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Abstract. Blind source separation algorithms are based on various sep-
aration criteria. Differences in convolution kernels of the sources are com-
mon assumptions in audio and image processing. Since it is still an ill
posed problem, any additional information is beneficial. In this contri-
bution, we investigate the use of sparsity criteria for both the source
signal and the convolution kernels. A probabilistic model of the problem
is introduced and its Variational Bayesian solution derived. The sparsity
of the solution is achieved by introduction of unknown variance of the
prior on all elements of the convolution kernels and the mixing matrix.
Properties of the model are analyzed on simulated data and compared
with state of the art methods. Performance of the algorithm is demon-
strated on the problem of decomposition of a sequence of medical data.
Specifically, the assumption of sparseness is shown to suppress artifacts
of unconstrained separation method.

1 Introduction

The aim of blind source separation is to recover the original form of signals
that can be observed only via their superposition. A classical example of such a
situation is the cocktail party problem [9], where multiple speakers are recorded
by multiple microphones. The aim is to separate audio signal of the individual
speakers. This requires specification of the separability criteria. One such criteria
is the assumption of temporal properties of the source, expressed via different
convolution kernels [15]. Since the convolution kernels are also unknown, the
problem is that of blind deconvolution within blind separation. Algorithms for
this problem include optimization of information theoretic measures [4] and the
EM algorithm [2]. In the image processing literature, the problem is closely
related to the multi-channel blind deconvolution [18].

The presented algorithm was primarily motivated by application in medi-
cal image analysis which has the following specific issues: (i) the sources are
physiological organs which will be further analyzed by medical experts for final
diagnosis, and (ii) poor signal to noise conditions, where a weak signal is hard to
separate from the noise. The medical experts expect that the results will respect
physiological nature which is very hard to formalize mathematically. The model
of source activity by convolution of common input function is one of a few math-
ematical models that is generally accepted. The assumption of sparsity is also



natural in this application. However, such assumptions are not unique to med-
ical imaging and the resulting algorithm may be used in any other application
domain.

The poor signal-to-noise conditions of the domain motivated our choice of
the Bayesian approach. It has been successfully applied in situations when the
number of the sources is lower than the number of the channels, [13]. The ability
to marginalize provides an automatic Occam’s razor that suppresses the spuri-
ous sources and thus provides automatic denoising. Since exact marginalization
may not be always possible, approximate methods of Bayesian calculus has been
developed. One such formalism is the Variational Bayes method [5,16]. Its use
for selection of the number of principal components has been demonstrated in
[5], via the use of priors with unknown variance. In connection with the Varia-
tional Bayes approximation it favors sparse solutions. Since its introduction, this
mechanism has been used in image deconvolution [19], or sparse blind source sep-
aration [17]. We introduce this modeling assumption on the convolution kernel
and the mixing matrix.

The resulting algorithm is applied to the problem of image sequence decom-
position. This problem has been studied independently for many years [3,6],
however, it has been recognized as a special case of the blind source separation
problem [13,16]. The specific nature of this problem is in interpretation of the
resulting components which are further used for medical diagnosis. Even a small
improvement in the estimation may have significant impact on the diagnostic
quality of the results.

2 Sparsity in Bayesian Analysis

The Bayesian inference is concerned with evaluation of the full posterior density
of the parameters θ from the observed data D. It requires a parametric prob-
abilistic model of the data in the form of a probability distribution, p (D|θ),
conditioned by knowledge of the parameters, θ. The prior state of knowledge of
θ is quantified by the prior distribution, p(θ). Our state of knowledge of θ after
observing D is quantified by the posterior distribution, p(θ|D). These functions
are related via Bayes’ rule:

p (θ|D) = p (θ,D)
p (D) = p (D|θ) p (θ)´

p (D|θ) p (θ) dθ
, (1)

where integration in the denominator of (1) is over the whole support of the
involved distributions. We will refer to p (θ,D) as the joint distribution of pa-
rameters and data, or, more concisely, as the joint distribution.

2.1 The Variational Bayes Approximation

The Variational Bayes (VB) approximation is a deterministic technique for ap-
proximation of the Bayes rule (1), in the sense of the following theorem [16].



Theorem 1. Let p (θ|D) be the posterior distribution of multivariate parameter,
θ = [θ′1, θ′2]′, and p∗ (θ|D) be an approximate distribution restricted to the set of
conditionally independent distributions:

p∗ (θ|D) = p∗ (θ1, θ2|D) = p∗ (θ1|D) p∗ (θ2|D) . (2)

Any minimum of the Kullback-Leibler divergence from p∗ (·) to p (·)

KL(p∗ (θ|D) ||p (θ|D)) =
ˆ
p∗ (θ|D) ln p (θ|D)

p∗ (θ|D)dθ, (3)

is achieved when p∗ (·) = p̃ where

p̃(θi) ∝ exp
(

Ep̃(θ/i) (ln (p (θ,D)))
)
, i = 1, 2. (4)

Here, θ/i denotes the complement of θi in θ and Ep(θ)(g(θ)) denotes expected
value of function g(θ) with respect to distribution p(θ).

Theorem 1 is also known as mean-field approximation [14] and provides a pow-
erful tool for approximation of joint pdfs in separable form [16]:

ln p (θ1, θ2, D) = g (θ1, D)′ h (θ2, D) . (5)

Here, g (θ1, D) and h (θ2, D) are finite-dimensional vectors. Using (5) in (4),

p̃ ∝ exp
(
g (θ1, D)′ ̂h(θ2, D)

)
, (6)

where ĥ(·) = Ep̃(θ2|D)(h (·)) are the moments of θ2, and similarly for θ1. In cases,
where (6) are from exponential family, h(·) form its sufficient statistics [8]. An
iterative moment-swapping algorithm is implied [16].

2.2 Automatic Relevance Determination

The mechanism of automatic relevance determination (ARD) is based on joint
estimation of the parameters of the prior (hyper-parameters) with the data [5].
Specifically, the prior of an unknown vector parameter θ that is assumed to have
elements redundant for the observed data is chosen as

p(θ|ω) = N (0,diag(ω)), p(ωi) = G(α0, β0), ∀i, (7)

where ω is the vector of unknown precisions (inverse variances) of the prior
on the parameter θ and it is assumed to have conjugate Gamma prior with
scalar parameters α0, β0. The Bayes rule is then used to estimate both θ and ω.
When the parameter is redundant, the expected value of the prior variance ψ ap-
proaches zero. This effect is known as the ARD principle and it is demonstrated
on the following example.



Example 1 (Multiplicative scalar decomposition). Consider the following model
of scalar measurement d being explained as a product of two unknown parameter,
a and x:

d = ax+ e, e ∼ N (0, re). (8)

where variance re is assumed to be known. The likelihood function of the model
parameters is

p(d|a, x) = N (ax, re), (9)

and has maximum anywhere on the manifold defined by the signal estimate:

âx = d. (10)

Separation of the signal from the noise is possible only with additional as-
sumptions. One such assumption is the choice of prior on the x variable as
p(x) = N (0, rx), with a chosen variance rx. Maximum of the marginal p(a|d) =´
p(d|a, x, re)p(x)dx is then

âmarg =


√
d2−re√
rx

if d > √re,
0 otherwise.

(11)

Note the inference bound on the signal, d > √re, i.e. the signal should be higher
than the standard deviation of the noise. This bound enforces sparsity of the
solution since estimates of the parameters for a weak signal are zeros.

The ARD is based on introduction of the hyper-parameters (7) on any vari-
able, a or x, or both. For example, a fixed prior on a, p(a) = N (0, σa), and the
ARD prior on x, i.e. p(x|ωx) = N (0, ω−1

x ), with unknown precision ωx with prior
p(ωx) = G(α0, β0), yields the variational posteriors of the form

p̃(x|d) = N (x̂, σx), p̃(ωx|d) = G(3
2 , γx), p̃(a|d) = N (â, σa) (12)

with shaping parameters satisfying the following set of implicit equations:

x̂ = σx
re
dâ, σx = ((â2 + σa)r−1

e + 3
2γx

)−1,

â = σa
re
dx̂, γx = σx + x̂2. (13)

Numerical solution of this set is achieved by the iterative algorithm [1]. We
choose an initial value of σ(0)

x and â(0) and then iteratively evaluate equations
(13) in the order: x̂, γx, σx, â.

We note the following:

– The choice of σa fixes the value of â at a constant for all significant values
of d, and the free parameter that grows with d is the x̂.
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Fig. 1. Product of expected values â and x̂ of variational posteriors from (12) for two
initial conditions of σ(0)

x . The dashed line denotes maximum likelihood solution (10).

– The product of the âx̂ is displayed in Fig. 1 for a range of values d. Note
the presence of the inference bound similar to (11). In this case, the esti-
mates are zeros for d < 2√re, i.e. the ARD property of the VB inference
enforces sparse estimates more aggressively than the marginalization. We
conjecture that this is a consequence of the variance underestimation of the
VB approximation [12].

– The converged results are insensitive to the choice of the â(0) parameter,
and to some extent even to the σ(0)

x parameter. The hyper-parameters α, β
of both variables were set to zero to yield the Jeffreys’ prior. For σ(0)

x > 1 the
results correspond to those of σ(0)

x = 1e4 in Fig. 1. However, the converged
values differ for σ(0)

x ≤ 1, Fig. 1, which illustrates the existence of local
minima in the VB procedure [16].

– The Variational PCA [5] is a multivariate extension of this model with ARD
applied on the columns of the mixing matrix.

Remark 1 (Symmetric ARD). It is possible to introduce ARD on both variables
a and x. However, reliable estimation is achieved only with enforced positivity
of a and x via truncated Normal prior. In this case, the estimation results are
closely similar to those in Fig. 1.

3 Blind Source Separation and Deconvolution

The task of blind source separation arise when the observed signal is assumed
to be a superposition of the source signal. In this Section we assume that the
source signals are generated via convolution of the common input function with
source-specific kernels.

3.1 Signal superposition and convolution

The basic formulation of the blind source separation assumes that the vector of
observations at time t, dt is a linear superposition of all source signals at the



same time, xt:
dt = Axt, (14)

where A is the mixing matrix, xt = [xt,1, . . . , xt,r], and r is the number of sources.
The number of observations is p and the length of the source signal is n. The
full observed sequence can be written in matrix notation as:

D = AX
′
, (15)

where D = [d1, . . . ,dn], and the columns of matrix X are the source signals
X = [x1, . . . ,xr] (xt are the rows of matrix X). In this case, we assume the
number of sources r to be unknown with conditions r < n, r < p.

The kth source is assumed to be the result of convolution of the common
input function b, and source-specific convolution kernels uk:

xk = b ∗ uk = Buk, (16)

where matrix B is defined as follows:

B =


b1 0 0 0
b2 b1 0 0
. . . b2 b1 0
bn . . . b2 b1

 . (17)

The full model of the data is thus

D = AX ′ = AU ′B′, (18)

where U = [u1, . . . ,uk] and all parameters A,U,B are unknown. In the sequel,
we will assume that all these parameters are positive. This is motivated by the
application area in image analysis.

3.2 Probabilistic model

The deterministic assumptions in the previous Section are valid only approxi-
mately. For example, the data vectors dt are subject to the observation noise.
The observed data dt are thus modeled as random realizations from the probabil-
ity density function. For Gaussian distributed noise, the matrix of observations
is assumed to be distributed as

p(D|A,B,U, ω) = N (AU ′B′, ω−1Ip ⊗ In) =
n∏
t=1
N (Axt, ω−1Ip), (19)

where Ip denotes identity matrix of size p × p, N (., .) of matrix argument de-
notes the matrix normal distribution [16] and symbol ⊗ denotes the Kronecker
product. Prior distributions for all unknown parameters A,B,U, ω need to be
specified.



d

a x

ra rx

re

αa, βa αx, βx

dt

ai uk b

ξi υk ς

ω

φ0, ψ0 α0, β0 ζ0, η0

ϑ0, ρ0

i = 1, . . . , p

k = 1, . . . , r

Fig. 2. Graphical model of the scalar multiplicative decomposition from Remark 1
(left) and the proposed sparse blind source separation and deconvolution (right).

The parameter ω is a precision parameter of a Gaussian density and thus it
has a conjugate prior in the form of Gamma density

p(ω) = G(ϑ0, ρ0),

with chosen constants ϑ0, ρ0. These may be chosen to approach ϑ0 → 0, ρ0 →
0 yielding an uninformative Jeffrey’s prior on the scale parameter [10]. The
input function b is assumed to have all positive elements. This assumption
is modeled by Normal distributed prior with its support truncated to positive
values (Appendix B.1), the truncated normal distribution is denoted tN () with
the same arguments the Normal distribution since the truncation interval is
always 〈0,∞〉. The precision of the prior is also unknown:

p(b|ς) =tN (0, ς−1In), p(ς) =G(ζ0, η0). (20)

The only assumption on the mixing matrix and the convolution kernels is
sparsity. In both cases it will be achieved by the ARD property (Section 2.2).
Specifically, the ARD prior (7) is used for all elements of matrices A and U . In
vector notation, the ARD corresponds to a variance with unknown diagonal:

p(uk|υk) =tN (0n,1,diag(υk)−1), (21)
p(υj,k) =G(αjk,0, βjk,0), j = 1, . . . , n. (22)

Here, diag(.) denotes a matrix with the argument vector in its diagonal and
zeros otherwise, and υj,k are elements of υk. For notational convenience, we
define prior on the rows of matrix A, ai, i = 1, . . . p.

p(ai|ξi) =tN (01,r,diag(ξi)−1), p(ξi) =
r∏

k=1
G(φik,0, ψik,0). (23)



The joint distribution of the data is then

p(D,A,b, U, ω) = p(D|A,b, U, ω)
p∏
i=1

[p(ai|ξi)p(ξi)]

r∏
k=1

[p(uk|υk)p(υk)] p(b|ς)p(ς)p(ω). (24)

Graphical model of (24) is displayed in Fig. 2. The model differs from the Varia-
tional PCA [5] and its positive version [13] in the form where the ARD is applied.
While one ARD parameter is common to the whole column of matrix A in the
former, every element of the matrices A and U has its own relevance determi-
nation parameter in our model. The model has thus much more parameters to
estimate from the data.

3.3 The Variational Bayes posterior

We seek the variational solution in the same form as in (24). The variational
posterior distributions (4) for model (24) are found to have functional form:

p̃(uk|D, r) =tN (µuk
, Σuk

) , p̃(υk|D, r) =
n∏
j=1

G(αjk, βjk), (25)

p̃(b|D, r) =tN (µb, Σb) , p̃(ς|D, r) =G(ζ, η), (26)

p̃(ai|D, r) =tN (µai
, Σai

) , p̃(ξi|D, r) =
r∏

k=1
G(φik, ψik), (27)

p̃(ω|D, r) =G(ϑ, ρ). (28)

The shaping parameters of the posterior distributions are given in Appendix A.
Together with moments of distributions (25)–(28) they form a set of implicit
equations that needs to be solved.

3.4 Iterative solution

Solution of the implicit set of equations in Appendix A is found using the varia-
tion iterative algorithm [1,16]. The algorithm is based on sequential evaluation of
the shaping parameters in Appendix A in the following order: 1) image sources
ai, ξi, 2) convolution kernels uk,υk, 3) input function b, ς, 4) noise precision ω.
This order was found to yield the fastest convergence.

Since the Variational Bayes approximation contains local minima, initializa-
tion of the iterative algorithm is critical. Similarly to the scalar decomposition ex-
ample, we set values of all Gamma hyper-parameters, φ0, ψ0, α0, β0, ζ0, η0, ϑ0, ρ0,
to 10−10 to yield uninformative prior. The most sensitive parameter to initial-
ization is the input function b. We propose to initialize the iterative algorithm
at b(0) = [1, 0, . . . , 0], for which the matrix B is the identity matrix and the



convolution kernels have the role of the sources. This point is known to be an
important local extrema in the image deconvolution problems. The convolution
kernels uk were initialized randomly.

Care is needed with numerical implementation of the iterative algorithm.
Specifically, when eigenvalues of the inverted matrices in (29) and (31) are almost
equal, the resulting estimates of the convolution kernels contain artifacts (jagged
curves). This have been prevented by the use of pseudo-inverse with removal of
the smallest eigenvalues. The jagging effect is also suppressed by using (41) to
estimate the second moment of p(U).

The resulting algorithm will be denoted as Sparse Blind Source Separation
and DeConvolution (S-BSS-DC). It is implemented in matlab and can be down-
loaded from: http://www.utia.cas.cz/AS/softwaretools/image_sequences

4 Results

In this Section, we study properties of the proposed algorithm on a simulated
data and demonstrate its practical use on the data from dynamic medical imag-
ing. In both cases, we use a non-standard interpretation of blind source separa-
tion which is now briefly introduced.

4.1 Image Sequence Decomposition

The blind source separation model (14) has been used in image sequence analysis
for a long time, usually as a model of principal components [3]. The interpretation
of the model parameters is slightly different from the cocktail party problem. The
observation dt is a vector of pixels of the image observed at time t, where the
pixels are stored column-wise. The columns of matrix A are images of activity
(e.g. measured by PET, SPECT or fMRI) of the underlying biological organs
stored in the same form as pixels of dt. The elements of xt are activities of the
underlying images at time t. The columns ak of the matrix A and the source
vectors xk are thus considered to belong to each other, where the ak is the
image of the biological organ and xk its activity in time. These will be denoted
as source images and source curves, respectively.

This problem has been addressed by the Variational Bayes approach e.g. in
[13,16]. The Variational Bayes method of image decomposition with positivity
constraints and ARD on image sources was proposed in [13] and will be used
for comparison under label BSS+. Sparsity of the image has been modeled by
mixture priors, where the parameters of the mixture had to be selected [13], or
discrete hidden variable [17].

In medical applications, the sources x correspond to the flow of biological
fluids in the organism. This flow can be modeled by a compartment model, which
yields model of the source as convolution of the activity of the blood stream and
the tissues specific kernels [11,7]. However, the parametric convolution kernels are
typically used [21,7]. Parameters of the convolution kernels are very important
for estimation of diagnostic coefficients [11]. We will study the use of general
convolution kernels with the ARD prior.



4.2 Phantom Study

A synthetic phantom study for the sparse blind source separation and decon-
volution was proposed in [7]. The data are generated using three sources with
parametric convolution kernel in the parametric form assumed in [7], so that
their CAM-CM algorithm can be used to estimate them. The original phantom
data are displayed in Fig. 3, top right. Each source curve generated as a con-
volution between a common input function b = exp(− t

3 ) and source-specific
convolution kernels, u1 = exp(− t

10 ), u2 = 100 exp(−4t), and u3 = 1
2 exp( t

100 ).
Each source image has resolution 50× 50 pixels, i.e. p = 2500, and the sequence
contains 50 images, i.e. n = 50.

The generated data intentionally contain many overlapping regions. The com-
mon assumption in many image decomposition techniques is that there is at least
one pixel in each image that do not overlap with others [7]. Many decomposition
techniques thus separate the unique areas well, but struggle with assignment of
the overlaps.

The results of the proposed algorithm are displayed in Fig. 3, bottom, via
the estimated variances of each pixel, ξ̂i,k displayed in the same order of pixels
as in the estimated image, image estimates âk, source estimates x̂k = B̂ûk, and
estimated convolution kernels ûk, respectively. Note that the first convolution
kernel is a pulse, hence the corresponding source curve is the estimated input
function. Both the CAM-CM solution and the estimated pixel variances ξ̂i,k
(ARD on elements of A), Fig 3. bottom left, tend to select the areas where
the images are unique. However, the resulting estimates of the images âk of the
S-BSS-DC have correctly assigned the overlapping parts.

The default starting points of the iterative algorithm (Section 3.4) were used
in analysis of the sequence with the following observations of sensitivity:

– Initialization of the input function by the impulse is not a local minima
due to the sparsity prior on the convolution kernels. The ARD prior favors
sparse kernels and thus the impulse function is typically recovered in one
of the convolution kernels. However, initialization of the input function by
random values is unreliable and often converges to a local minima.

– Initialization of the convolution kernels by random starts is rather reliable
and no local minima were observed.

– The initial estimate of the precision of the observation noise was selected
using the mean of the eigenvalues of matrix D′D, see [16] for justification.
The same results were obtained even with minimum and maximum of the
eigenvalues. Local minima were observed only with extreme values of ω̂(0).

– The results are sensitive to the selected maximum number of sources r. When
the number of sources is greater than the simulated, the strongest source is
split into two factors with complementary convolution kernel.

4.3 Real Data Experiment

Validity of the model assumptions is now tested on real clinical data from renal
scintigraphy. The tested dataset is a selection of dataset 28 from [20] where
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Fig. 3. Generated synthetic dataset using model [7]. Top left: simulated source images
and curves. Top middle: decomposition of the data using the CAM-CM algorithm
[7]. Top right: decomposition of the data using the BSS+ algorithm [13] Bottom:
decomposition using the proposed S-BSS-DC algorithm.



a rectangular region of left part of the body and 99 time steps were selected.
The images are obtained by counting radioactive particles, hence the observation
noise is assumed to be Poisson-distributed. Therefore, we use the correspondence
analysis which was found to be optimal conversion of this kind of noise to the
homogeneous Gaussian noise [16]. In this application, we have good knowledge
of the typical shapes of the input function and the convolution kernels. Thus, we
initialize the iterative algorithm by the expected convolution kernels of a typical
healthy patient. The convergence of the algorithm is thus significantly faster.
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Fig. 4. Results of the proposed algorithm on a real dataset from renal scintigraphy.
The columns of the S-BSS-DC algorithm are: the estimate of the variance of the image
source prior, the estimate of the source image, the source curve, and its convolution
kernel, respectively. The columns of the common BSS+ method are the estimates of
the source images and the source curves respectively.



The results of the proposed S-BSS-DC algorithm on this data set are dis-
played in Fig. 4, via the estimated source pixel variance ξ̂i,k, image estimates
âk, source estimates x̂k = B̂ûk, and estimated convolution kernels ûk, respec-
tively. Once again, the first convolution kernel was estimated to be a pulse,
hence the first estimated source curve is equal to the estimated input function.
For comparison, the results of blind source separation with positivity constraints
(BSS+)are displayed in Fig. 4, right. Comparison with CAM-CM is omitted since
its parametric form of the convolution kernels does not correspond to the data.

Note that S-BSS-DC decomposed the observed sequence to 5 sources, the
BSS+ method found only 3 meaningful sources (the remaining were removed by
the ARD property). All sources recovered by S-BSS-DC has very good medical
interpretation as follows: 1) vascular structure, 2) parenchyma, 3) pelvis, 4)
liver, 5) unspecific movement. The results of BSS+ can be interpreted as being
superposition of sources discover by S-BSS-DC, namely: 1+4), 2+3) and 3+5),
respectively. The results of BSS+ are not diagnostically relevant, due to their
inability to separate pelvis and parenchyma.

An undesired artifact of the S-BSS-DC algorithm is its tendency to estimate
non-smooth convolution kernel, see Fig. 4 right. This tendency is increasing with
decreasing signal-to-noise ratio. More detailed modeling of the structure of the
convolution kernels (e.g. via two unknown diagonals of the precision matrix in
(21)) is required to allow reliable performance in these conditions.

5 Discussion and Conclusion

The problem of blind source separation and deconvolution is in general ill-posed
and needs to be regularized by additional assumptions. In this paper, we pro-
posed to use a hierarchical probabilistic model with unknown variance of all
elements of the mixing matrix, and the convolution kernels. In effect, this prior
promotes sparse estimates of these parameters. Since the proposed model does
not allow for analytical solution, we applied the Variational Bayes method to
find approximate solution. All other hyper-parameters are chosen to yield unin-
formative prior, hence the only additional parameter that needs to be chosen is
the number of sources to recover. However, the number of sources needs to be
chosen carefully, since the algorithm does not posses the ability to recover their
number correctly.

Since the Variational Bayes is known to suffer from local minima, we proposed
a general-purpose initialization of the implied iterative algorithm. The algorithm
was tested in simulation and the proposed initialization was found to be robust
and reliable. In specific applications, more appropriate choices can be made to
speed up convergence of the algorithm.

The algorithm was also applied to the problem of decomposition of sequence
of medical images. The proposed algorithm was able to identify diagnostically
relevant sources better than conventional blind source separation methods.
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A Shaping Parameters of Posterior Distributions

The shaping parameters of posterior distributions (25) - (28) are as follows:

Σuk
=
((
ω̂B̂′B(â′kak)

)
+ diag(υ̂k)

)−1
, (29)

µuk
=Σuk

(−ω̂ r∑
l=1,l 6=k

B̂′Bûl(â′kal)

+ ω̂B̂′D′âk

)
, (30)

Σb =

ς̂In + ω̂

r∑
i,j=1

(â′iaj)

 n−1∑
k,l=0

∆′k∆l( ̂uk+1,jul+1,i)

−1

, (31)

µb =Σbω̂

r∑
k=1

n−1∑
j=0

∆jûj+1,k

′D′âk, (32)

αk =αk,0 + 1
21n,1, βk =βk,0 + 1

2diag
(

ûku′k
)
, (33)

ζ =ζ0 + n

2 , η =η0 + 1
2tr
(

b̂′b
)
, (34)

ϑ =ϑ0 + pn

2 , ρ =ρ0 + 1
2tr
(
DD′ − 2ÂX̂ ′D′

)
+ 1

2tr
(
Â′AX̂ ′X

)
, (35)

Σai =

ω̂ n∑
j=1

(x̂′jxj) + diag(ξ̂i)

−1

, µai =

Σai

ω̂ n∑
j=1

(x̂jdi,j)′
′ , (36)

φi =φi,0 + 1
2 · 1r,1, ψi =ψi,0 + 1

2diag
(

â′iai
)
. (37)

The auxiliary matrix ∆k ∈ Rn×n is defined as

(∆k)i,j =
{

1, if i− j = k,

0, otherwise.

The moments of variables are computed using expectations of their probability
density function, Appendix B.1.



B Required Probability Distributions

B.1 Truncated Normal Distribution

Truncated normal distribution is defined for scalar random variable x = Nx(µ, σ)
on interval a < x ≤ b as follows:

x ∼ tN (µ, σ, a, b) =
√

2 exp((x− µ)2)√
πσ(erf(β)− erf(α))

χ(a;b](x), (38)

where α = a−µ√
2σ , β = b−µ√

2σ , χ(a,b](x) is a characteristic function of interval (a, b]

defined as χ(a,b](x) =
{

1 x ∈ (a, b]
0 x /∈ (a, b]

, and erf(t) = 2√
π

´ t
0 e
−u2ddu.

Moments of the truncated normal distribution are given as

x̂ = µ−
√
σ

√
2[exp(−β2)− exp(−α2)]√
π(erf(β)− erf(α))

, (39)

x̂2 = σ + µx̂−
√
σ

√
2[b exp(−β2)− a exp(−α2)]√

π(erf(β)− erf(α))
. (40)

B.2 Multivariate Truncated Normal Distribution

Truncation of the multivariate Normal distribution x ∼ N (µ,Σ) is formally
simple, however, its moments can not be expressed analytically. Therefore, we
approximate the moments of x of the truncated Normal distribution by the
moments of

x̃ ∼ tN (µ,diag(σ)),

where σ is a vector of diagonal elements of Σ. This corresponds to approximation
of the posterior by a product of marginals (38) with mean value x̂ with elements
given by (39) and x̂xT = x̂x̂T + diag(σ̂), where σ̂i = x̂2

i − x̂ix̂i. However, it
may be too coarse approximation since it ignores covariance of the elements. An
alternative is to approximate

x̂xT = x̂x̂T + diag(o)Σdiag(o), (41)

where o is a vector of elements oi = σ̂
1/2
i σ

−1/2
i . Heuristics (41) is motivated

by the observation that for a Normal distribution with the main mass far from
the truncation lines, oi → 1 and (41) becomes equivalent to the moment of the
non-truncated Normal distribution.
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