. 5. The fuel consumption optimization with driver’s
preference both to the fuel saving and the speed
keeping
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Fig. 6. Pressing the gas pedal (top), braking (middle),
gear (bottom) with driver’s preference both to the
fuel saving and the speed keeping

savings in comparison with the real data. Use of the double
optimization (FPD and PID) with driver’s preference
both to reduce the fuel consumption and to keep the
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recommended speed provides more economic and safe
driving.

5. CONCLUSION

The paper describes the current state of the presented
research project and continues a line starting in previous
works, see Suzdaleva et al. [2012], Suzdaleva et al. [2012].
The obtained results are promising from the viewpoint
of the fuel consumption reducing. However, the software
simulator is not a real vehicle and in reality the results can
be different. Tests in a real driven vehicle are planned.
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