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Abstract. The problem of dynamic medical image sequence separation is studied. We intro-
duced the state of the art algorithms for medical sequence decomposition together with those
that are proposed by us. The validation and the comparison of the algorithms are nontrivial
and challenging task. We propose to use a synthetic data where a ground truth is available
so it is possible to compute a significant statistics for comparison reason. Moreover, we pro-
posed a comparison on 99 real data from renal scintigraphy where relative renal functions are
automatically computed and compared with those obtained by physician.
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Abstrakt. Tento piispévek se zabyva zpracovianim dynamickych dat ziskanych metodou nuk-
learni mediciny, scintigrafie. State of the art algoritmy spole¢né s témi, které predkladame my,
jsou predstaveny a diskutovany. Validace a srovnani téchto algoritmu je netrividlni tiloha. Ne-
jprve navrhujeme srovnani pomoci generovanych dat, kde jsou k dispozici zdrojova data, diky
kterym je mozno napocitat zakladni statistické ukazatele vysledkt. Predkladame i srovnani algo-
ritmi pomoci 99 redlnych studii ze scintigrafie ledvin. Na téchto studiich automaticky pocitame
relativni rendlni funkci, kterd mize byt srovnana s vysledky ziskanymi zkuSenym lékafem.
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1 Introduction

Medical data postprocessing and analysis is important step in diagnostic medical exam-
ination. In many imaging modalities such as scintigraphy, the activity of tissues can be
observed only via observing of the particles coming from radiopharmaceutical applied to
the body. It can be seen the activity during the time in the respective tissues or part
of the body using the method; however, several issues must be considered. Since the
scintigraphical camera observed the body from one direction, the resulting image pixel is
a sum of all underlying tissues. As a result, we observe a superposition of all tissues in
respective region of interest (ROI). The task of medical image processing is to reconstruct
the original sources of signal, i.e., tissues and their time-activity curves (TACs).

The problem is called blind source separation (BSS) and it is well described in a liter-
ature. The current methods used in practice is typically based on manual or semi-manual
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selection of ROIs of the examined tissues and subtraction of the background activity [13].
More automated models can be based on model of a factor analysis (FA), [8, 7|; however,
the solution of the FA is ambiguous and biological meaningfulness is not guaranteed.
Other approach is based on modeling of fluid flow using compartment models such as in
[5]; however, this could be too strict for biological processes and suffers from artifacts and
computation tractability. In recent years, we proposed a number of probabilistic models
based on FA model and solved using Variational Bayes (VB) method, [15]. The models
are based on modeling both, images and TACs. We proposed (i) a modeling of TACs as
results of convolutions of common input function and restricted convolution kernels, [10],
(i) modeling a probability mask on images reflecting that activity do not cover the whole
image but only relatively small area [9], and (iii) model combining the advantages from
both forcoming model and using the automatic relevance determination (ARD), [1], as a
general principle, [11].

This paper summarize mentioned methods and focus on theirs validation and compar-
ison methodology. The issue with validation of models is in no ground truth, no golden
standard. Even physician have very different results in scintigraphy on each patient [3|
or using different methodology [4]. The synthetic data can be used as an indicator of
feasibility but it never reflects the nature. Comparison with physician results can be done
but with consideration that manual results suffers from inaccuracy. We propose a com-
parison on a data from renal scintigraphy where relative renal function is automatically
computed.

2 Mathematical Models

We summarize the used mathematical models in our study. All selected methods provides
automatic results so they are comparable without biased interpretation.

The objective is to analyze a sequence of n images obtained at time ¢t = 1,...,n
and stored in vectors d; with pixels stacked columnwise. The number of pixels in each
image is p, thus d; € RP. The important assumption is that every observed image is
a linear combination of r factor images, stored in vectors a;, € RP, k = 1,...,r, using
the same order of pixels as in d;. The dimensions of the problem are typically ordered
as r < n < p. Each source image has its respective time-activity curve stored in vector
xg € R, k=1,...,r,xx = [T1k,...,Znk)/, X' denotes transpose of vector x.

We propose probabilistic formulations of this problem using several probabilistic mod-
els. The models are solved using Variational Bayes approximation [15|. The Bayes rule

is given as
p(0,D) _ p(DIo)p(0)
p(D)  [p(DIO)p(0)d
where D are observed data and € are parameters of p(D|f) with prior knowledge p(@).
Approximation of the Bayes rule via VB approximation can be reached as

p(8;) o exp (Ep(g/i) (In (p (6, D)))) i=1,....n 2)

Here, 6/; denotes the complement of 0; in 6 and E,)(g(0)) denotes expected value of
function ¢(#) with respect to distribution p(#). Equation (2) forms a set of implicit
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Figure 1: Hierarchical models of BSS+ (left) and FAROI (right).

equations which has to be solved iteratively.

2.1 Blind Source Separation Based on Factor Analysis

The described data sequence can be rewritten in terms of superposition, [7], as
d; = Ax, (3)

where A is matrix of tissue images stored a; as its columns. It is appropriate to set
biologically motivated assumption such as (i) the observed data d; are positive, (ii) the
expected tissue images a; and TACs xj, are also positive, (iii) the data d; is strongly
affected by a noise, and (iv) the number of relevant tissues, r, is unknown and should be
estimated during the estimative procedure. These assumptions can be rewritten into the
probabilistic model as:

f(di|A, X, w) = tN(Ax;,w ', ® I,,), (4)
f(w) = G(o, po), (5)

J(xxlvr) = tN(On,la Uk_lln)a (6)
f([vla""UT]) = HG(ak,O’ﬁk,O)a (7)
f(ak) = tN(OpJv [p)7 (8)

where tN() denotes truncated normal distribution to positive values, G() denotes gamma
distribution, I, denotes identity matrix of the respective size, and symbol ® denotes
Kronecker product. The hierarchical model of this model is in Figure 1, left. The model
will be denoted as the Blind Source Separation model with positivity constraints (BSS+).

2.2 Regions of Interest in Blind Source Separation

This model adopts the assumptions from section 2.1; however, it reflects the simple fact
that tissues do not cover the whole scanned area but only a limited number of pixels.
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Figure 2: Hierarchical models of CFA (left) and S-BSS-DC (right).

Hence, we proposed a masking of each tissues image using indicator i of the same size as
tissue image, [9]. This affects the model from section 2.1 as follows:

Flaiglior, &) = U0, 1)H#tN(0, &) ), (9)
f(&k) = G(¢k,0, ¥r0), (10)
f(il, ]{Z) = tEXp()\Zk,o, <0, 1]), (11)

where tExp() is truncated exponential distribution. The hierarchical model of this model
is in Figure 1, right. The probabilistic masks i, are estimated together with other pa-
rameters during the estimative procedure in VB method. This model will be denoted as
the FAROI model (Factor Analysis with integrated ROI).

2.3 Convolution in Blind Source Separation

This model reflects the fact that each time-activity curve arise as a convolution of common
input function and tissue-specific kernel, [6], such as

XE = b*uk, (12)

where b € R™! is input function, u, € R™ ! is convolution kernel of the kth tissue,
and * denotes convolution. Both b and u, are modeled as increases as vectors g and wy,
respectively. This can be rewritten into the probabilistic model as [10, 12]:

F(Wrl€n) = tN(My,, &), (13)
f(&r) = G(Kr0, vk0), (14)
f(gle) = tN(Op1, 9 1), (15)
f() = G(Co, o), (16)

where M, is obtained in each iteration using clustering algorithm. The hierarchical
model of this model is in Figure 2, left. This model will be denoted as the CFA model
(Convolution with Factor Analysis).



2.4 Sparsity in Blind Source Separation and Deconvolution

Our latest model adopts ideas from the previous models from sections 2.1, 2.2, and 2.3.
However, the assumptions of probabilistic masks, i.e. sparsity of tissue images, and of
convolution are not so strict here. We use the Automatic Relevance Determination (ARD)
principle, [1], to adopt the sparsity in both, tissue images and convolution kernels respec-
tively. ARD principle is based on observation that variance of the redundant parameter
tends to zero in VB solution.

The model can be written as [11]:

p(al|€z) = tN(Olﬂ’a diag(&i)_1)7 1= 1a Ry 2 (17)
(&) = H G(ir,0, Vir0), (18)
k=1

p(bl¢) = tN(0,¢ 7" L,),

p(s) = G(Coﬂ]o)

p(ugvg) = tN(0,,1, diag(vi) ™),

p(vjk) = G(ajk0, Bjko)s J=1,...,n,

(
(
(
(

where diag() denotes matrix with argument vector on its diagonal and zeros otherwise.
The hierarchical model of this model is in Figure 2, right. This model will be denoted as
the S-BSS-DC model (Sparsity in Blind Source Separation and Deconvolution).

2.5 CAM-CM algorithm

A complex compartment model for fMRI tumors imaging was described in [5] based on
pharmacokinetic modeling using identifying representative pure pixels from each com-

partment in corners of cluster simplex. The algorithm is available online and is denoted
as the CAM-CM algorithm.

3 Validation on Synthetic Data

Validation on synthetic data is widely used in cases when data with known ground truth
are not available. This is the classical issue in the field of dynamic medical imaging
including renal scintigraphy.

We propose synthetic data based on [5]. We adopt the image sources and generate our
own TACs. Tt contains 3 image sources modeling the overlapping of all sources pairwise
and shared overlap in the center. The size of images is 50 x 50 pixels; hence, p = 2500.
The length of the generated sequence is 50 time steps; hence, n = 50. The image sources
and theirs related TACs are in Figure 3, left.

We run each algorithm on this dataset. The number of expected tissues r is set to
3; hence, r = 3. The number of iteration is set to 100 which is reasonable for reach the
convergence.
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Figure 3: Results from the algorithms on synthetic dataset.

3.1 Results

The results from all algorithms are shown in Figure 3. The ground truth data are on
the left and then results from algorithms (from left): BSS+, FAROI, CAM-CM, CFA,
S-BSS-DC. The image sources are in the first column and the TACs are in the second.
The dashed lines denotes ground truth and the full lines TACs estimated by algorithms.
Note that the results are normed with respect to the activities of ground truth; hence,
we study shapes, not amplitudes.

Since we have ground truth TACs, we can compute Mean square error (MSE), Mean
absolute error (MAE), and Maximum error. The results is shown in Table 1. It can
be seen that the computed statistics have significant explanatory value with S-BSS-DC
algorithm being the best.

4 Validation on Real Data

Validation on real data is much more challenge then validation on synthetic data. Gen-
erally, we have no ground truth; hence, we can not compare results from algorithms with
it. In renal scintigraphy, we have two main choices.

First, skilled operator can manually select regions contained each tissue and plot
activities of the selected regions. Note that overlaps must be carefully considered. This
task is extremely subjective and using of these types ground truths should be done with
respect of this fact.

Second, diagnostic coefficients may be computed by a physician from the data. In
renal scintigraphy, this task is very subjective too [3]. We are focused on computing of
relative renal function (RRF) [2] which is a percentage of function of the left kidney and
the right kidney. The RRF is estimated from the sum of activity in the left (L) and in the
right (R) parenchyma during the uptake time. Then, RRF} = ﬁ x 100 % and RRFg
can be computed analogically, both weighted by their time activity curves. Historically,
the activity is taken only from the uptake time, the time when kidney accumulates activity
only.

We propose a comparison on dataset [14] where RRF is computed by experienced
physician. We select the sequences where both kidneys are present, i.e. 99 cases. The five



Mean Square Error |

Algorithm
Tissue no. | BSS+ | FAROI | CAM-CM | CFA | S-BSS-DC
1 0.0061 | 0.0033 0.05 0.0135 0.0033
2 0.0047 | 0.0037 0.0205 | 0.0056 0.002
3 0.0455 | 0.0133 0.1420 | 0.0643 0.0095

Mean Absolute Error ‘

Algorithm
Tissue no. | BSS+ | FAROI | CAM-CM | CFA | S-BSS-DC
1 0.0432 | 0.0416 0.1515 | 0.1017 | 0.0429
2 0.0321 | 0.0285 0.0363 | 0.0716 0.0374
3 0.1448 | 0.0737 0.2663 | 0.2208 0.0656

Maximum Error ‘

Algorithm
Tissue no. | BSS+ | FAROI | CAM-CM | CFA | S-BSS-DC
1 0.4595 | 0.2827 0.7897 | 0.1684 0.2385
2 0.2651 | 0.2444 0.9516 | 0.1190 0.1589
3 0.5489 | 0.3569 0.8527 | 0.4362 0.2519

Table 1: Comparison of the algorithms on synthetic dataset is shown. The MSE, Mean
error, and Maximum error are computed.



RRF estimation
Algorithm | <5% <10% = 10%
BSS+ 57.6% 78.8% 21.2%
FAROI 58.6% 83.8% 16.2%
CAM-CM | 47.9% 63.8% 36.2%
CFA 59.6% 82.8% 17.2%
S-BSS-DC | 68.7% 86.9% 13.1%

Table 2: Cumulative histogram of RRFs.

described algorithms will be compared via difference of their results of RRF computation
from those provided by the experienced physician as a reference value. We will consider
the automatic method that is closer to his results to be better [12].

4.1 Results

The results will be compared for BSS+, FAROI, CAM-CM, CFA, and S-BSS-DC algo-
rithms. We use comparison over the cumulative histogram, see Table 2.

The results suggest the similar conclusion as results on synthetic data. The S-BSS-DC
algorithm seems to outperform the other algorithms.

5 Conclusion

We study possibilities of comparison of algorithms for blind source separation of medical
data sequence in this paper. We revise possible algorithms based on probabilistic mod-
eling from base to more complex ones with additional assumptions. We discuss the way
how to compare a performance of the algorithms. The synthetic data is proposed which
provide a ground truth. It is possible to compute significant statistics using comparison
of results with this ground truth. Comparison of the algorithms on real data from renal
scintigraphy is more challenging task since no ground truth is available. We propose a
comparison based on relative renal functions computation and comparison with those
obtained from experienced physician.

We shown that the S-BSS-DC algorithm outperform other proposed algorithms in
both synthetic and real data. In a future, we will prepare a comparison on directly
manually selected tissue-images and related time-activity curves. It should prove the
feasibility of algorithms in the best imaginable way.
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