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ed the state of the art algorithms for medi
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e de
omposition together with thosethat are proposed by us. The validation and the 
omparison of the algorithms are nontrivialand 
hallenging task. We propose to use a syntheti
 data where a ground truth is availableso it is possible to 
ompute a signi�
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s for 
omparison reason. Moreover, we pro-posed a 
omparison on 99 real data from renal s
intigraphy where relative renal fun
tions areautomati
ally 
omputed and 
ompared with those obtained by physi
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eAbstrakt. Tento p°ísp¥vek se zabývá zpra
ováním dynami
ký
h dat získaný
h metodou nuk-leární medi
íny, s
intigra�e. State of the art algoritmy spole£n¥ s t¥mi, které p°edkládáme my,jsou p°edstaveny a diskutovány. Valida
e a srovnání t¥
hto algoritm· je netriviální úloha. Ne-jprve navrhujeme srovnání pomo
í generovaný
h dat, kde jsou k dispozi
i zdrojová data, díkykterým je moºno napo£ítat základní statisti
ké ukazatele výsledk·. P°edkládáme i srovnání algo-ritm· pomo
í 99 reálný
h studií ze s
intigra�e ledvin. Na t¥
hto studií
h automati
ky po£ítámerelativní renální funk
i, která m·ºe být srovnána s výsledky získanými zku²eným léka°em.Klí£ová slova: slepá separa
e, dekonvolu
e, s
intigra�e, obrazová sekven
e1 Introdu
tionMedi
al data postpro
essing and analysis is important step in diagnosti
 medi
al exam-ination. In many imaging modalities su
h as s
intigraphy, the a
tivity of tissues 
an beobserved only via observing of the parti
les 
oming from radiopharma
euti
al applied tothe body. It 
an be seen the a
tivity during the time in the respe
tive tissues or partof the body using the method; however, several issues must be 
onsidered. Sin
e thes
intigraphi
al 
amera observed the body from one dire
tion, the resulting image pixel isa sum of all underlying tissues. As a result, we observe a superposition of all tissues inrespe
tive region of interest (ROI). The task of medi
al image pro
essing is to re
onstru
tthe original sour
es of signal, i.e., tissues and their time-a
tivity 
urves (TACs).The problem is 
alled blind sour
e separation (BSS) and it is well des
ribed in a liter-ature. The 
urrent methods used in pra
ti
e is typi
ally based on manual or semi-manual
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2sele
tion of ROIs of the examined tissues and subtra
tion of the ba
kground a
tivity [13℄.More automated models 
an be based on model of a fa
tor analysis (FA), [8, 7℄; however,the solution of the FA is ambiguous and biologi
al meaningfulness is not guaranteed.Other approa
h is based on modeling of �uid �ow using 
ompartment models su
h as in[5℄; however, this 
ould be too stri
t for biologi
al pro
esses and su�ers from artifa
ts and
omputation tra
tability. In re
ent years, we proposed a number of probabilisti
 modelsbased on FA model and solved using Variational Bayes (VB) method, [15℄. The modelsare based on modeling both, images and TACs. We proposed (i) a modeling of TACs asresults of 
onvolutions of 
ommon input fun
tion and restri
ted 
onvolution kernels, [10℄,(ii) modeling a probability mask on images re�e
ting that a
tivity do not 
over the wholeimage but only relatively small area [9℄, and (iii) model 
ombining the advantages fromboth for
oming model and using the automati
 relevan
e determination (ARD), [1℄, as ageneral prin
iple, [11℄.This paper summarize mentioned methods and fo
us on theirs validation and 
ompar-ison methodology. The issue with validation of models is in no ground truth, no goldenstandard. Even physi
ian have very di�erent results in s
intigraphy on ea
h patient [3℄or using di�erent methodology [4℄. The syntheti
 data 
an be used as an indi
ator offeasibility but it never re�e
ts the nature. Comparison with physi
ian results 
an be donebut with 
onsideration that manual results su�ers from ina

ura
y. We propose a 
om-parison on a data from renal s
intigraphy where relative renal fun
tion is automati
ally
omputed.2 Mathemati
al ModelsWe summarize the used mathemati
al models in our study. All sele
ted methods providesautomati
 results so they are 
omparable without biased interpretation.The obje
tive is to analyze a sequen
e of n images obtained at time t = 1, . . . , nand stored in ve
tors dt with pixels sta
ked 
olumnwise. The number of pixels in ea
himage is p, thus dt ∈ Rp. The important assumption is that every observed image isa linear 
ombination of r fa
tor images, stored in ve
tors ak ∈ Rp, k = 1, . . . , r, usingthe same order of pixels as in dt. The dimensions of the problem are typi
ally orderedas r < n ≪ p. Ea
h sour
e image has its respe
tive time-a
tivity 
urve stored in ve
tor
xk ∈ Rn, k = 1, . . . , r, xk = [x1,k, . . . , xn,k]

′, x′ denotes transpose of ve
tor x.We propose probabilisti
 formulations of this problem using several probabilisti
 mod-els. The models are solved using Variational Bayes approximation [15℄. The Bayes ruleis given as
p (θ|D) =

p (θ,D)

p (D)
=

p (D|θ) p (θ)
∫

p (D|θ) p (θ) dθ
, (1)where D are observed data and θ are parameters of p(D|θ) with prior knowledge p(θ).Approximation of the Bayes rule via VB approximation 
an be rea
hed as

p(θi) ∝ exp
(

Ep(θ/i) (ln (p (θ,D)))
)

, i = 1, . . . , n (2)Here, θ/i denotes the 
omplement of θi in θ and Ep(θ)(g(θ)) denotes expe
ted value offun
tion g(θ) with respe
t to distribution p(θ). Equation (2) forms a set of impli
it
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k = 1, . . . , rFigure 1: Hierar
hi
al models of BSS+ (left) and FAROI (right).equations whi
h has to be solved iteratively.2.1 Blind Sour
e Separation Based on Fa
tor AnalysisThe des
ribed data sequen
e 
an be rewritten in terms of superposition, [7℄, as
dt = Axt, (3)where A is matrix of tissue images stored ak as its 
olumns. It is appropriate to setbiologi
ally motivated assumption su
h as (i) the observed data dt are positive, (ii) theexpe
ted tissue images ak and TACs xk are also positive, (iii) the data dt is stronglya�e
ted by a noise, and (iv) the number of relevant tissues, r, is unknown and should beestimated during the estimative pro
edure. These assumptions 
an be rewritten into theprobabilisti
 model as:

f(dt|A,X, ω) = tN(Axt, ω
−1Ip ⊗ In), (4)

f(ω) = G(ϑ0, ρ0), (5)
f(xk|υk) = tN(0n,1, υ

−1
k In), (6)

f([υ1, . . . , υr]) =
r

∏

k=1

G(αk,0, βk,0), (7)
f(ak) = tN(0p,1, Ip), (8)where tN() denotes trun
ated normal distribution to positive values, G() denotes gammadistribution, Ip denotes identity matrix of the respe
tive size, and symbol ⊗ denotesKrone
ker produ
t. The hierar
hi
al model of this model is in Figure 1, left. The modelwill be denoted as the Blind Sour
e Separation model with positivity 
onstraints (BSS+).2.2 Regions of Interest in Blind Sour
e SeparationThis model adopts the assumptions from se
tion 2.1; however, it re�e
ts the simple fa
tthat tissues do not 
over the whole s
anned area but only a limited number of pixels.
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hi
al models of CFA (left) and S-BSS-DC (right).Hen
e, we proposed a masking of ea
h tissues image using indi
ator i of the same size astissue image, [9℄. This a�e
ts the model from se
tion 2.1 as follows:
f(ai,k|ii,k, ξk) = U(0, 1)ii,ktN(0, ξ−1

k )(1−ii,k), (9)
f(ξk) = G(φk,0, ψk,0), (10)

f(ii, k) = tExp(λik,0, 〈0, 1]), (11)where tExp() is trun
ated exponential distribution. The hierar
hi
al model of this modelis in Figure 1, right. The probabilisti
 masks ik are estimated together with other pa-rameters during the estimative pro
edure in VB method. This model will be denoted asthe FAROI model (Fa
tor Analysis with integrated ROI).2.3 Convolution in Blind Sour
e SeparationThis model re�e
ts the fa
t that ea
h time-a
tivity 
urve arise as a 
onvolution of 
ommoninput fun
tion and tissue-spe
i�
 kernel, [6℄, su
h as
xk = b ∗ uk, (12)where b ∈ Rn×1 is input fun
tion, uk ∈ Rn×1 is 
onvolution kernel of the kth tissue,and ∗ denotes 
onvolution. Both b and uk are modeled as in
reases as ve
tors g and wkrespe
tively. This 
an be rewritten into the probabilisti
 model as [10, 12℄:

f(wk|ξk) = tN(Mwf
, ξ−1

k In), (13)
f(ξk) = G(κk,0, νk,0), (14)

f(g|ψ) = tN(0n,1, ψ
−1In), (15)

f(ψ) = G(ζ0, η0), (16)where Mwf
is obtained in ea
h iteration using 
lustering algorithm. The hierar
hi
almodel of this model is in Figure 2, left. This model will be denoted as the CFA model(Convolution with Fa
tor Analysis).



52.4 Sparsity in Blind Sour
e Separation and De
onvolutionOur latest model adopts ideas from the previous models from se
tions 2.1, 2.2, and 2.3.However, the assumptions of probabilisti
 masks, i.e. sparsity of tissue images, and of
onvolution are not so stri
t here. We use the Automati
 Relevan
e Determination (ARD)prin
iple, [1℄, to adopt the sparsity in both, tissue images and 
onvolution kernels respe
-tively. ARD prin
iple is based on observation that varian
e of the redundant parametertends to zero in VB solution.The model 
an be written as [11℄:
p(ai|ξi) = tN(01,r, diag(ξi)

−1), i = 1, . . . , p, (17)
p(ξi) =

r
∏

k=1

G(φik,0, ψik,0), (18)
p(b|ς) = tN(0, ς−1In), (19)
p(ς) = G(ζ0, η0), (20)

p(uk|υk) = tN(0n,1, diag(υk)
−1), (21)

p(υj,k) = G(αjk,0, βjk,0), j = 1, . . . , n, (22)where diag() denotes matrix with argument ve
tor on its diagonal and zeros otherwise.The hierar
hi
al model of this model is in Figure 2, right. This model will be denoted asthe S-BSS-DC model (Sparsity in Blind Sour
e Separation and De
onvolution).2.5 CAM-CM algorithmA 
omplex 
ompartment model for fMRI tumors imaging was des
ribed in [5℄ based onpharma
okineti
 modeling using identifying representative pure pixels from ea
h 
om-partment in 
orners of 
luster simplex. The algorithm is available online and is denotedas the CAM-CM algorithm.3 Validation on Syntheti
 DataValidation on syntheti
 data is widely used in 
ases when data with known ground truthare not available. This is the 
lassi
al issue in the �eld of dynami
 medi
al imagingin
luding renal s
intigraphy.We propose syntheti
 data based on [5℄. We adopt the image sour
es and generate ourown TACs. It 
ontains 3 image sour
es modeling the overlapping of all sour
es pairwiseand shared overlap in the 
enter. The size of images is 50 × 50 pixels; hen
e, p = 2500.The length of the generated sequen
e is 50 time steps; hen
e, n = 50. The image sour
esand theirs related TACs are in Figure 3, left.We run ea
h algorithm on this dataset. The number of expe
ted tissues r is set to
3; hen
e, r = 3. The number of iteration is set to 100 whi
h is reasonable for rea
h the
onvergen
e.
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20 40 20 40 20 40 20 40 20 40Figure 3: Results from the algorithms on syntheti
 dataset.3.1 ResultsThe results from all algorithms are shown in Figure 3. The ground truth data are onthe left and then results from algorithms (from left): BSS+, FAROI, CAM-CM, CFA,S-BSS-DC. The image sour
es are in the �rst 
olumn and the TACs are in the se
ond.The dashed lines denotes ground truth and the full lines TACs estimated by algorithms.Note that the results are normed with respe
t to the a
tivities of ground truth; hen
e,we study shapes, not amplitudes.Sin
e we have ground truth TACs, we 
an 
ompute Mean square error (MSE), Meanabsolute error (MAE), and Maximum error. The results is shown in Table 1. It 
anbe seen that the 
omputed statisti
s have signi�
ant explanatory value with S-BSS-DCalgorithm being the best.4 Validation on Real DataValidation on real data is mu
h more 
hallenge then validation on syntheti
 data. Gen-erally, we have no ground truth; hen
e, we 
an not 
ompare results from algorithms withit. In renal s
intigraphy, we have two main 
hoi
es.First, skilled operator 
an manually sele
t regions 
ontained ea
h tissue and plota
tivities of the sele
ted regions. Note that overlaps must be 
arefully 
onsidered. Thistask is extremely subje
tive and using of these types ground truths should be done withrespe
t of this fa
t.Se
ond, diagnosti
 
oe�
ients may be 
omputed by a physi
ian from the data. Inrenal s
intigraphy, this task is very subje
tive too [3℄. We are fo
used on 
omputing ofrelative renal fun
tion (RRF) [2℄ whi
h is a per
entage of fun
tion of the left kidney andthe right kidney. The RRF is estimated from the sum of a
tivity in the left (L) and in theright (R) paren
hyma during the uptake time. Then, RRFL = L
L+R

× 100 % and RRFR
an be 
omputed analogi
ally, both weighted by their time a
tivity 
urves. Histori
ally,the a
tivity is taken only from the uptake time, the time when kidney a

umulates a
tivityonly.We propose a 
omparison on dataset [14℄ where RRF is 
omputed by experien
edphysi
ian. We sele
t the sequen
es where both kidneys are present, i.e. 99 
ases. The �ve
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Mean Square ErrorAlgorithmTissue no. BSS+ FAROI CAM-CM CFA S-BSS-DC1 0.0061 0.0033 0.05 0.0135 0.00332 0.0047 0.0037 0.0205 0.0056 0.0023 0.0455 0.0133 0.1420 0.0643 0.0095Mean Absolute ErrorAlgorithmTissue no. BSS+ FAROI CAM-CM CFA S-BSS-DC1 0.0432 0.0416 0.1515 0.1017 0.04292 0.0321 0.0285 0.0363 0.0716 0.03743 0.1448 0.0737 0.2663 0.2208 0.0656Maximum ErrorAlgorithmTissue no. BSS+ FAROI CAM-CM CFA S-BSS-DC1 0.4595 0.2827 0.7897 0.1684 0.23852 0.2651 0.2444 0.9516 0.1190 0.15893 0.5489 0.3569 0.8527 0.4362 0.2519Table 1: Comparison of the algorithms on syntheti
 dataset is shown. The MSE, Meanerror, and Maximum error are 
omputed.



8 RRF estimationAlgorithm <5% <10% ≧ 10%BSS+ 57.6% 78.8% 21.2%FAROI 58.6% 83.8% 16.2%CAM-CM 47.9% 63.8% 36.2%CFA 59.6% 82.8% 17.2%S-BSS-DC 68.7% 86.9% 13.1%Table 2: Cumulative histogram of RRFs.des
ribed algorithms will be 
ompared via di�eren
e of their results of RRF 
omputationfrom those provided by the experien
ed physi
ian as a referen
e value. We will 
onsiderthe automati
 method that is 
loser to his results to be better [12℄.4.1 ResultsThe results will be 
ompared for BSS+, FAROI, CAM-CM, CFA, and S-BSS-DC algo-rithms. We use 
omparison over the 
umulative histogram, see Table 2.The results suggest the similar 
on
lusion as results on syntheti
 data. The S-BSS-DCalgorithm seems to outperform the other algorithms.5 Con
lusionWe study possibilities of 
omparison of algorithms for blind sour
e separation of medi
aldata sequen
e in this paper. We revise possible algorithms based on probabilisti
 mod-eling from base to more 
omplex ones with additional assumptions. We dis
uss the wayhow to 
ompare a performan
e of the algorithms. The syntheti
 data is proposed whi
hprovide a ground truth. It is possible to 
ompute signi�
ant statisti
s using 
omparisonof results with this ground truth. Comparison of the algorithms on real data from renals
intigraphy is more 
hallenging task sin
e no ground truth is available. We propose a
omparison based on relative renal fun
tions 
omputation and 
omparison with thoseobtained from experien
ed physi
ian.We shown that the S-BSS-DC algorithm outperform other proposed algorithms inboth syntheti
 and real data. In a future, we will prepare a 
omparison on dire
tlymanually sele
ted tissue-images and related time-a
tivity 
urves. It should prove thefeasibility of algorithms in the best imaginable way.Referen
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