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Can we Improve Understanding of the Financial 
Market Dependencies in the Crisis by their 

Decomposition?
Pomůže nám dekompozice závislostí na 

finančních trzích zlepšit jejich pochopení v krizi?
JOZEF BARUNÍK

Abstract
Study of the financial market dependencies have become one of the most active and 
successful areas of research in the time series econometrics and economic forecasting 
during the recent decades. Current financial crisis have shown that understanding of the 
dependencies in the markets is crucial and it has even boosted the interest of researchers. 
this work brings new theoretical framework for the realized covariation estimation gener-
alizing the current knowledge and bringing the estimation to the time-frequency domain 
for the first time. Usage of wavelets allows us to decompose the correlation measures 
into several investment horizons. our estimator is moreover able to separate individual 
jumps, co-jumps and true covariation from the high frequency data, thus brings better 
understanding of the dependence. the results have crucial impact on the portfolio diver-
sification especially in the crisis years as they point to the strong dynamic relationships 
at various investment horizons. results suggest that understanding jumps and co-jumps 
is important for forecasting the covariance and the correlation as they have large impact 
on these measures. our results have significant economic value as wrong assumption 
about the dependence process will have direct impact on the forecasting and portfolio 
valuation.
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Abstrakt
Studium závislostí na finančních trzích se stalo jednou z nejaktivnějších a nejúspěšnějších 
oblastí výzkumu v ekonometrii časových řad a v ekonomických prognózách v posled-
ních dekádách. Probíhající finanční krize ukázala, že porozumění závislostem na trzích 
je klíčové a ještě víc rozproudila zájem výzkumníků o problematiku. tato práce přináší 
nový teoretický rámec pro odhad realizované kovariance. Hlavním přínosem této práce je 
zobecnění stávajících poznatků a možnost studia závislostí v časově-frekvenční doméně. 
Pomocí našeho odhadu založeného na waveletové analýze můžeme studovat dekom-
ponované korelace dynamicky v čase a na různých časových horizontech zároveň. Náš 
odhad dále odděluje individuální skoky, společné skoky a skutečnou kovarianci od vysoko 
frekvenčních dat a tím umožňuje lepší porozumění závislosti. Výsledky mají klíčový dopad 
na diversifikaci portfolia a to zejména v krizi, jelikož poukazují na silné dynamické vztahy 
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na různých investičních horizontech. Výsledky naznačují, že pochopení skoků a koordi-
novaných skoků je důležité pro předpovídání kovariance a korelace, neboť mají velký 
dopad na tato měření. Naše výsledky jsou ekonomicky důležité, jelikož ukazují, jak velký 
vliv bude mít nesprávný předpoklad o dynamice závislosti na předpovídání a zhodnocení 
portfolia.

Klíčová slova
korelace, mnohorozměrná realizovaná volatilita, kovariance, skoky, společné skoky, wave-
lety

Introduction

one of the most fundamental issues in finance is research of the covariance generating 
process between asset returns. demand for accurate covariance estimation is becoming 
more important for risk measurement and portfolio optimization than ever before. the 
increasing availability of high-frequency data for a wide range of securities has allowed 
a shift from parametric conditional covariance estimation based on daily data toward 
the model-free measurement of so-called “realized quantities” on intraday data. Using 
a seminal result in semi-martingale process theory, andersen et al. (2003) show that re-
alized variance becomes a consistent estimator of integrated variance with increasing 
sampling frequency under the assumption of zero microstructure noise. Barndorff-Nielsen 
and Shephard (2004) generalize the idea to a multivariate setting of so-called “realized co-
variation” and provide an asymptotic distribution theory for covariance (and correlation) 
analysis – again with the assumption of zero microstructure noise.

although the theory is very appealing and intuitive, it assumes that the observed high-
frequency data are the true underlying process. But real-world data are contaminated 
with microstructure noise and jumps, which makes statistical inference difficult. realized 
measures suffer from large bias and inconsistency with the presence of noise and jumps 
in the observed data. the first approach to dealing with noise actually throws away a large 
amount of data. while this may not seem to be a logical step, the reason can be found 
quickly when one looks at the data at various sampling frequencies. the higher the fre-
quency of the data we use (i.e., 1 second, 1 tick), the more microstructure noise they 
contain and the more biased the estimator is. thus, a lot of researchers use lower frequen-
cies (i.e., 5 minutes), which results in the throwing away of a very large amount of data 
directly. this is not an appropriate solution for a statistician to use. in the recent literature, 
a number of ways have been proposed to restore consistency through subsampling, for 
example zhang et al. (2005)’s two-scale realized volatility estimator. zhang (2011) gener-
alizes these ideas to a multivariate setting and defines a two-scale covariance estimator. 
Barndorff-Nielsen et al. (2011) achieve positive semi-definiteness of the variance-covari-
ance matrix using multivariate kernel-based estimation.

while inference under noise and jumps in realized variation theory has been widely stud-
ied in recent contributions, its generalization to covariation theory is only now emerging 
in the literature. together with important contributions by zhang (2011) and Barndorff-
Nielsen et al. (2011), Griffin and oomen (2011) and aït-Sahalia et al. (2011) deal with micro-
structure noise and non-synchronous trading and propose a consistent and efficient es-
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timator of realized covariance. audrino and Corsi (2010) propose a forecasting model for 
realized correlations. this research is becoming very active and stands at the frontier of 
current research in financial econometrics.

in our work, we contribute to the current literature and provide a generalization of multi-
variate realized covariation theory. the theoretical results for the univariate setting moti-
vate multivariate volatility modeling and forecasting based on realized covariation meas-
ures. while most time series models are set in the time domain, we enrich the analysis by 
the frequency domain. this is enabled by the use of the continuous wavelet transform. 
it is a logical step to take, as the stock markets are believed to be driven by heterogene-
ous investment horizons. in our work, we ask if wavelet decomposition can improve our 
understanding of co-volatility series and hence improve volatility forecasting and risk 
management.

another very appealing feature of wavelets is that they can be embedded into stochastic 
processes, as shown by antoniou and Gustafson (1999). thus we can conveniently use 
them to extend the theory of realized measures. one of the issues with the interpreta-
tion of wavelets in economic applications is that they behave like a filter. thus wavelets 
can hardly be used for forecasting in econometrics. But in the realized measures, we use 
wavelets only to decompose the daily variation of the returns using intraday information. 
Moreover, the approach suggests constructing a model from the wavelet decomposi-
tion.

we are not the first to use this idea. Several attempts to use wavelets in the estimation 
of realized variation have emerged in the past few years. Høg and lunde (2003) were the 
first to suggest a wavelet estimator of realized variance. Capobianco (2004), for example, 
proposes to use a wavelet transform as a comparable estimator of quadratic variation. 
Subbotin (2008) uses wavelets to decompose volatility into a multi-horizon scale. Next, 
Nielsen and Frederiksen (2008) compare the finite sample properties of three integrated 
variance estimators, i.e., realized variance, Fourier and wavelet estimators. they consider 
several processes generating time series with a long memory, jump processes as well as 
bid-ask bounce. Gencay et al. (2010) mention the possible use of wavelet multiresolu-
tion analysis to decompose realized variance in their paper, while they concentrate on 
developing much more complicated structures of variance modeling in different regimes 
through wavelet-domain hidden Markov models.

one remarkable exception which fully completes the current literature on using wavelets 
in realized variation theory is the work of Fan and wang (2007), who were the first to use 
the wavelet-based realized variance estimator and also the methodology for the estima-
tion of jumps from the data. in our work, we generalize the results of Fan and wang (2007) 
in several ways. instead of using the discrete wavelet transform we use the Maximum 
overlap discrete wavelet transform (Modwt), which is a more efficient estimator and is 
not restricted to sample sizes that are powers of two. we also use the daubechies family 
of wavelets instead of the Haar type. the most significant contribution is generalization of 
this approach to covariation and correlation estimation. Moreover, we also present a new 
theory for estimation of co-jumping in the stock markets.
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this paper is organized as follows. due to the limited space, the first chapter briefly intro-
duces the realized measures of variance-covariance matrix. the second chapter introduces 
our new wavelet-based covariation theory together with a methodology for detecting 
multivariate co-jumps using wavelets. wavelet decomposition is also used to define wave-
let-based realized correlation. in the third part, our theory is used to study the dynamics 
of the dependence in the stock markets while we decompose the dependence into the 
several investment horizons, individual jumps and co-jumps. Finally, we build a forecast-
ing model based on decomposed measures and study the impact on jumps and co-jumps 
on the correlation forecasting.

1 Realized Measures

andersen et al. (2003) suggest estimating the quadratic covariation matrix by taking 
the outer product of the observed high-frequency return over the period. the realized 
covariance of the returns process rt,h over the time interval [t− ℎ,t], for 0 ≤ ℎ ≤ t ≤ T, is 
estimated by 

, = ∑  
′ 

,  (1) 

where  is the number of observations in   ℎ, . Details of these results can be found in 
Andersen et al. (2003) and Barndorff-Nielsen and Shephard (2004) who show that the ex-post
realized covariance , is an unbiased estimator of the ex-ante expected covariation ,. 
With increasing sampling frequency, the realized covariance is, moreover, a consistent 
estimator of the covariation over any fixed time interval ℎ > 0, as   ∞. 

In practice, we observe only discrete prices, thus bias from discretization is unavoidable. 
Much more damage is caused by market microstructure effects such as price discreteness, 
bid-ask spread and bid-ask bounce. Thus, when using this estimator in practice, one is left 
with advice not to sample too often. While the optimal sampling frequency resulting from the 
vast research on the noise-to-signal ratio, nicely surveyed by Hansen and Lunde (2006), Bandi 
and Russell (2006), McAleer (2008) and Andersen and Benzoni (2007) can be used, this 
approach still causes a large amount of available data to be discarded. As in the univariate 
case of Zhang et al. (2005)'s two-scale realized volatility estimator, multivariate generalization 
addresses the problem Zhang (2011). 

Another significant bias brought into the estimation is caused by jumps. Barndorff-Nielsen 
and Shephard (2006) introduce a test based on the difference between the bipower variation 
and the quadratic variation, but the work is currently unfinished. Andersen et al. (2007) and 
Huang and Tauchen (2005) present a study of multipower variations in order to assess the 
proportion of the quadratic variation attributable to jumps. Andersen et al. (2007) and Lee and 
Mykland (2008) introduce two very similar procedures, which compare intraday returns to a 
local volatility measure. Fan and Wang (2007) develop the wavelet methods for jump 
estimation. Jiang and Oomen (2008) construct a test based on the hedging error of a variance 
swap replication strategy. Aït-Sahalia and Jacod (2009) propose an estimator of truncated 
power variations computed at different sampling frequencies. Finally, Andersen et al. (2009) 
introduce a test for jumps constructed using the MedRV and MinRV measures. Other tests 
include Mancini (2009) and Lee and Hannig (2010). The harm imposed by ignoring jumps 
and co-jumps in assumed price processes can be large, especially with regard to forecasting, 
option pricing, portfolio risk management and credit risk management. In our work, we will 
propose a novel method utilizing wavelets to consistently estimate jumps and co-jumps in the 
data. 

One last important assumption about the theory we did not mention is that the data are 
assumed to be synchronized, meaning that the prices of the  assets were collected at the 
same time stamp. In practice, trading is non-synchronous, delivering fresh prices at irregularly 
spaced times which differ across stocks. Research of non-synchronous trading has been an 
active field of financial econometrics in past years - see, for example, Hayashi and Yoshida 
(2005) and Voev and Lunde (2007). This practical issue induces bias in the estimators and 
may be partially responsible for the Epps effect a phenomenon of decreasing empirical 
correlation between the returns of two different stocks with increasing data sampling 
frequency. In this work, we use refresh time scheme (Barndorff-Nielsen et al., 2011) to 
synchronize the data. 

2 Decomposition of Realized Measures by Wavelets 

Let us introduce the decomposition of the realized measure by wavelets. Due to the limited 
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harm imposed by ignoring jumps and co-jumps in assumed price processes can be large, 
especially with regard to forecasting, option pricing, portfolio risk management and credit 
risk management. in our work, we will propose a novel method utilizing wavelets to con-
sistently estimate jumps and co-jumps in the data.

one last important assumption about the theory we did not mention is that the data 
are assumed to be synchronized, meaning that the prices of the assets were collected at 
the same time stamp. in practice, trading is non-synchronous, delivering fresh prices at 
irregularly spaced times which differ across stocks. research of non-synchronous trading 
has been an active field of financial econometrics in past years - see, for example, Hayashi 
and yoshida (2005) and Voev and lunde (2007). this practical issue induces bias in the 
estimators and may be partially responsible for the Epps effect a phenomenon of decreas-
ing empirical correlation between the returns of two different stocks with increasing data 
sampling frequency. in this work, we use refresh time scheme (Barndorff-Nielsen et al., 
2011) to synchronize the data.

2 Decomposition of Realized Measures by Wavelets

let us introduce the decomposition of the realized measure by wavelets. due to the lim-
ited space of this paper, we introduce just the basic idea while we refer reader to the 
dissertation where the mathematical background is derived Barunik (2011). the realized 
wavelet covariance (using the Modwt) is a scale by scale decomposition of the realized 
covariance defined by definition 1. the realized wavelet covariation of the -th and -th as-
set return from the m-dimensional vector of returns rt,h over [t − ℎ,t], for 0 ≤ ℎ ≤ t ≤ T, can 
be defined as 
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where  ≤ log. The proof is provided in Appendix A.1. 

While this estimator is just decomposition of 1, we need to make adjustments for the noise 
and jumps. In the Appendix A.1, we describe the methodology of jumps estimation using 
wavelets. On the jump-adjusted data, our final estimator is defined as follows. Let 
,,, denote an estimator of the realized covariance between the -th and -th 
asset return on the jump-adjusted observed data, , = , −  . The jump-adjusted 
wavelet two-scale realized covariance estimator (JWTSCV) is defined as: 
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coefficient estimates using the MODWT on a grid of size  =  on the jump-adjusted 
observed data, , = , −  , and  is a constant that can be tuned for small sample 
performance. The proof of consistency and unbiasedness of our estimator can be found in 
Appendix A.3. Estimator 3 converges in probability to the true integrated covariance, which is 
of primary interest in this analysis. Thus we have defined a new wavelet-based Covariation 
theory which is able to estimate realized covariation consistently in the presence of noise and 
jumps. In the next section, we use this theory to propose estimators of covariance and realized 
beta, which are important for financial practitioners. 

Once we estimate the variance-covariance matrix, we can easily transform it to the correlation 
measure which we will use in the empirical part. 

3 Decomposition of Stock Market Dynamics 

The main motivation of the theory is to bring a new view on the dynamics of the stock 
markets. The main power of our wavelet-based estimator is that it is able to decompose the 
realized measures into several investment horizons as well as study the individual jumps and 
co-jumping. Thus let us have a look at data. 

3.1 Data Description 

Foreign exchange future contracts are traded on the Chicago Mercantile Exchange (CME) on 
a 24-hour basis. These markets are among the most liquid, so they are suitable for testing our 
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theory which is able to estimate realized covariation consistently in the presence of noise 
and jumps. in the next section, we use this theory to propose estimators of covariance and 
realized beta, which are important for financial practitioners.

once we estimate the variance-covariance matrix, we can easily transform it to the cor-
relation measure which we will use in the empirical part.

3 Decomposition of Stock Market Dynamics

the main motivation of the theory is to bring a new view on the dynamics of the stock 
markets. the main power of our wavelet-based estimator is that it is able to decompose 
the realized measures into several investment horizons as well as study the individual 
jumps and co-jumping. thus let us have a look at data.

3.1 Data Description

Foreign exchange future contracts are traded on the Chicago Mercantile Exchange (CME) 
on a 24-hour basis. these markets are among the most liquid, so they are suitable for test-
ing our estimator. we will estimate the realized covariance of British pound (GBP), Swiss 
franc (CHF) and Euro futures (EUr), while we will focus on the GBP-CHF, GBP-EUr and CHF-
EUr futures pairs. after estimating the covariance, we will study the correlations between 
the currencies. all contracts are quoted in the unit value of the foreign currency in US dol-
lars, which makes them comparable. the cleaned data are available from tick data, inc.1

it is important to understand the trading system before we begin the study. in august 
2003, CME launched the Globex trading platform, which generated a large increase in the 
liquidity of currency futures. For the first time ever in a single month, the trading volume 
on the electronic trading platform exceeded 1 million contracts every day. on Monday, 
december 18, 2006, the CME Globex(r) electronic platform started offering 23-hours-a-
day trading. the weekly trading cycle begins at 5:00 pm on Sunday and ends at 4:00 pm on 
Friday, while every day the trading is interrupted for one hour from 4:00 pm until 5:00 pm. 
these changes in the trading system had a dramatic impact on trading activity. For this 
reason, we restrict ourselves to a sample period extending from January 5, 2007 through 
November 17, 2010, which contains the most recent financial crisis. the futures contracts 
we use are automatically rolled over to provide continuous price records, so we do not 
have to deal with different maturities.

the tick-by-tick transactions are recorded in Chicago time, referred to as Central Standard 
time (CSt). therefore, in a given day, trading activity starts at 5:00 pm CSt in asia, con-
tinues in Europe followed by North america, and finally closes at 4:00 pm in australia. we 
exclude potential jumps due to the one hour gap in trading from our analysis by redefin-
ing the day in accordance with the electronic trading system. Moreover, we eliminate 
Saturdays and Sundays, US federal holidays, december 24 to december 26, and december 
31 to January 2 because of the very low activity on these days, which would bias the esti-
mates. Finally, we are left with 944 days in the sample.

1 ℎttp://www.tickdata.com/
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For the analysis of relations between the currencies, it is crucial that they are synchronized 
in time. we use the refresh time scheme to synchronize the data. looking more closely at 
the higher frequencies, we find that a large amount of transactions have a common time 
stamp, so we use the arithmetic average for all observations with the same time stamp. 
Finally, we redefine the clock according to the refresh time scheme so that we can work 
with the data that are synchronized. we use the refresh time scheme for each pair sepa-
rately in order to keep as much data as possible in the analysis.

4 Multivariate Unconditional Volatility Distributions

Having prepared the data, we can proceed to study the dependencies. For each pair, we 
estimate the covariance and correlation using our jump wavelet two-scale realized covari-
ance estimator (JwtSCV) and for the reference, also the realized covariance (rC) estimator 
for each futures pair under the study.

table 1 provides the average estimated covariation and correlation among the three cur-
rencies. as the benchmark, we use unconditional open-to-close measures computed as 
the outer products of the open-to-close returns. interestingly, the unconditional measures 
are not far from the realized measures. this seems to be a feature of currency data, as other 
authors, e.g. Barndorff-Nielsen et al. (2011), have found significant differences on large 
samples of US stocks.

Table 1: the average covariation (×104) and correlation among the three currencies, GBP-
CHF, GBP-EUr and CHF-EUr.   

covariance correlation

GBP-CHF GBP-EUr CHF-EUr GBP-CHF GBP-EUr CHF-EUr

rC 0.305 0.384 0.434 0.472 0.605 0.738

JwtSCV 0.249 0.322 0.346 0.506 0.629 0.770

open-Close 0.245 0.325 0.4217 0.458 0.623 0.787

Source: Autℎor’s computations.

all the correlations are positive. the average relationship between the studied currencies 
is strong, pointing to a strong degree of integration among these European countries. our 
findings are consistent with those of aït-Sahalia et al. (2011), who use the same data set as 
we do, with the only difference that their data sample ends in June 2009.

the rC estimator shows lower correlation on average. while the correlations are generally 
strong, it seems that co-jumps do have an impact on the currency data. when compared 
with the JwtSCV estimating only the dependence of the true, continuous part without 
jumps, it estimates the correlation to be a little higher. Economically, these differences 
may lead to improved results in portfolio theory. we will study this impact in more depth 
in the last part by proposing a forecasting model.
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Before we do so, let us look at the decomposed dependencies using wavelets. we decom-
pose the covariance and correlation measures into four scales, corresponding to invest-
ment horizons of 5–10 minutes, 10–20 minutes, 20–40 minutes and 40–80 minutes, and 
the rest (80 minutes up to 1 day). we remind the reader that the sum of these components 
will always add to the estimator.

5 Dynamics of Decomposed Dependencies

the previous section provided us with a basic statistical overview of the dependence 
between the currencies. while looking at the averages, we did not show the considerable 
variation of all the measures. Such variation points to interesting dynamics, which we 
further uncover. in addition, we take advantage of wavelet theory and study the dynam-
ics of the decomposed measures as well. More specifically, we decompose the covariance 
and correlation measures into four scales corresponding to investment horizons of 5–10 
minutes, 10–20 minutes, 20–40 minutes and 40–80 minutes, and the rest (80 minutes up 
to 1 day). Finally, we use wavelet theory to disentangle co-jumps and individual jumps 
from the series.

Figure 1 provides us with the decomposition of the estimated covariance for all the cur-
rency pairs. the first row provides the bivariate time series plots and the second row the 
covariance estimated by our JwtSCV estimator. the third row presents the decomposi-
tion of the covariance into the various investment horizons, while the last three rows give 
estimates of the co-jumps and individual jump variations of both series.
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figure 1: daily returns, covariation estimated by JwtSCV, decomposition of covariation 
using JWTSCVj for j = 1,…,5 correspondingcorresponding to investment horizons of 5–10 
minutes, 10–20 minutes, 20–40 minutes, 40–80 minutes and 80 minutes up to 1 day, Jwt-
SCV estimated common jump variation, individual jump variations of both time series. (a) 
GBP-CHF futures pair, (b) GBP-EUr futures pair and (c) CHF-EUr futures pair.
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 Source: Autℎor’s computations.

the most of the covariance comes from the 5–10 minute frequency, which accounts for 
about 50% of the total covariance, and the 10–20 minute frequency, which accounts for 
about 25% of the total, which is strikingly similar to the univariate case. the full picture of 
the contributions for all pairs can be seen in Figure 2.
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figure 2: JWTSCVj , j = 1,…,5 , contributions of components of integrated covariation CVt 
corresponding to investment horizons of 5-10 minutes, 10–20 minutes, 20–40 minutes, 
40–80 minutes and 80 minutes up to 1 day. (a) GBP-CHF futures pair, (b) GBP-EUr futures 
pair and (c) CHF-EUr futures pair.

Source: Autℎor’s computations.

our method of estimation also allows us to study jumps and co-jumps in the curren-
cies. interestingly, the jump variation is much stronger than the co-jump variation in the 
studied currencies. Still, the co-jumps are significant and should not be ignored in any 
further analysis. these results suggest that if the jumps are ignored, the covariation will 
be downward biased, as we saw in the previous analysis (table 1).

Having computed the variances and covariances, we can take a look at the correlation 
dynamics. Figure 3 presents the estimate of wavelet-based correlation (wrCorr) with 95% 
confidence intervals, as well as its decomposition. we can see that the correlation of all 
the pairs vary substantially. while during 2007, the correlation of all three currencies was 
decreasing, it increased during 2008. at the end of 2008, during the largest stock market 
falls, which lasted approximately two weeks, the dependence in the currencies weakened. 
this finding is interesting, as the correlations are expected to grow during large drops. 
while the currencies show a strong degree of common dependence with the European 
Union, it seems that the recent financial crisis did not affect the dependence, while it of 
course substantially increased the variation of all series. interestingly, the correlation of 
CHF with both GBP and EUr weakened substantially during 2010.

the decomposition of the correlations again shows an interesting result. Most of the cor-
relation comes from the highest scale of 5–10 minutes. For example, of the total 0.506 
average correlation of the GBP-CHF pair, the correlation on the 5–10 minute horizon is 
0.26, the correlation on the 10–20 minute horizon is 0.13, and the rest corresponds to 
0.06, 0.03 and 0.03 (note that by simply summing these correlations we get the total cor-
relation for the pair).

Figure 4 provides a comparison of the correlation dynamics computed using two estima-
tors: the basic realized correlation and our jump-adjusted wavelet correlation (wrCorr) 
estimator. it is noticeable that our wrCorr estimator provides an estimate with lower vari-
ance (basically due to jumps) and confidence intervals.
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figure 3: Correlations with 95% confidence interval and decomposition of correlations 
using WRCorrj for j = 1,…,5 for corresponding to investment horizons of 5–10 minutes, 
10–20 minutes, 20–40 minutes, 40–80 minutes and 80 minutes up to 1 day. (a) GBP-CHF 
futures pair, (b) GBP-EUr futures pair and (c) CHF-EUr futures pair.
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to be precise, the GBP-CHF futures pair, the GBP-EUr futures pair and the CHF-EUr futures 
pair have average estimated wrCorr correlations of 0.506 (0.069), 0.629 (0.053) and 0.769 
(0.051), respectively (95% confidence intervals in parentheses). the average correlations 
for the same pairs estimated using the standard rC method are 0.47 (0.1), 0.602 (0.086) 
and 0.738 (0.062), respectively. Even though the correlations change significantly over 
time, the average correlation estimated using our method is approximately 0.03 larger 
than that using the simple rC. this result is economically significant and can have direct 
impact on portfolio diversification. Moreover, our method provides much narrower con-
fidence intervals for the estimates.

figure 4: Comparison of correlations with 95% confidence interval using in first row and 
using in second row. (a) GBP-CHF futures pair, (b) GBP-EUr futures pair and (c) CHF-EUr 
futures pair.
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6 forecasting Model Based on Decomposed Integrated Covariances

Motivated by the results from the previous analysis, we turn to building a forecasting 
model for covariances. Since the realized covariances show strong long memory behavior, 
we make use of this feature to build an arFiMa-type long memory model. Moreover, we 
decompose the covariance into several investment horizons and jumps, and forecast the 
decompositions separately in hope it will bring improvement in forecasting. Forecasting 
model is described in detail in the 6.4.

6.1 Forecast Evaluation

to analyze the forecast efficiency and information content of the different covariance 
estimators, we employ the popular approach of Mincer and zarnowitz (1969) regressions 
on both the realized covariance and its logarithmic transformation. the regression takes 
the form: 
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the forecasts back to be able to compare the results. 
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where  denotes the forecasts of the jumps. For now, we consider  to include both 
co-jumps and individual jumps and we will test its separate impact in the following section. 
Thus we test the information content of the long memory forecasts of the realized covariance 
estimators using the coefficient of determination, , of the regression. 
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We use the period from January 5, 2007 to December 31, 2009 to perform the estimations of 
all the models. We refer to this period as the in-sample period and it contains the GBP-CHF, 
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thus we test the information content of the long memory forecasts of the realized covari-
ance estimators using the coefficient of determination, r2, of the regression.

6.2 Does Decomposition Bring any Improvement in Covariation Foreca-
sting?

we use the period from January 5, 2007 to december 31, 2009 to perform the estimations 
of all the models. we refer to this period as the in-sample period and it contains the GBP-
CHF, GBP-EUr and CHF-EUr pairs. the year 2010 is saved for comparison of the out-of-
sample forecasts, which are done on a rolling basis.

table 2 presents the results of the realized covariation forecasts. JwtSCV is the easiest to 
forecast in terms of having the highest for all cases except the GBP-EUr pair, where rC 
results in a slightly higher . thus JwtSCV seems to carry the most significant information 
in comparison with the other estimators. it confirms that the continuous part of the real-
ized covariance has the highest information content. 

Table 2: results for RCt: R2 for the Minzer-zarnowitz regressions regressing arFiMa fore-
casts of rC, JwtSCV and JwtSCV on its estimates.

in-sample
GBP-CHF GBP-EUr CHF-EUr

rC JwtSCV JwtSCV rC JwtSCV JwtSCV rC JwtSCV JwtSCV
rC 0.733 0.738 0.737 0.836 0.842 0.837 0.741 0.747 0.743
JwtSCV 0.773 0.787 0.787 0.862 0.871 0.867 0.796 0.806 0.802

out-of-sample
rC JwtSCV JwtSCV rC JwtSCV JwtSCV rC JwtSCV JwtSCV

rC 0.338 0.354 0.322 0.365 0.366 0.365 0.413 0.401 0.383
JwtSCV 0.419 0.402 0.378 0.415 0.402 0.393 0.516 0.468 0.451

Source: Autℎor’s computations.

when we decompose the realized covariation, forecast its components individually and 
then use the sum of the forecasts, it does not seem to bring the improvement in forecast-
ing. table 3 presents the results of the decomposed models. the separate realized covari-
ances also carry quite large information content, as the first three are able to forecast the 
realized covariance similarly well. in other words, the 5–10 minute covariation component 
is able to forecast the total covariation JwtSCV with a similar forecasting power as if the 
total JwtSCV was used. thus, even though decomposition does not bring an overall im-
provement, we can see that the realized covariation at the higher frequency carries the 
most important information also for forecasting. in other words, the main part of the real-
ized covariation comes from the highest frequency.

Finally, we can see that jumps carry important information which may help to forecast 
the realized covariation. when we use only jumps to forecast realized covariance, the is 
relatively high. all the estimated parameters are significantly different from zero and the 
in-sample fits describe the data well. For reasons of space, we do not provide all the re-
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sults here and we proceed to test the impact of further decomposition of the jumps into 
individual jump and co-jump components.

Table 3: results for RCt: R2 for the Minzer-zarnowitz regressions regressing arFiMa fore-
casts of decomposed covariances. 

in-sample
w1 w2 w3 w4 w5 Jumps

GBP-CHF 0.788 0.777 0.749 0.742 0.736 0.593
GBP-EUr 0.864 0.864 0.844 0.829 0.830 0.715
CHF-EUr 0.805 0.796 0.766 0.757 0.755 0.510

out-of-sample
w1 w2 w3 w4 w5 Jumps

GBP-CHF 0.377 0.391 0.384 0.231 0.208 0.134
GBP-EUr 0.394 0.385 0.335 0.276 0.339 0.187
CHF-EUr 0.451 0.449 0.445 0.261 0.322 0.277

Note: W j denotes JW T S CV j , j = 1, . . . , 5 components of realized covariance and Jumps all 
jumps including co-jumps and individual jumps.
Source: Autℎor’s computations.

6.3 Impact of Jumps and Co-jumps on the Covariance Forecasts

we would like to see if further decomposition to co-jumps and individual jumps can help 
to forecast the realized covariances. For this purpose, we construct an arFiMa (1, d, 1)
model for the jump and co-jump components of the realized covariance estimated using 
our methodology and test for the informational efficiency of each of them to the realized 
covariance forecast using the encompassing regression: 
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CHF-EUR 0.451 0.449 0.445 0.261 0.322 0.277 

Note: W j denotes JW T S CV j , j = 1, . . . , 5 components of realized covariance and Jumps all 
jumps including co-jumps and individual jumps. 
Source: Author’s computations. 
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where 	 denotes the one-day ahead forecast of  and ,
denotes the forecast of co-jumps, while ,  and ,  denote the forecasts of 
individual jumps of both assets in the forecasted pair. 

With the help of the encompassing regressions, we can test if jumps contain any information 
relevant to the covariation forecasts. We will first test the information content of , , 
,  and ,  separately by setting all other  s to zero. Then, we will add 
parameters to the regression, starting with  and , and adding ,  and  gradually 
to see if they bring any information, which is not contained in the realized covariation forecast 
itself. If, for example, common jumps carry information important for the forecast, parameter  will be significantly different from zero, even if parameter  is significantly different 
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To conclude, we have shown that the decomposition of the realized covariation into a 
continuous part and co-jumps using our wavelet-based methods can help improve the 
forecasting significantly. This result has strong economic implications for portfolio valuation 
as our theory helps to understand the dependencies deeper than standard econometric models. 
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const. JWTSCV Jcom J1 J2 R2 
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also significantly improves the R2 in comparison with the JwtSCV estimate. in the case of 
CHF-EUr pair, even presence of the EUr individual jumps improves the forecast of real-
ized covariation.

to conclude, we have shown that the decomposition of the realized covariation into a con-
tinuous part and co-jumps using our wavelet-based methods can help improve the fore-
casting significantly. this result has strong economic implications for portfolio valuation 
as our theory helps to understand the dependencies deeper than standard econometric 
models.

Table 4: r from encompassing regression of arFiMa on RCt estimator JwtSCV, co-jumps 
(Jcom) and individual jumps (J1 and J2). p-values of estimated parameters in parenthe-
ses.

const. JwtSCV Jcom J1 J2 r2
GBP-CHF 0.003(0.000) 1.342(0.000) 0.118

0.003(0.000) 0.677(0.174) 0.015
0.005(0.000) -0.286(0.409) 0.006
0.001(0.002) 0.722(0.000) 0.402
0.001(0.004) 0.665(0.000) 0.608(0.034) 0.424
0.001(0.234) 0.667(0.000) 0.585(0.103) 0.052(0.913) 0.424
0.001(0.262) 0.664(0.000) 0.586(0.104) 0.065(0.892) -0.071(0.794) 0.424

const. JwtSCV Jcom J1 J2 r2
GBP-EUr 0.004(0.000) 1.031(0.000) 0.104

0.004(0.000) 0.676(0.138) 0.018
0.000(0.975) 2.909(0.000) 0.160
0.001(0.000) 0.694(0.000) 0.402
0.001(0.004) 0.648(0.000) 0.627(0.006) 0.439
0.002(0.018) 0.654(0.000) 0.697(0.004) -0.296(0.434) 0.442
0.002(0.162) 0.656(0.000) 0.703(0.012) -0.300(0.443) -0.031(0.963) 0.442

const. JwtSCV Jcom J1 J2 r2
CHF-EUr 0.003(0.000) 1.695(0.000) 0.267

0.006(0.000) -0.610(0.054) 0.030
0.005(0.000) -0.217(0.696) 0.001
0.001(0.016) 0.794(0.000) 0.468
0.001(0.015) 0.670(0.000) 0.615(0.019) 0.491
0.001(0.106) 0.666(0.000) 0.614(0.020) -0.044(0.852) 0.491
-0.000(0.951) 0.725(0.000) 0.504(0.056) -0.191(0.432) 0.932(0.033) 0.511

Source: Autℎor’s computations.
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6.4 Forecasting of Correlations

while co-jumps cause large bias in the covariance measures, individual jumps may cause 
bias to the correlation. thus, we would like to complete our forecasting exercise by creat-
ing a forecasting model of the realized correlations, utilizing an arFiMa (1, d, 1) model.

in the previous sections, we have shown that realized correlation estimated using a wave-
let-based estimator is much smoother with lower confidence intervals than the correla-
tion estimated using the standard realized variance and covariance measures. thus we 
would like to see if our estimate carries better information for forecasting correlations. 
For this purpose, we again employ encompassing regression. this time, we will test the 
informational efficiency of each of the two measures. Moreover, we would like to see if 
decomposition of realized correlation generates any significant improvement. thus we 
will forecast the decomposed correlations individually, and then compare the sum of the 
forecasts with the latter two estimates in the following way: 
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table 5 in appendix a.5 summarizes the results of the individual regressions as well as the 
encompassing regressions for both the in-sample and the out-of-sample periods, which 
are the same as in the covariance forecasting exercise.

the results from the in-sample fits tell us that our wrCorr is a very efficient estimator for 
forecasting of realized correlations, as its coefficient is significantly different from zero but 
is not significantly different from 1, while the forecast is unbiased as the constant coef-
ficient is not significantly different from zero, except in some cases. Moreover, the wrCorr 
forecasts also carry the highest R2. the sum of the individual correlation forecasts do not 
seem to be as efficient as the wrCorr estimator and it also gives slightly biased results. 
the realized correlation also seems to be quite an efficient and unbiased estimator, even 
though its coefficient is rather higher than 1 in some cases. it still has the lowest R2. when 
looking at the results from the encompassing regressions, we can see that the wrCorr 
estimator remains the only significant estimator in the regression. its coefficient is slightly 
lower than 1, but the coefficients of the other two estimators are not significantly different 
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from zero. this means that these estimators do not generate any other significant informa-
tion for the correlation forecasts.

when looking at the results for the out-of-sample period, which are much more important 
as these are the real forecasts, we still have a very similar picture. wrCorr is unaffected 
in the encompassing regressions, being the only significant estimator. in the individual 
regressions, the sum of the decomposed forecasts surprisingly seems to be the most ef-
ficient estimator, as its coefficient is closest to one, but it has a lower coefficient of determi-
nation, R2, than the wrCorr estimator. to summarize the results from this section, we show 
that the wavelet-based estimator of the realized correlation is able to bring a significant 
improvement to the forecasting of correlation.

Conclusions

in this work, we present a new, wavelet-based realized covariation theory. we use wave-
lets to disentangle jumps from co-jumps, which is crucial in the study of multivariate 
dependencies. Having defined the estimators of variance and covariance, we also define 
the transformation of interest for portfolio theory: the wavelet-based realized correlation 
measure. the main contribution is in providing a new type of multivariate estimators in 
the time-frequency domain which are able to estimate the dependence of studied assets 
with highest precision and are unaffected by noise and jumps in the process. Moreover, 
our theory is able to disentangle jumps and co-jumps from the continuous part of the 
covariance.

we apply our multivariate theory to study the decomposition of integrated covariation 
and correlation on the currency markets. Here we note that the theory is able to decom-
pose the realized measures into any arbitrary investment horizon, i.e., from one minute 
up to one month, when estimating monthly measures. in our analysis performed on forex 
data, we limit ourselves to illustrating the theory on the decomposition of daily realized 
measures. Specifically, we decompose the realized covariance and correlation into invest-
ment horizons of 5–10 minutes, 10–20 minutes, 20–40 minutes and 40–80 minutes, and 
the rest (80 minutes up to 1 day). the analysis uncovers interesting dynamics. Most of the 
action in the stock markets comes from higher frequencies. we find that on average, about 
50% of the co-volatility of the forex markets examined is created on the 5–10 minute in-
vestment horizon, approximately 25% comes from the 10–20 minutes investment horizon, 
and only 12%, 7% and 6% correspond to the horizons of 20–40 minutes, 40–80 minutes 
and the rest (80 minutes up to 1 day), respectively. Note that by adding the contributions 
of the different investment horizons we always get 100%.

we also bring an important analysis of co-jumping of the currencies. we separate jumps, 
co-jumps and true covariation between the studied currencies. the results suggest that 
proper understanding of jumps and co-jumps in a multivariate setting is crucial for study-
ing the dependencies. while individual jumps bring some bias to the covariance, co-jumps 
introduce large bias into the covariation measure. the impact on correlation is even more 
crucial. individual jumps in the processes bring large downward bias to the correlation 
measure, while co-jumps introduce upward bias with a smaller magnitude.



ActA všfs, 1/2013, vol. 7 023

Finally, we build a forecasting model for covariation and correlation based on wavelet 
decomposition. our model outperforms simple realized correlation measure in-sample as 
well as out-of-sample. as the space of this paper is limited, we do not provide comparison 
to other methods, but the results can be found in citation blinded, where all estimators 
currently available in the literature are compared and our wavelet-based theory brings the 
best results. interesting result is also that we found significant impact on the individual 
jumps as well as co-jumps on the covariance and correlation forecasts and we find that 
proper accounting for jumps and co-jumps bring significant improvement in the forecast-
ing of covariance and correlation measures.

in conclusion, this work presents a new theoretical framework generalizing the popular 
concept of realized covariance. our results have significant economic value, as a wrong 
assumption about the dependence process will have a direct impact on the portfolio 
valuation. the dynamics of the decomposed dependencies reveal interesting results. our 
wavelet-based realized theory generates a more precise correlation measure with nar-
rower confidence intervals than the standard realized correlations.
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Appendix A. Technical Part

Appendix A.1 Disentangling jumps from co-jumps 
Fan and wang (2007) first proposed the use of wavelets to estimate jumps in high-fre-
quency data. in this part, we generalize this concept to a multivariate concept. we detect 
all jumps in the m assets separately using wavelet decomposition, and then we estimate 
the co-jumps. let us define the procedure.

Definition 1 Multivariate jump estimation using wavelets 
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Definition 1 Multivariate jump estimation using wavelets 
Let ), be the 1 level wavelet coefficients of ))[,]. If for some ),

|),| > | ),|,,.,
. , (A.1) 

for  = 1,  ,  assets, then ) =  is the estimated jump location with size ) −
)  (averages over [), )  ]  and [), ) − ] , respectively, with  > 0
being the small neighborhood of the estimated jump location )  ; 0.6745 is a robust 
estimate of the standard deviation). 
The jump variation of the -th asset is then estimated by the sum of the squares of all its 
estimated jump sizes:  

 ) = ∑ ) − )). (A.2) 

Following the theory in Fan and Wang (2007), we can say that  ) will be a consistent 
estimator of the jumps for all  assets in . 

Proposition 1 Consistency of multivariate wavelet jump estimator 
With   ∞

∞ ) = ∑ ), , (A.3) 

with the convergence rate . 

Once we have estimated all independent jumps in the studied  vector, we can propose an 
analysis of co-jumping in the series. The idea is to compare all the jump locations, and those 
which are the same across all  = 1,  ,  assets in some small neighborhood will be co-jumps. 

Definition 2 Wavelet co-jump estimation 
Let ) be the estimated jump locations of ))[,] for all  = 1,  ,  using Definition 
1. Then co-jump location ∗ =  can be estimated as:  ) −   ∗  )  , = 1,  , . (A.4) 

Co-jumps are particularly important in portfolio theory. For a well diversified large portfolio in 
the sense of the Arbitrage Pricing Theory, idiosyncratic jumps are diversified away, but common 
jumps, or co-jumps, remain a problem. Thus in the following subsection, we illustrate our 
technique on a portfolio multivariate extension. 
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where n is the number of intraday observations and Js is the number of scales consid-
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using gamma function, Γ(. ).
the parameter d determines the memory of the process. For d > 0, the process is said 
to have long memory, since its autocorrelations die out at a hyperbolic rate and are no 
longer absolutely summable, in contrast to the much faster exponential rate in the weak 
dependence case of d = 0, where the process captures the behavior of the short-memory 
arMa model.
once we have estimated the arFiMa (p, d, q) model with the maximum likelihood estima-
tor, forecasting is carried out by extrapolating the estimated model. as in the univariate 
counterpart, we estimate a simple arFiMa (1, d, 1) model on both the realized covariation 
and its logarithmic transform.
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Appendix A.5
Table 5: r2 M-z regression of arFiMa on Correlations. rCorr denotes realized correlation 
estimate, wrCorr wavelet-based realized correlation and wrCorr sum of individual fore-
casts of decomposed correlation. p-values of estimated parameters in parentheses.

GBP-CHF
in-sample out-of-sample

const. RCorr WRCorr WRCorr R2 const. RCorr WRCorr WRCorr R2

RCorr -0.02(0.47) 1.04(0.00) 0.33 0.04(0.46) 0.83(0.00) 0.22

WRCorr -0.00(0.92) 1.01(0.00) 0.42 0.04(0.42) 0.85(0.00) 0.26

WRCorr -0.08(0.00) 1.16(0.00) 0.41 -0.02(0.78) 0.98(0.00) 0.24

WRCorr -0.02(0.55) 0.13(0.29) 0.91(0.00) 0.42 0.03(0.63) 0.29(0.40) 0.61(0.05) 0.27

WRCorr 0.01(0.76) 0.21(0.14) 1.17(0.00) -0.38(0.21) 0.43 0.09(0.30) 0.44(0.25) 1.14(0.07) -0.79(0.32) 0.27

GBP-EUr
in-sample out-of-sample

const. RCorr WRCorr WRCorr R2 const. RCorr WRCorr WRCorr R2

RCorr -0.04(0.26) 1.07(0.00) 0.28 0.12(0.44) 0.80(0.00) 0.08

WRCorr -0.01(0.75) 1.02(0.00) 0.36 0.23(0.06) 0.62(0.00) 0.07

 WRCorr -0.20(0.00) 1.31(0.00) 0.33 0.09(0.66) 0.86(0.01) 0.06

WRCorr -0.02(0.64) 0.04(0.72) 0.99(0.00) 0.36 -0.05(0.80) 0.13(0.67) 0.96(0.03) 0.11

WRCorr -0.00(0.93) 0.07(0.63) 1.03(0.00) -0.08(0.74) 0.36 0.07(0.79) 0.43(0.48) 0.97(0.03) -0.51(0.57) 0.11

CHF-EUr
in-sample out-of-sample

const. RCorr WRCorr WRCorr R2 const. RCorr WRCorr WRCorr R2

RCorr -0.00(0.92) 1.00(0.00) 0.50 0.06(0.29) 0.86(0.00) 0.38

WRCorr 0.00(0.93) 1.00(0.00) 0.56 0.08(0.17) 0.85(0.00) 0.41

 WRCorr -0.16(0.00) 1.20(0.00) 0.51 0.02(0.78) 0.90(0.00) 0.34

WRCorr -0.00(0.94) 0.08(0.33) 0.93(0.00) 0.57 -0.03(0.64) 0.08(0.77) 0.96(0.00) 0.46

WRCorr 0.03(0.36) 0.12(0.18) 1.04(0.00) -0.19(0.19) 0.57 0.00(0.96) 0.28(0.48) 0.93(0.00) -0.22(0.50) 0.46

Source: author’s computations.




