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ABSTRACT

Availability of input and organ functions is a pre-
requisite for analysis of dynamic image sequences
in scintigraphy and positron emission tomography
(PET) via kinetic models. This task is typically done
manually by a human operator who may be unre-
liable. We propose a probabilistic model based on
physiological assumption that time-activity curves
(TACs) arise as a convolution of an input function
and organ-specific kernels. The model is solved via
the Variational Bayes estimation procedure and pro-
vides estimates of the organ images, the TACs, and
the input function as results. The ability of the result-
ing algorithm to extract the input function is tested on
data from dynamic renal scintigraphy. The estimated
input function was compared with the common es-
timate based on manual selection of the heart ROI.
The method was applied to the problem of relative re-
nal function estimation and the results are compared
with competing techniques. Results of comparison on
a dataset of 99 patients demonstrate usefulness of the
proposed method.

Keywords: dynamic medical imaging, compart-
ment modeling, convolution, blind source separation

1 INTRODUCTION

Decomposition of the observed sequences of im-
ages into tissue images and their associated time-
activity curves (TACs) is a common task in nuclear
medicine in scintigraphy or positron emission tomog-
raphy (PET). The knowledge of the input function is
often necessary for further analysis [15]. For example,
the input function is essential in the Patlak-Rutland
plot [12]. In PET, the input function can be directly
measured by sampling the arterial blood [8]. This ap-
proach needs a medical intervention which is often

not appropriate in clinical practice. This invasive pro-
cedure can be substituted by extraction of the input
function from the observed images using manual se-
lection of regions of interest (ROIs) in the observed
images. It can be placed directly on the heart, if avail-
able, or on other vascular structures if they can be rec-
ognized on the images [7]. The disadvantages of man-
ual selection of the ROIs are substantial: the position
of ROIs is strongly operator-dependent and very time-
consuming [3, 4]. Moreover, it is possible that the se-
lected ROI does not contain only the vascular activity
but also other tissues in the background.

Automatic, or semi-automatic methods for ROI se-
lection are available [6], however, they are not com-
pletely reliable and the activity is always counted
from the full area of ROI which may still include
some background organs. An alternative approach is
to use some blind source separation method (BSS).
They have no physiological assumption in their basic
form, [11], however, some extensions have also been
proposed [5, 13]. We design a mathematical model
that integrates all common assumption of the domain,
including convolution of the input function and tissue-
specific kernels. The input function as well as the ker-
nel parameters are considered to be unknown. They
are estimated from the observed images using the
Variational Bayes method [16].

The proposed method is used to create a semi-
automated procedure for estimation of relative renal
function. Suitability of the procedure is studied on a
dataset of 99 patients [1]. For comparison, the same
data were analyzed using manual ROI placement by
an expert and by a trained novice as well as the state
of the art algorithm of blind source separation [11].
We show that the results of the proposed model are
closer to those of the experienced expert that results
of any other competing methods. Joint estimation of
the input function is thus the key improvement of the



blind source separation approach for this task.

2 METHOD

The goal of the designed method is to automati-
cally identify tissue structures and their related time-
activity curves (TACs) from the observed sequence of
images. Estimation procedure is based on probabilis-
tic model that is designed using common assumptions
used in nuclear medicine. These assumptions are: (i)
the observed image is a superposition of the under-
lying tissue images; (ii) the time activity curves are
described by compartment model, where each time-
activity curve arise as a convolution between a com-
mon input function and a tissue-specific kernel [13];
(iii) the tissue images and the time activity curves are
non-negative; and (iv) the variance of the observation
noise is proportional to the signal strength. These as-
sumption are now formulated mathematically via a
probabilistic model. The Variational Bayes method-
ology is used to estimate all unknown parameters of
the proposed model.

2.1 Mathematical Model Assumptions

The observed sequence of images is indexed by a dis-
crete time index t, the number of images in the se-
quence is n. The sequence is assumed to be com-
posed of r underlying tissues indexed by symbol f =
1, . . . , r , r is unknown. Each observed image is stored
in one vector dt with the pixels stored columnwise
and is assumed to be a sum of contributions from the
underlying tissues

dt =
r∑

f=1

afxt,f , (1)

where af are the tissue image in the same vector form
as the observed image, and xt,f is the activity of the
f th tissue at time t. The time-activity curve xf , i.e. the
organ function, is supposed to be the result of convo-
lution of the common input function, b, and a tissue-
specific kernel, uf . The tissue-specific kernels, uf are
modeled using increments wf as suggested in [10],
hence

xt,f =
t∑
i=1

bt−i+1ui,f , (2)

ut,f =
n∑
i=t

wi,f , (3)

and wi,f =

{
hf sf ≤ t ≤ sf + lf
0 otherwise,

. Here, wf is the

f th tissue-specific vector with non-negative elements
with specified structure. Here, hf is the height of each
increment in f th tissue, sf is the starting point of the

increments and sf + lf is the ending point of the incre-
ments. In other words, the vector wf is supposed to be
in the form of [0, . . . ,0, hf , . . . , hf ,0, . . . ,0] ≡Mwf

.
The input function b is also modeled incrementally

as

bt =
n∑
i=t

gi. (4)

2.2 Probabilistic Model

The deterministic model assumptions in Section 2.1
are valid only approximately. For example, the mea-
surements of dt (1) are subject to noise with unknown
variance ω. The observed images dt are thus random
realizations from the probability density:

f(dt|ω) =tN(
r∑

f=1

afxt,f , ω−1Ip), (5)

f(ω) =G(ϑ0, ρ0), (6)

where p denotes the number of pixels in the image,
In is the identity matrix of size n, tN(., .) is the multi-
variate normal distribution truncated to positive val-
ues with given mean vector and covariance matrix.
Following the Bayesian approach, each unknown pa-
rameter needs to have a prior distribution of its po-
tential values. The prior distribution of the unknown
variance of the observation noise, ω, is assumed to be
of the gamma form with prior parameters ϑ0, ρ0.

The convolution kernel (2) may also differ from the
assumed form, where variances of the differences wf

are unknown, denoted ξf . The model of the TACs is
composed from the kernels wf and the input function
b. The prior distribution of the f th TAC model is then

f(wf |ξf ) =tN(Mwf
, ξfIn), (7)

f(ξf ) =G(κf,0, νf,0), (8)

and f(hf ) = tN(0r×1, τ0), f(lf |sf ) = U(0, n − sf ),
and f(sf ) = U(0, n), where the parameters indexed
with zero are assumed to be known prior parameters,
and U(., .) is the uniform distribution.

The differences between the true input function and
the model of increments of the blood, g, are assumed
to have an unknown variance ψ. The prior distribu-
tions for the parameters of the input function and the
tissue images are:

f(g|ψ) = tN(0n×1, ψ
−1In), (9)

f(af |υf ) = tN(0p×1, υ
−1
f Ip), (10)

f(ψ) = G(ζ0, η0), (11)

f(υf ) = G(αf,0, βf,0). (12)
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Figure 1: The computation scheme of the BCMS algorithm.

Here, υf is a hyperparameter that allows to select the
number of relevant tissue images, r, via the automatic
relevance determination approach (ARD), [2].

In further text, this model will be denoted as the
Blind Compartment Model Separation (BCMS).

2.3 Variational Bayes Solution

Variational Bayes method, [16, 11], is a technique for
assesment of shapping parameters θ of posterior dis-
tribution f(θ|D). A parametric probabilistic model of
the observation is given as f(D|θ), data D is condi-
tioned by multivariate parametr θ = [θ1, . . . , θq]

′. The
task is to find out a distribution f̃(θ|D) which should
be as close as possible to the true posterior distribu-
tion f(θ|D). Formally,

f̃(θ|D) = arg min
f̆∈Fc

∆
(
f̆(θ|D)||f(θ|D)

)
, (13)

where ∆(f ||g) is a meassure between functions f and
g and Fc is the space of conditionally independent
functions. The Variational Bayes method selects as
the meassure the Kullback-Leibler divergence (KLD)
[9], i.e. ∆ ≡ KLD, which is defined as

KLD
(
f̆(θ|D)||f(θ|D)

)
=

ˆ
f̆(θ|D) ln

f̆(θ|D)

f(θ|D)
dθ.

(14)

Then, the shapping parameters of posterior distri-
bution can be found using the Variational Bayes theo-
rem:

f̃(θi|D)∝ exp
(

Ef̃(θ/i|D) [ln (f(θ,D))]
)
, i= 1, . . . , q,

(15)

where symbol ∝ means up to normalizing constant,
Ef (.) means expected value of an argument with re-
spect to distribution f , and θ/i denotes complement of
θi in θ; hence, θ/i = [θ1, . . . , θi−1, θi+1, . . . , θq].

Following the Variational Bayes method, we build
the joint density and seek its approximation in the
form of conditionally independent posteriors. The
equations form an implicit set that needs to be solved
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Figure 3: Estimates provided by the BCMS algorithm for a se-
lected data set, right ROI. Left: estimated tissue images; middle:
estimated time-activity curve; right: estimated tissue-specific
kernel.

iteratively. The computation scheme is shown in Fig.
1. Each experiment runs till the hyperparameters υf
are stabilized. The details are given in Research Re-
port [14].

3 RESULTS

The iterative algorithm was tested on a dataset from
renal scintigraphy, [1]. The full database contains 99
patients with both kidneys where relative renal func-
tion (RRF) could be estimated. Each study contains
180 images of 128× 128 pixels recorded in 10 sec-
onds interval. The RRF is traditionally computed on
the uptake part of the sequence, i.e. the interval when
the kidney only accumulates the activity without se-
cretion and only the parenchyma-part of the kidney is
activated. The parenchyma is the spongy tissue cover-
ing the whole kidney which accumulates the activity
from the blood. Detection of the uptake time is man-
ual and the same part is used for all compared meth-
ods.

First, we demonstrate the output of the BCMS
model, i.e. the estimates of the input and organ func-
tions, on selected sequences. Second, we apply the
BCMS model for estimation of the RRF and provide
statistical comparison to competing methods.

3.1 Input and Organ Functions Estimation

The BCMS algorithm is applied on a rectangular
ROIs with left and right kidney. The BCMS algo-
rithm provides results in the form of tissue images,
af , tissue-specific convolution kernel, uf , and input
function, b, see Figure 3 for results on the right kid-
ney from the sequence in Figure 2 as an example. The
ARD property of the algorithm selected two struc-
tures to be relevant which corresponds well with bi-
ological assumptions. The estimates corresponding to
the background are displayed in the first row, those
corresponding to the parenchyma in the second row.
The estimated input function of this dataset is dis-
played in Figure 4 left.



Figure 2: The uptake part of the scintigraphic sequence. It can be seen rough placed rectangular ROIs on left and right kidneys.
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Figure 4: Estimated input functions (IF) from two selected se-
quences.

Since the ground truth is not available and the in-
put function is usually associated with the blood activ-
ity, we compare estimated input functions from both
ROIs with the activity computed from a manually se-
lected ROI of the heart. The left and right rectangular
ROI do not overlap, yet the estimates of input func-
tions correspond well to each other. Note that the esti-
mated input function decays much faster than the ac-
tivity in the heart ROI in this study. This is caused by
the presence of lungs in the ROI. In Figure 4, right,
the same estimates for another dataset are displayed.
In this case, the estimates of the input function cor-
responds well with the recorded activity in the heart
ROI. We conjecture that in this case, the ROI con-
tained only the heart and not other tissues.

3.2 Relative Renal Function Estimation

Relative renal function is mathematically simple but
clinically important and hardly obtainable parameter.
It is defined as:

RRF =
Lp

Lp +Rp

, (16)

where Lp, is the total activity of the left parenchyma
(i.e. one of the tissue from decomposition (1)), andRp

is the total activity in the right parenchyma.
In this Section, four methods are applied to the data

set and their results are compared, two manual and
two semi-automatic.

(i) Reference Manual Method (RMM): The assess-
ment of RRF is typically based on manual drawing of
the Regions of Interest (ROIs) of parenchyma, how-
ever, details of subsequent evaluation differ from one
hospital to another [4, 3]. The studied data set already

provides results of the RRF analysis obtained by a ex-
perienced physician using a range of methods includ-
ing the Patlak-Rutland plot, [12], crosschecking with
the deconvolution method [10].

(ii) Straightforward Manual Method (SMM): Is an
example of another commonly used approach. Four
ROIs are manually drawn for each data set, in our case
by a trained novice. These are: the left and the right
kidney, and the left and the right backgrounds on the
outer side of the kidneys. The activity of the reference
backgrounds are subtracted from the activity in the re-
lated kidneys. It is assumed that the same background
is behind (or in front of) the kidney.

(iii) Semi-automatic BCMS-based Method
(BCMS): The operator is asked to position two
rectangular ROI around each kidney. The BCMS is
applied to each of these rectangular ROIs to obtain
estimates of two underlying structures (as demon-
strated in Figure 3). The estimate of the parenchyma
images is thresholded at 0.5×maximum of the image
to remove remaining traces of the background.

(iv) Common Blind Source Separation Method
(BSS): The task of decomposition of the observed
data into a superposition of a product of two un-
knowns (equation (1)) has been studied in the blind
source separation literature. Specifically, the method
described in [11] is based on the same assumptions
as the proposed BCMS except for the convolution
model. Comparison with this method then allows to
study the influence of this modeling choice to the re-
sults.

Statistical Comparison
The four described methods will be compared via

difference of their results of RRF from those pro-
vided by the experienced expert (RMM) as a refer-
ence value. Since the expert considered all assump-
tions of the approach in his evaluation, we will con-
sider the automatic method that is closer to his results
to be better. The differences were computed for all
99 patients and the results are displayed in Table 1
via quantiles. Note that the estimates of the BCMS
method are systematically closer to the reference val-
ues than those of the competing methods. The com-
putation time of the semi-automatic methods (iii) and
(iv) is comparable, one sequence is processed under
one minute.



Table 1: Quantiles of the difference of the estimated RRF from
the reference value for all 99 patients.

method <5% <10% =10%
BSS 39.6% 82.2% 18.8%

SMM 36.5% 70.8% 29.2%
BCMS 63.5% 89.6% 10.4%

Table 2: Quantiles of the difference of the estimated RRF from
the reference value for the patients with diagnosed abnormality
in kidney function.

method <5% <10% =10%
BSS 39.1% 69.6% 30.4%

SMM 17.4% 47.8% 52.2%
BCMS 58.7% 80.4% 19.6%

The results for the patients with diagnosed abnor-
mality in kidney function are shown in Table 2. There
is significantly lower signal, hence, the spread of the
errors is much higher. However, the relative perfor-
mance of the compared methods is the same on both
data sets, with BCMS being the closest to the refer-
ences.

4 DISCUSSION

The proposed BCMS method is able to provide both
the input function and the organ function. The results
presented in Fig. 4 suggest that the estimated input
function differs from the activity curve in the heart
ROI which is considered to be its reliable estimate.
While it is possible to explain this discrepancy by the
background tissue, it is also possible that the estimate
is only local minima in the space of possible solu-
tions. Or the model assumption may not be appropri-
ate for the given patient. A dataset that would also
have the input function measured by blood sampling
would be necessary to resolve this issue.

The presented semi-automatic method of RRF
analysis was run with manual intervention in two key
steps: (i) positioning of the rectangular ROIs to con-
tain the left and right kidney, and (ii) selection of the
uptake part of the sequence. While the first step is rel-
atively easy to automate and seldom requires inter-
vention, the second step is more demanding. Specif-
ically, we select the uptake part to start at the peak
of the vascular activity in the ROI of the kidney. The
end of the sequence is determined by the peak of
the parenchyma activity. More detailed modeling of
the sequence is needed to achieve fully automated
method.

5 CONCLUSION

A probabilistic model of medical image sequences
and its Variational Bayesian solution for functional
analysis of medical data was proposed. Time activ-
ity curves are modeled as convolution of an unknown
input function with kernels. The shape of each ker-
nel is restricted to match the biological assumptions

used in compartment modeling. The resulting algo-
rithm thus achieves blind separation of compartment
models with common input function. No manual in-
tervention is required in this process. We have shown
that the estimated input and organ functions corre-
spond well with the biological expectations. Since the
method does not use any modality-specific assump-
tions it can be used in any other modality.

The algorithm was further applied to semi-
automatic analysis of relative renal function from
scintigraphic data. Manual intervention was required
to select the uptake part of the sequence and the posi-
tion of the rectangular areas containing the left and the
right kidney. The results were compared to two com-
pletely manual methods and a common blind source
separation method with the same level of intervention.
The most sophisticated manual method performed by
an experienced expert was selected as a reference
value. On a dataset of 99 patients, the estimates pro-
vided by the proposed method were found to be sys-
tematically closer to the reference value than those of
any other method.
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