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Abstract
Availability of input and organ functions is a prerequisite for analysis of

dynamic image sequences in scintigraphy and positron emission tomogra-
phy (PET) via kinetic models. In PET, the input function can be directly
measured by sampling the arterial blood. This invasive procedure can be
substituted by extraction of the input function from the observed images.
Standard procedure for the extraction is based on manual selection of
a region of interest (ROI) which is user-dependent and inaccurate. The
aim of our contribution is to demonstrate a new procedure for simultane-
ous estimation of the input and organ functions from the observed image
sequence. We design a mathematical model that integrates all common
assumption of the domain, including convolution of the input function and
tissue-specific kernels. The input function as well as the kernel parame-
ters are considered to be unknown. They are estimated from the observed
images using the Variational Bayes method. The ability of the resulting
algorithm to extract the input function is tested on data from dynamic
renal scintigraphy. The estimated input function was compared with the
common estimate based on manual selection of the heart ROI.

1 Introduction
Decomposition of the observed sequences of images into tissue images and their
associated time-activity curves (TACs) is a common task in nuclear medicine
in scintigraphy or positron emission tomography (PET). The knowledge of the
input function is often necessary for further analysis [17, 19]. For example, the
input function is essential in the Patlak-Rutland plot [13]. The input function
is often associated with the time activity curve of the blood, hence it can be
measured from samples of the arterial blood [10]. This approach needs medical
intervention which is often not appropriate in clinical practice. Non-invasive
estimation of the input function is often done by using manual selection of a
regions of interest (ROIs) on appropriate regions of the observed images. It
can be placed directly on the heart, if available, or on other vascular struc-
tures if they can be recognized on the images [9]. The disadvantages of manual
selection of the ROIs are substantial: the position of ROIs is strongly operator-
dependent and very time-consuming [4, 3]. Moreover, it is possible that the
selected ROI does not contain only the vascular activity but also other tissues
in the background.

Automatic, or semi-automatic methods for ROI selection are available [8, 16],
however, they are not completely reliable and the activity is always counted from
the full area of ROI which may still include some background organs. An al-
ternative approach is to use some blind source separation method (BSS). In
their basic form, they do not contain any assumption of convolution, [12], how-
ever, such extensions have also been proposed [5, 15]. Based on these ideas, we
propose an alternative model tailored for the considered application in nuclear
imaging. In the model, the tissue images, tissue TACs, and the input function
are considered unknown and are automatically estimated from the image se-
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Figure 1: The scheme of the Variational Bayes method.

quence. We will show that the estimation is possible and provides meaningful
results on the clinical data.

2 Mathematical Model
The goal of the designed method is to automatically identify tissue structures
and their related time-activity curves (TACs) and their decomposition from the
observed sequence of images. Estimation procedure is based on probabilistic
model that is designed using common assumptions used in nuclear medicine.
These assumptions are: (i) the observed image is a superposition of the under-
lying tissue images; (ii) the time activity curves are described by compartment
model, each time-activity curve arise as a convolution between a common input
function and a tissue-specific kernel [15]; (iii) the tissue images and the time
activity curves are non-negative; and (iv) the variance of the observation noise
is proportional to the signal strength. These assumption are now formulated
mathematically via a probabilistic model. The Variational Bayes methodology,
see Fig. 1, is used to estimate all unknown parameters of the proposed model.

2.1 Deterministic Formulation
The observed sequence of images is indexed by a discrete time index t, the num-
ber of images in the sequence is assumed to be n. The sequence is assumed to be
composed of r underlying tissues indexed by symbol f = 1, . . . , r , the number
r is unknown and should be estimated during the estimative procedure. Each
observed image is stored in vector dt where the pixels are stored columnwise
and dt is assumed to be a sum of contributions from the underlying tissues in
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Figure 2: Illustration of the assumed shape of the convolution kernels.

sense of superposition as

dt =
r∑

f=1
afxt,f , (1)

where af are the tissue images in the same vector form as the observed image,
and xt,f is the activity of the fth tissue at time t. The time-activity curve xf ,
i.e. the organ function, is supposed be the result of convolution of the common
input function, b, and a tissue-specific kernel, uf , see Fig. 2, which can be
written discretely as

xt,f =
t∑
i=1

bt−i+1ui,f , (2)

The tissue-specific kernels, uf are modeled using increments wf as proposed
in [11], hence

ut,f =
n∑
i=t

wi,f , (3)

Here, wf is the fth tissue-specific vector with non-negative elements which
are assumed to have cluster structure. We propose the following definition

wi,f =

{
hf sf ≤ t ≤ sf + lf ,

0 otherwise,
(4)

where, hf is the height of each increment in fth tissue, sf is the starting point
of the increments and sf + lf is the ending point of the increments, see Fig.
3 for clarity. In other words, the vector wf is supposed to be in the form of
[0, . . . , 0, hf , . . . , hf , 0, . . . , 0] ≡Mwf .

The input function bt is also modeled incrementally using vector g, gi are
increments of the input function as

bt =
n∑
i=t

gi. (5)
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2.2 Probabilistic Formulation
The deterministic model assumptions in Section 2.1 are valid only approxi-
mately. For example, the measurements of dt (1) are subject to noise with
unknown variance ω. The observed images dt are thus random realizations
from the probability density:

f(dt|ω) = tN(
r∑

f=1
afxt,f , ω−1Ip), (6)

where p denotes the number of pixels in the image, In is the identity matrix
of size n, tN(., .) is the multivariate normal distribution truncated to positive
values with given mean vector and covariance matrix. Following the Bayesian
approach, each unknown parameter needs to have a prior distribution of its po-
tential values. The prior distribution of the unknown variance of the observation
noise, ω, is assumed to be of the gamma form,

f(ω) =Gω(ϑ0, ρ0), (7)

with prior parameters ϑ0, ρ0.
The convolution kernel (2) may also differ from the assumed form, where

the variances of the differences are unknown, denoted ξf . The model of the
TACs is composed from the kernels wf and the input function b. The prior
distribution of the fth TAC model is then

f(wf |ξf ) =tN(Mwf , ξfIn), (8)
f(ξf ) =G(κf,0, νf,0), (9)
f(hf ) =tN(0r×1, τ0), (10)

f(lf |sf ) =U(0, n− sf ), (11)
f(sf ) =U(0, n), (12)

where the parameters indexed with zero are assumed to be known prior param-
eters, and U(., .) is the uniform distribution.
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Since (5) models a straight line, the true input function must differ from it.
The variance of the differences between the true input function and the model
(5) is assumed to have unknown variance ψ. The prior distribution for the
parameters of the input function is

f(g|ψ) =tN(0n×1, ψ
−1In), (13)

f(ψ) =G(ζ0, η0), (14)

with prior parameters ζ0, η0.
The model of tissue images is assumed to be

f(af |υf ) =tN(0p×1, υ
−1
f Ip), (15)

f(υf ) =G(αf,0, βf,0). (16)

Here, υf is a hyperparameter that allows to select the number of relevant tissue
images, r, via the automatic relevance determination approach (ARD), [1].

In further text, this model will be denoted as the Blind Compartment Model
Separation (BCMS).

2.3 Implicit Solution of the Model
Note that we switch from the vector notation the the matrix one for simplifica-
tion. Then, each matrix is composed from respected vectors as its columns such
as A = [a1, . . . ,ar]. Following the Variational Bayes method [18], the optimal
approximative posterior densities were identified to be:

f̃(g|D, r) = tN(µg,Σg), f̃(ψ|D, r) = G(ζ, η), (17)
f̃(vect(W )|D, r) = tN(µvect(W ),Σvect(W )), f̃(ξf |D, r) = G(κf , νf ), (18)

f̃(A|D, r) = tN(µA, Ip ⊗ ΦA), f̃(υf |D, r) = G(αf , βf ), (19)
f̃(ω|D, r) = Gω (ϑ, ρ) . (20)

Note that vectorized form of matrixW , vect(W ), has to be used for computation
reason. Shaping parameters µg,Σg, ζ, η, µvect(W ),Σvect(W ), κf , νf , µA,ΦA, αf , βf , ϑ, ρ
are computed and lead to the following set of implicit equations:
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ΦA =(ω̂X̂ ′X + Υ̂)−1, (21)

µA =(ω̂DX̂)ΦA, (22)

Σg =(ψ̂In)−1, (23)

µg =ΣgC ′
r∑
i=1

(( n−1∑
k=0

∆′kûk+1,i

)
D′âi

)
, (24)

Σvect(W ) =
(
((Â′A)′ ⊗ ω̂C ′B̂′BC) + (Ξ̂W ⊗ In)

)−1
, (25)

µvect(W ) =Σvect(W )

(
Ξ̂Wvect((C ′B̂′BC)−1C ′B̂′D′Â(Â′A)−1) + (Ξ̂W ⊗ In)vect(M̂W )

)
,

(26)

ν =ν0 + 1
2
diag(Ŵ ′W ) + 1

2
diag(−2Ŵ ′M̂W ) + 1

2
diag(M̂ ′WMW ), (27)

ρ =ρ0 + 1
2
tr(DD′ − 2ÂX̂ ′D′) + 1

2
tr
(

̂AX ′XA′
)
, (28)

α =α0 + p

2
1r,1, (29)

β =β0 + 1
2
diag(Â′A), (30)

κ =κ0 + n

2
1r,1, (31)

ζ =ζ0 + n

2
, (32)

η =η0 + 1
2
tr(ĝ′g), (33)

ϑ =ϑ0 + np

2
. (34)

Here, x̂ denotes estimate of variable x, ⊗ denotes the Kronecker product, MW

contains a prior vectors of W composed of estimates of h, s, and l (obtained
using EM algorithm [6]), auxiliary matrix ∆k ∈ Rn×n is defined as (∆k)i,j ={

1, if i− j = k,

0, otherwise,
, and auxiliary matrix C ∈ Rn×n is defined as

C =


1 1 . . . 1 1
0 1 . . . 1 1
...

...
. . .

...
...

0 0 . . . 0 1

 . (35)
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Figure 4: The scheme of the BCMS algorithm.

The matrix B consists of elements of blood vector b as follows

B =


b1 0 · · · 0
b2 b1 · · · 0
...

...
. . .

...
bt bt−1 · · · b1

 . (36)

The required moments ψ̂, ω̂, Υ̂, and Ξ̂W , are computed according to the
Appendix A.3 as

ψ̂ =ζ

η
, (37)

ω̂ =ϑ

ρ
, (38)

Υ̂ =diag(α ◦ β−1), (39)

Ξ̂W =diag(κ ◦ ν−1), (40)

where symbol ◦ denotes Hadamard product. The moments of the normal dis-
tributions are computed according to the Appendix A.1 and A.2.

2.4 Iterative Solution of the Model
In Section 2.3, we established the set of implicit equations (21) - (40). Following
the Variational Bayes method [18], see Fig. 1, the set is solved using iterative
algorithm. The scheme of the algorithm can be seen in Fig. 4. Selection of the
initialization data is depend on field of use. Note, that our initialization data
are selected for use in renal scintigraphy.

The initialization step consists of two main blocks, setting prior parameters
and setting the starting data. The prior parameters are selected as follows:

α0 =10−2, β0 =10−2, ζ0 =10−7, η0 =10−7, κ0 =10−2,

ϑ0 =10−2, ρ0 =10−2, ν0 =10−2, τ0 =102, ς0 =1010,
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Figure 5: Selected sequence from renal scintigraphy.

to cover the behavior of the data.
The starting data can be selected using the knowledge of the behavior of

radiopharmaceuticals and physiological processes in human body. Hence, the
initialization of the blood vector b is selected as declining exponential function,

binit,j = exp
(
− j

3

)
, j ∈ {1, . . . , n}, (41)

which corresponds well with physiological assumptions. Then, vectors with
tissue-specific kernels can be easily selected as typical kernels related to the
task. In case of the renal scintigraphy, we select the typical kernels of: blood,
parenchyma, pelves, tissue background (liver and spleen at most), and urinary
bladder. It is wise to select more than this structures as the starting point,
selection of a few structures cover the whole time of sequence is required.

3 Results
We apply the BCMS algorithm from section 2 on a dataset from renal scintig-
raphy. Since the proposed model is suitable for the datasets where all tissues
are activated from the beginning of the measurement, we apply the algorithm
on a selected part of the sequence.

3.1 Motivation
The motivation for selection of specific part of sequence is that relative renal
function (RRF) [2, 14] can be computed on it. Let us describe the basic infor-
mation about a kidney and the RRF.

A healthy kidney is composed of a parenchyma, spongy tissue covering the
whole kidney, and a pelvis, small structure serving to drain the urine from the
kidney. The biological fact is that the parenchyma is activated directly from
the blood in contrary to the pelvis, which is activated from the parenchyma
with delay approximately 100 − 180 seconds [7]. This time delay is called the
uptake time. From this part of sequence and properly separated parenchyma
images and TACs, RRF can be estimated. RRF is a percentage of function
of the left kidney and the right kidney. The RRF is estimated from the sum
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Figure 6: Estimates provided by the BCMS algorithm for a selected dataset.
Left: estimated tissue images; middle: estimated time-activity curve; right:
estimated tissue-specific kernel.

of activity in the left (L) and in the right (R) parenchyma during the uptake
time. Then, RRFL = L

L+R × 100 % and RRFR can be computed analogically,
both weighted by their time activity curves. Historically, the activity is taken
only from the uptake time. The RRF is mainly used in investigation of diseases
such as urinary obstruction, renal artery stenosis, renovascular hypertension,
pelvi-uretric junction, renal transplant, etc.

3.2 Experiment
For experiment, we select the uptake part of the child dataset, see Figure 5.
The sequence consist of 16 images, i.e. n = 16, of the resolution 64 × 64, i.e.
p = 4096. We select the starting number of tissues as r = 3 since we assume
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Figure 7: The estimated input function from selected dataset.

that uptake part of the sequence includes two main tissues, parenchyma and
tissue background, and the third factor is set for anything that can appear. The
algorithm runs till the parameter ω is stabilized.

The results can be seen in Figure 6. The BCMS algorithm provides results
in the form of tissue images, af , tissue-specific convolution kernel, uf , and input
function, b. The TACs can be directly computed from the estimates of uf and
b. The estimates corresponding to the tissue background are displayed in the
second row, those corresponding to the parenchyma in the third row. In the
first row, it can be seen the estimates with zeros activity, i.e. the dummy factor.
Hence, it can be seen that the BCMS algorithm detected only two meaningful
tissues. The estimated input function of this dataset is displayed in Figure 7.

The results provided by the BCMS algorithm well correspond to the physi-
ological assumption and are reliable.

4 Conclusion
The probabilistic model of Blind Source Separation was proposed in this paper.
The key novelty is modeling the time activity curves as the convolution between
tissue-specific kernel and common input function, both unknown. The model is
solved using the Variational Bayes method and the Blind Compartment Model
Separation is established. The results are achieved with no manual intervention.
Since the model of convolution kernel is too restrictive, we apply the BCMS
algorithm not on the whole sequence but on the uptake part of a sequence.
This part of a sequence is crucial e.g. for relative renal function estimation.

On the example run, we show that the estimates of the BCMS algorithm
are in consent with physiological expectation. The assumptions of the model
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are not unique to scintigraphy, hence the resulting algorithm can be applied in
other modality.
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A Probabilistic Distributions
A.1 Matrix Normal Distribution
Let us assume the matrix X ∈ Rn×p. The matrix normal distribution of the
matrix X is given as

NX(µX ,Σn ⊗ Φp) = (2π)−
np
2 |Σn|−

p
2 |Φp|−

n
2×

× exp
(
−1

2
tr
[
Σ−1
n (X − µX)(Φ−1

p )′(X − µX)′
])

, (42)

where Σn ∈ Rn×n and Φp ∈ Rp×p are positive definite symmetric matrices, tr()
denotes trace of matrix, and ⊗ is Kronecker product. Moments of the matrix
normal distribution are given as

X̂ = µX , (43)

X̂ ′X = tr(Σn)Φp + µX
′µX , (44)

X̂X ′ = tr(Φp)Σn + µXµX
′. (45)

Moreover, for C ∈ Rn×n and D ∈ Rp×p hold following equalities:

CXD ∼ N(CµXD,CΣnC ′ ⊗D′ΦpD), (46)
E(X ′DX) = µ′XDµX + tr(ΣnD)Φp, (47)
E(XCX ′) = µXCµ

′
X + Σntr(CΦp). (48)

A.2 Truncated Normal Distribution
Truncated normal distribution is defined for scalar random variable x = Nx(µ, σ)
on interval a < x ≤ b as follows:

tNx(x|µ, σ, a, b) =
√

2 exp((x− µ)2)√
πσ(erf(β)− erf(α))

χ(a;b](x), (49)
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where α = a−µ√
2σ , β = b−µ√

2σ , χ(a,b](x) is a characteristic function of interval

(a, b] defined as χ(a,b](x) =

{
1 x ∈ (a, b]
0 x /∈ (a, b]

, and erf(t) = 2√
π

´ t
0 e
−u2ddu.

Moments of the truncated normal distribution are given as

x̂ = µ−
√
σ

√
2[exp(−β2)− exp(−α2)]√
π(erf(β)− erf(α))

(50)

x̂2 = σ + µx̂−
√
σ

√
2[b exp(−β2)− a exp(−α2)]√

π(erf(β)− erf(α))
. (51)

A.3 Gamma Distribution
The gamma distribution of a random scalar variable x is defined as

Gx(a, b) = 1
Γ(a)

1
b−a

xa−1e−xb (52)

for x, a, b > 0 and Γ(x) =
∞́

0
tx−1 exp(−t) ddt for x > 0.

Moments of the gamma distribution are given as

x̂ = a

b
, (53)

x̂2 = a

b2 . (54)
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