
On Validation of Algorithms for Dynami Med-ial Data SeparationOnd°ej Tihý∗4th year of PGS, email: otihy�utia.as.zDepartment of MathematisFaulty of Nulear Sienes and Physial Engineering, CTU in Pragueadvisor: Válav �mídl, Institute of Information Theory and Automation, ASCRAbstrat. The problem of dynami medial image sequene separation is studied. We intro-dued the state of the art algorithms for medial sequene deomposition together with thosethat are proposed by us. The validation and the omparison of the algorithms are nontrivialand hallenging task. We propose to use a syntheti data where a ground truth is availableso it is possible to ompute a signi�ant statistis for omparison reason. Moreover, we pro-posed a omparison on 99 real data from renal sintigraphy where relative renal funtions areautomatially omputed and ompared with those obtained by physiian.Keywords: blind soure separation, deonvolution, sintigraphy, medial image sequeneAbstrakt. Tento p°ísp¥vek se zabývá zpraováním dynamikýh dat získanýh metodou nuk-leární mediíny, sintigra�e. State of the art algoritmy spole£n¥ s t¥mi, které p°edkládáme my,jsou p°edstaveny a diskutovány. Validae a srovnání t¥hto algoritm· je netriviální úloha. Ne-jprve navrhujeme srovnání pomoí generovanýh dat, kde jsou k dispozii zdrojová data, díkykterým je moºno napo£ítat základní statistiké ukazatele výsledk·. P°edkládáme i srovnání algo-ritm· pomoí 99 reálnýh studií ze sintigra�e ledvin. Na t¥hto studiíh automatiky po£ítámerelativní renální funki, která m·ºe být srovnána s výsledky získanými zku²eným léka°em.Klí£ová slova: slepá separae, dekonvolue, sintigra�e, obrazová sekvene1 IntrodutionMedial data postproessing and analysis is important step in diagnosti medial exam-ination. In many imaging modalities suh as sintigraphy, the ativity of tissues an beobserved only via observing of the partiles oming from radiopharmaeutial applied tothe body. It an be seen the ativity during the time in the respetive tissues or partof the body using the method; however, several issues must be onsidered. Sine thesintigraphial amera observed the body from one diretion, the resulting image pixel isa sum of all underlying tissues. As a result, we observe a superposition of all tissues inrespetive region of interest (ROI). The task of medial image proessing is to reonstrutthe original soures of signal, i.e., tissues and their time-ativity urves (TACs).The problem is alled blind soure separation (BSS) and it is well desribed in a liter-ature. The urrent methods used in pratie is typially based on manual or semi-manual
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2seletion of ROIs of the examined tissues and subtration of the bakground ativity [13℄.More automated models an be based on model of a fator analysis (FA), [8, 7℄; however,the solution of the FA is ambiguous and biologial meaningfulness is not guaranteed.Other approah is based on modeling of �uid �ow using ompartment models suh as in[5℄; however, this ould be too strit for biologial proesses and su�ers from artifats andomputation tratability. In reent years, we proposed a number of probabilisti modelsbased on FA model and solved using Variational Bayes (VB) method, [15℄. The modelsare based on modeling both, images and TACs. We proposed (i) a modeling of TACs asresults of onvolutions of ommon input funtion and restrited onvolution kernels, [10℄,(ii) modeling a probability mask on images re�eting that ativity do not over the wholeimage but only relatively small area [9℄, and (iii) model ombining the advantages fromboth foroming model and using the automati relevane determination (ARD), [1℄, as ageneral priniple, [11℄.This paper summarize mentioned methods and fous on theirs validation and ompar-ison methodology. The issue with validation of models is in no ground truth, no goldenstandard. Even physiian have very di�erent results in sintigraphy on eah patient [3℄or using di�erent methodology [4℄. The syntheti data an be used as an indiator offeasibility but it never re�ets the nature. Comparison with physiian results an be donebut with onsideration that manual results su�ers from inauray. We propose a om-parison on a data from renal sintigraphy where relative renal funtion is automatiallyomputed.2 Mathematial ModelsWe summarize the used mathematial models in our study. All seleted methods providesautomati results so they are omparable without biased interpretation.The objetive is to analyze a sequene of n images obtained at time t = 1, . . . , nand stored in vetors dt with pixels staked olumnwise. The number of pixels in eahimage is p, thus dt ∈ Rp. The important assumption is that every observed image isa linear ombination of r fator images, stored in vetors ak ∈ Rp, k = 1, . . . , r, usingthe same order of pixels as in dt. The dimensions of the problem are typially orderedas r < n ≪ p. Eah soure image has its respetive time-ativity urve stored in vetor
xk ∈ Rn, k = 1, . . . , r, xk = [x1,k, . . . , xn,k]

′, x′ denotes transpose of vetor x.We propose probabilisti formulations of this problem using several probabilisti mod-els. The models are solved using Variational Bayes approximation [15℄. The Bayes ruleis given as
p (θ|D) =

p (θ,D)

p (D)
=

p (D|θ) p (θ)
∫

p (D|θ) p (θ) dθ
, (1)where D are observed data and θ are parameters of p(D|θ) with prior knowledge p(θ).Approximation of the Bayes rule via VB approximation an be reahed as

p(θi) ∝ exp
(

Ep(θ/i) (ln (p (θ,D)))
)

, i = 1, . . . , n (2)Here, θ/i denotes the omplement of θi in θ and Ep(θ)(g(θ)) denotes expeted value offuntion g(θ) with respet to distribution p(θ). Equation (2) forms a set of impliit
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k = 1, . . . , rFigure 1: Hierarhial models of BSS+ (left) and FAROI (right).equations whih has to be solved iteratively.2.1 Blind Soure Separation Based on Fator AnalysisThe desribed data sequene an be rewritten in terms of superposition, [7℄, as
dt = Axt, (3)where A is matrix of tissue images stored ak as its olumns. It is appropriate to setbiologially motivated assumption suh as (i) the observed data dt are positive, (ii) theexpeted tissue images ak and TACs xk are also positive, (iii) the data dt is stronglya�eted by a noise, and (iv) the number of relevant tissues, r, is unknown and should beestimated during the estimative proedure. These assumptions an be rewritten into theprobabilisti model as:

f(dt|A,X, ω) = tN(Axt, ω
−1Ip ⊗ In), (4)

f(ω) = G(ϑ0, ρ0), (5)
f(xk|υk) = tN(0n,1, υ

−1
k In), (6)

f([υ1, . . . , υr]) =
r

∏

k=1

G(αk,0, βk,0), (7)
f(ak) = tN(0p,1, Ip), (8)where tN() denotes trunated normal distribution to positive values, G() denotes gammadistribution, Ip denotes identity matrix of the respetive size, and symbol ⊗ denotesKroneker produt. The hierarhial model of this model is in Figure 1, left. The modelwill be denoted as the Blind Soure Separation model with positivity onstraints (BSS+).2.2 Regions of Interest in Blind Soure SeparationThis model adopts the assumptions from setion 2.1; however, it re�ets the simple fatthat tissues do not over the whole sanned area but only a limited number of pixels.
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k = 1, . . . , rFigure 2: Hierarhial models of CFA (left) and S-BSS-DC (right).Hene, we proposed a masking of eah tissues image using indiator i of the same size astissue image, [9℄. This a�ets the model from setion 2.1 as follows:
f(ai,k|ii,k, ξk) = U(0, 1)ii,ktN(0, ξ−1

k )(1−ii,k), (9)
f(ξk) = G(φk,0, ψk,0), (10)

f(ii, k) = tExp(λik,0, 〈0, 1]), (11)where tExp() is trunated exponential distribution. The hierarhial model of this modelis in Figure 1, right. The probabilisti masks ik are estimated together with other pa-rameters during the estimative proedure in VB method. This model will be denoted asthe FAROI model (Fator Analysis with integrated ROI).2.3 Convolution in Blind Soure SeparationThis model re�ets the fat that eah time-ativity urve arise as a onvolution of ommoninput funtion and tissue-spei� kernel, [6℄, suh as
xk = b ∗ uk, (12)where b ∈ Rn×1 is input funtion, uk ∈ Rn×1 is onvolution kernel of the kth tissue,and ∗ denotes onvolution. Both b and uk are modeled as inreases as vetors g and wkrespetively. This an be rewritten into the probabilisti model as [10, 12℄:

f(wk|ξk) = tN(Mwf
, ξ−1

k In), (13)
f(ξk) = G(κk,0, νk,0), (14)

f(g|ψ) = tN(0n,1, ψ
−1In), (15)

f(ψ) = G(ζ0, η0), (16)where Mwf
is obtained in eah iteration using lustering algorithm. The hierarhialmodel of this model is in Figure 2, left. This model will be denoted as the CFA model(Convolution with Fator Analysis).



52.4 Sparsity in Blind Soure Separation and DeonvolutionOur latest model adopts ideas from the previous models from setions 2.1, 2.2, and 2.3.However, the assumptions of probabilisti masks, i.e. sparsity of tissue images, and ofonvolution are not so strit here. We use the Automati Relevane Determination (ARD)priniple, [1℄, to adopt the sparsity in both, tissue images and onvolution kernels respe-tively. ARD priniple is based on observation that variane of the redundant parametertends to zero in VB solution.The model an be written as [11℄:
p(ai|ξi) = tN(01,r, diag(ξi)

−1), i = 1, . . . , p, (17)
p(ξi) =

r
∏

k=1

G(φik,0, ψik,0), (18)
p(b|ς) = tN(0, ς−1In), (19)
p(ς) = G(ζ0, η0), (20)

p(uk|υk) = tN(0n,1, diag(υk)
−1), (21)

p(υj,k) = G(αjk,0, βjk,0), j = 1, . . . , n, (22)where diag() denotes matrix with argument vetor on its diagonal and zeros otherwise.The hierarhial model of this model is in Figure 2, right. This model will be denoted asthe S-BSS-DC model (Sparsity in Blind Soure Separation and Deonvolution).2.5 CAM-CM algorithmA omplex ompartment model for fMRI tumors imaging was desribed in [5℄ based onpharmaokineti modeling using identifying representative pure pixels from eah om-partment in orners of luster simplex. The algorithm is available online and is denotedas the CAM-CM algorithm.3 Validation on Syntheti DataValidation on syntheti data is widely used in ases when data with known ground truthare not available. This is the lassial issue in the �eld of dynami medial imaginginluding renal sintigraphy.We propose syntheti data based on [5℄. We adopt the image soures and generate ourown TACs. It ontains 3 image soures modeling the overlapping of all soures pairwiseand shared overlap in the enter. The size of images is 50 × 50 pixels; hene, p = 2500.The length of the generated sequene is 50 time steps; hene, n = 50. The image souresand theirs related TACs are in Figure 3, left.We run eah algorithm on this dataset. The number of expeted tissues r is set to
3; hene, r = 3. The number of iteration is set to 100 whih is reasonable for reah theonvergene.
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20 40 20 40 20 40 20 40 20 40Figure 3: Results from the algorithms on syntheti dataset.3.1 ResultsThe results from all algorithms are shown in Figure 3. The ground truth data are onthe left and then results from algorithms (from left): BSS+, FAROI, CAM-CM, CFA,S-BSS-DC. The image soures are in the �rst olumn and the TACs are in the seond.The dashed lines denotes ground truth and the full lines TACs estimated by algorithms.Note that the results are normed with respet to the ativities of ground truth; hene,we study shapes, not amplitudes.Sine we have ground truth TACs, we an ompute Mean square error (MSE), Meanabsolute error (MAE), and Maximum error. The results is shown in Table 1. It anbe seen that the omputed statistis have signi�ant explanatory value with S-BSS-DCalgorithm being the best.4 Validation on Real DataValidation on real data is muh more hallenge then validation on syntheti data. Gen-erally, we have no ground truth; hene, we an not ompare results from algorithms withit. In renal sintigraphy, we have two main hoies.First, skilled operator an manually selet regions ontained eah tissue and plotativities of the seleted regions. Note that overlaps must be arefully onsidered. Thistask is extremely subjetive and using of these types ground truths should be done withrespet of this fat.Seond, diagnosti oe�ients may be omputed by a physiian from the data. Inrenal sintigraphy, this task is very subjetive too [3℄. We are foused on omputing ofrelative renal funtion (RRF) [2℄ whih is a perentage of funtion of the left kidney andthe right kidney. The RRF is estimated from the sum of ativity in the left (L) and in theright (R) parenhyma during the uptake time. Then, RRFL = L
L+R

× 100 % and RRFRan be omputed analogially, both weighted by their time ativity urves. Historially,the ativity is taken only from the uptake time, the time when kidney aumulates ativityonly.We propose a omparison on dataset [14℄ where RRF is omputed by experienedphysiian. We selet the sequenes where both kidneys are present, i.e. 99 ases. The �ve
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Mean Square ErrorAlgorithmTissue no. BSS+ FAROI CAM-CM CFA S-BSS-DC1 0.0061 0.0033 0.05 0.0135 0.00332 0.0047 0.0037 0.0205 0.0056 0.0023 0.0455 0.0133 0.1420 0.0643 0.0095Mean Absolute ErrorAlgorithmTissue no. BSS+ FAROI CAM-CM CFA S-BSS-DC1 0.0432 0.0416 0.1515 0.1017 0.04292 0.0321 0.0285 0.0363 0.0716 0.03743 0.1448 0.0737 0.2663 0.2208 0.0656Maximum ErrorAlgorithmTissue no. BSS+ FAROI CAM-CM CFA S-BSS-DC1 0.4595 0.2827 0.7897 0.1684 0.23852 0.2651 0.2444 0.9516 0.1190 0.15893 0.5489 0.3569 0.8527 0.4362 0.2519Table 1: Comparison of the algorithms on syntheti dataset is shown. The MSE, Meanerror, and Maximum error are omputed.



8 RRF estimationAlgorithm <5% <10% ≧ 10%BSS+ 57.6% 78.8% 21.2%FAROI 58.6% 83.8% 16.2%CAM-CM 47.9% 63.8% 36.2%CFA 59.6% 82.8% 17.2%S-BSS-DC 68.7% 86.9% 13.1%Table 2: Cumulative histogram of RRFs.desribed algorithms will be ompared via di�erene of their results of RRF omputationfrom those provided by the experiened physiian as a referene value. We will onsiderthe automati method that is loser to his results to be better [12℄.4.1 ResultsThe results will be ompared for BSS+, FAROI, CAM-CM, CFA, and S-BSS-DC algo-rithms. We use omparison over the umulative histogram, see Table 2.The results suggest the similar onlusion as results on syntheti data. The S-BSS-DCalgorithm seems to outperform the other algorithms.5 ConlusionWe study possibilities of omparison of algorithms for blind soure separation of medialdata sequene in this paper. We revise possible algorithms based on probabilisti mod-eling from base to more omplex ones with additional assumptions. We disuss the wayhow to ompare a performane of the algorithms. The syntheti data is proposed whihprovide a ground truth. It is possible to ompute signi�ant statistis using omparisonof results with this ground truth. Comparison of the algorithms on real data from renalsintigraphy is more hallenging task sine no ground truth is available. We propose aomparison based on relative renal funtions omputation and omparison with thoseobtained from experiened physiian.We shown that the S-BSS-DC algorithm outperform other proposed algorithms inboth syntheti and real data. In a future, we will prepare a omparison on diretlymanually seleted tissue-images and related time-ativity urves. It should prove thefeasibility of algorithms in the best imaginable way.Referenes[1℄ C. Bishop and M. Tipping. Variational relevane vetor mahines. In 'Proeedingsof the 16th Conferene on Unertainty in Arti�ial Intelligene', 46�53, (2000).[2℄ M. Blaufox, M. Aurell, B. Bubek, E. Fommei, A. Piepsz, C. Russell, A. Taylor,H. Thomsen, D. Volterrani, et al. Report of the radionulides in nephrourology om-
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