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Risk Measures in Optimization Problems
via Empirical Estimates

Vlasta Kaňková∗

Abstract Economic and financial activities are often influenced simultaneously by a decision
parameter and a random factor. Since mostly it is necessary to determine the decision parameter
without knowledge of the realization of the random element, deterministic optimization prob-
lems depending on a probability measure often correspond to such situations. In applications
the problem has to be very often solved on the data basis. It means that usually the “underlying”
probability measure is replaced by empirical one. Great effort has been made to investigate pro-
perties of the corresponding (empirical) estimates; mostly under assumptions of “thin” tails and
a linear dependence on the probability measure. The aim of this paper is to focus on the cases
when these assumptions are not fulfilled. This happens usually just in economic and financial
applications (see, e.g., Mandelbort 2003; Pflug and Römisch 2007; Rachev and Römisch 2002;
Shiryaev 1999).
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1. Introduction

Let (Ω,S,P) be a probability space; ξ (:= ξ (ω)= [ξ1(ω), . . . ,ξs(ω)]) an s-dimensional
random vector defined on (Ω,S,P); F(:= F(z),z ∈ Rs) the distribution function of
ξ ; PF , ZF the probability measure and a support corresponding to F . Let, moreover,
g0(:= g0(x,z)) be a function defined on Rn ×Rs; XF ⊂ Rn a nonempty set generally
depending on F, X ⊂ Rn a nonempty “deterministic” set. If EF denotes the operator
of mathematical expectation corresponding to F, then static rather general “classical”
stochastic optimization problem can be introduced in the form:

ϕ(F, XF) = inf{EF g0(x,ξ )|x ∈ XF}. (1)

The objective function in (1) depends linearly on the probability measure PF . More
general problems appeared recently. Some of them can be covered by the following
type:
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ϕ(F, XF) = inf{EF g0(x,ξ ,EF h(x,ξ ))|x ∈ XF}, (2)

where h(:= h(x,z)) = (h1(x,z), . . . ,hm1(x,z)) is an m1-dimensional vector function de-
fined on Rn ×Rs, g0(:= g0(x,z,y)) is a real-valued function defined on Rn ×Rs ×Rm1 .

Let us recall and analyze a relationship between risk measures and problems de-
fined above, employing a few examples.

(i) If L(:= L(x, z) defined on Rn ×Rs) represents a loss function, then VaRα(x) :=
min

u
{P{ω : L(x, ξ )≤ u} ≥ α}, α ∈ (0, 1) can be considered as a risk measure,

known as “Value–at –Risk” (see, e.g., Dupačová 2009). Setting

XF(:= XF(u0, α)) = {x ∈ X : [min
u

P{ω : L(x, ξ )≤ u} ≥ α] ≤ u0}, (3)

with u0 ∈ R1, we can obtain the problem with risk measure in constraints.

(ii) CVaRα(x) = min
v∈R

[v+ 1
1−α

EF(L(x, ξ )− v)+] is another risk measure known as

“Conditional Value–at–Risk” (see, e.g., Dupačová 2009). Evidently, the objec-
tive function CVaRα(x) can be written in the form

CVaRα(x) = g0(x, z, y) with g0(x, z, y) = min
v∈R

[v+
1

1−α
y],

where y = EF h(x, ξ ) and h(x, z)(:= (h(x, v, z)) = (L(x, z)− v)+.

It could happen that the corresponding optimization problem does not depend
linearly on the probability measure. However, considering the case when XF =X
and employing the result of Rockafellar and Uryasev (2002) the problem can be
rewritten in the form:

min
(v,x)∈R1×X

{v+
1

1−α
EF(L(x, ξ )− v)+}, (4)

in which the dependence on the probability measure is surely linear.

(iii) Employing Markowitz approach to very simple portfolio problem:

max
n
∑

k=1
ξkxk

s.t.
n
∑

k=1
xk ≤ 1, xk ≥ 0, k = 1, . . . ,n

with xk a fraction of the unit wealth invested in the asset k, ξk the return of the
asset, we can introduce the Markowitz problem (see, e.g., Dupačová et al. 2002):
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ϕM(F) = max{
n
∑

k=1
µkxk −K

n
∑

k=1

n
∑
j=1

xkck, jx j}

s. t.
n
∑

k=1
xk ≤ 1, xk ≥ 0, k = 1, . . . ,n, K > 0 constant,

(5)

where µk = EF ξk, ck, j = EF(ξk − µk)(ξ j − µ j) , k, j = 1, . . .n. The dependence
on the probability measure in (5) is not linear.

Let us analyze the problem (5). Since

n

∑
k=1

µkxk−K
n

∑
j=1

n

∑
k=1

xkck, jx j = EF{
n

∑
k=1

ξkxk − K
n

∑
k=1

n

∑
j=1

[xkξkξ jx j − xkξkEF ξ jx j]},

setting

g0(x, ξ , y) =
n
∑

k=1
ξkxk − K

n
∑

k=1

n
∑
j=1

[xkξkξ jx j + xkξky j],

h j(x, z) = z jx j, j = 1, . . . , n

we can see that the problem (5) can be written in the form of the problem (2).
However, later we can recognize that the sufficient assumptions (introduced in
this paper) guaranteing “good” rate convergence will be fulfilled only in the case
when the support ZF is a bounded set.

Evidently, ∑
n
j=1 xkck, jx j can be considered as a risk measure that can be re-

placed by another risk measure, for example by EF |∑n
k=1 ξkxk −EF [∑

n
k ξkxk]|,

(see Konno and Yamazaki 1991). The dependence on the probability measure
is again nonlinear. However, the above mentioned assumptions will be (for
XF = X ; X compact) already fulfilled.

In applications we have often to replace the measure PF by an empirical measure
PFN determined by a random sample corresponding to the measure PF . Consequently,
instead of the problems (1) and (2), the following problems are solved:

ϕ(FN , XFN ) = inf{EFN g0(x,ξ )|x ∈ XFN}, (6)

ϕ(FN , XFN ) = inf{EFN g0(x,ξ ,EFN h(x,ξ ))|x ∈ XFN}. (7)

By solving (6) and (7), we obtain estimates of the optimal values and optimal so-
lutions. The investigation of these estimates started (for problem (1) with XF = X)
in Wets (1974), followed by many papers (e.g., Dai et al. 2000; Dupačová and Wets
1984; Kaniovski et al. 1995; Kaňková 1978, 1994; Pflug 1999; Römisch 2003; Shapiro
2003). The consistency, the convergence rate and asymptotic distributions have been
studied therein under the assumptions of “weak” tailed distributions and XF = X . The
exception are, e.g., Kaňková (2010), Houda and Kaňková (2012), and Rachev and
Römisch (2002). We focus to the problem (2), the case of “heavy” tails and a special
type of the set XF . Especially, we assume that either XF = X or that there exist real
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valued functions gi(:= gi(x), x ∈ Rn), i = 1, . . . ,s such that

XF(:= XF(u0, α)) =
s

i=1
{x ∈ X : min

ui
{P[ω : Li(x, ξ )≤ ui]≥ αi} ≤ ui

0},

with u0 = (u1
0, . . . ,u

s
0), α = (α1, . . . ,αs), ui

0 > 0, αi ∈ (0,1), i = 1, . . . ,s,

Li(x, z) = gi(x)− zi, i = 1, . . . , s, z = (z1, . . . , zs).

(8)

Li(x, z), i = 1, . . . ,s can be considered as loss functions. This type of loss function can
appear, e.g., in a connection with an inner problem in two stage stochastic (generally
nonlinear) programming problems (for a definition of two-stage problems see, e.g.,
Birge and Louveaux 1992).

Remark 1.

(i) Evidently, problem (2) covers problem (1) with g0(x,z,y) := g0(x,z).

(ii) Distribution functions with heavy tails appear mainly in economic, financial and
energetic problems (see, e.g., Kozubowski et al. 2003; Meerchaert and Scheffler
2003). Pareto and Weibull distributions belong to this class of the distributions.
However, stable distributions (with an exception of the normal distribution) are
their main representatives. (For the definition of the stable distributions see, e.g.,
Klebanov 2003, or Meerchaert and Scheffler 2003). The relationship between
the stable distributions and Pareto distribution can be found in Shiryaev (1999).

2. Some definitions and auxiliary assertions

First, if F, G are two arbitrary s-dimensional distribution functions for which the prob-
lem (2) is well defined, then according to the triangular inequality we obtain

|ϕ(F, XF)−ϕ(G, XG)| ≤ |ϕ(F, XF)−ϕ(G, XF)| + |ϕ(G, XF)−ϕ(G, XG)|. (9)

Furthermore, if we denote by the symbols Fi, i = 1, . . . ,s one-dimensional marginal
distribution functions corresponding to the distribution function F and if we can as-
sume that Fi, i = 1, . . . ,s are absolutely continuous with respect to the Lebesgue mea-
sure on R1, gi(x), i = 1, . . . ,s are continuous functions on X and the relation (8) is
fulfilled, then (under the assumption that Fi, i = 1, . . . ,s are increasing functions in a
neighbourhoods of kFi(αi)) we can obtain

XF =
s

i=1
{x ∈ X : min

ui
{P[ω : gi(x)−ui ≤ ξi]≥ αi} ≤ ui

0}

=
s

i=1
{x ∈ X : min

ui
[gi(x)−ui ≤ kFi(αi)]} ≤ ui

0}

=
s

i=1
{x ∈ X : [gi(x)−ui

0 ≤ kFi(αi)]},

(10)

where kFi(αi) = sup{zi : PFi{ω : zi ≤ ξi(ω)} ≥ αi}.
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Consequently, setting

X(v) =
s

i=1

{x ∈ X : gi(x)−ui
0 ≤ vi}, v = (v1, . . . , vs),

we obtain
XF = X(kF(α)), kF(α) = (kF1(α1), . . . , kFs(αs)). (11)

Definition 1. (Rockafellar and Wets 1998) If X ′,X ′′ ⊂ Rn are two non-empty sets, then
the Hausdorff distance of these sets ∆n[X ′,X ′′] is defined by

∆n[X ′,X ′′] = max[δn(X ′,X ′′),δn(X ′′,X ′)],

δn(X ′,X ′′) = sup
x′∈X ′

inf
x′′∈X ′′

‖x′− x′′‖,

where ‖ · ‖= ‖ · ‖2
n denotes the Euclidean norm in Rn.

Proposition 1. Let X be a nonempty compact set. If

(i) ĝ0(:= ĝ0(x), x ∈ Rn) is a Lipschitz function on X with the Lipschitz constant L,

(ii) X(v), v ∈ ZF is a nonempty set for every v ∈ ZF and, moreover, there exists a
constant Ĉ > 0 such that

∆n[X(v(1)), X(v(2))] ≤ Ĉ‖v(1)− v(2)‖, v(1), v(2) ∈ ZF ,

then

| inf
x∈X(v(1))

ĝ0(x)− inf
x∈X(v(2))

ĝ0(x)| ≤ LĈ‖v(1)− v(2)‖, v(1), v(2) ∈ ZF .

Proof. The assertion of Proposition 1 is a little modified assertion of Proposition 1 in
Kaňková (1997).

Lemma 1. (Kaňková 1997) Let X be a nonempty convex compact set. If

(i) gi(x), i = 1, . . . ,s are convex continuous bounded functions on X,

(ii) X(v) is a nonempty set for every v ∈ ZF ,

then there exists C > 0 such that

∆n[X(v(1)),X(v(2))]≤C‖v(1)− v(2)‖ for v(1), v(2) ∈ ZF .

To recall stability results, let P(Rs) be the set of Borel probability measures on
Rs,s ≥ 1; M1

1(R
s) = {P ∈ P(Rs) :


Rs
‖z‖1

s P(dz) < ∞}; ‖ · ‖1
s denote L1 norm in Rs.

Borrowing notation from Kaňková (1997), we introduce the following assumptions:

B.1 PF , PG ∈M1(Rs), there exist ε > 0 such that

166 Czech Economic Review, vol. 7, no. 3



Risk Measures in Optimization Problems via Empirical Estimates

– g0(x, z, y) is for x ∈ X(ε), z ∈ Rs a Lipschitz function of y ∈ Y (ε) with a
Lipschitz constant Ly; Y (ε) = {y ∈ Rm1 : y = h(x, z) for some x ∈ X(ε), z ∈
Rs}, EF h(x, ξ ), EGh(x, ξ ) ∈ Y (ε);

– for every x ∈ X(ε), y ∈ Y (ε) there exist finite mathematical expectations,
EF g0(x, ξ , EF h(x, ξ )), EF g1

0(x, ξ , EGh(x, ξ )), EGg1
0(x, ξ , EF h(x, ξ )),

EGg1
0(x, ξ , EGh(x, ξ ));

– hi(x, z), i = 1, . . . ,m1 are for every x ∈ X(ε) Lipschitz functions of z with
the Lipschitz constants Li

h (corresponding to L1 norm),

– g0(x, z, y) is for every x ∈ X(ε), y ∈ Y (ε) a Lipschitz function of z ∈ Rs

with the Lipschitz constant Lz (corresponding to L1 norm).

(X(ε), ε > 0 denotes ε- neighbourhood of X .)

B.2 EF g0(x,ξ ,EF h(x,ξ )) is a continuous function on X .

Remark 2. Fulfilling at least one of the next assumptions:

B.3 g0(x, z, y), h(x, z) are uniformly continuous functions on X(ε)×Rs ×Y (ε),

B.4 X is a convex set and there exists ε > 0 such that g0(x,ξ ,EF h(x,ξ )) is a convex
function on X(ε),

guarantees fulfilling of Assumption B.2.

Lemma 2. Let G be an arbitrary s-dimensional distribution function, ε > 0, X be
a nonempty compact set. If Assumptions B.1 and B.2 are fulfilled (for F = G), then
EGg0(x, ξ , EGh(x, ξ )) is a uniformly continuous function on X(ε).

Lemma 3. Let G be an arbitrary s-dimensional distribution function, ε > 0. Let, more-
over, Assumption B.1 be fulfilled (for F = G). If g0(x, z, y), h(x, z) are Lipschitz func-
tions on X ×Y (ε) with the Lipschitz constants Lg0 and Lh, then there exists a constant
C such that EGg0(x, ξ , EGh(x, ξ )) is a Lipschitz function on X with the Lipschitz con-
stant C.

Proof. The assertion of Lemma 3 follows from the properties of the Lipschitz func-
tions and integrals. 2

Since it follows from the Assumption B.1 and the triangular inequality that

|EF g0(x,ξ ,EF h(x,ξ ))−EGg0(x,ξ ,EGh(x,ξ ))| ≤

Ly‖EF h(x, ξ )−EGh(x, ξ )‖ + |EF g0(x,ξ ,EGh(x,ξ ))−EGg0(x,ξ ,EGh(x,ξ ))|

(12)
we can introduce one essential Proposition 2.

Proposition 2. Let PF ,PG ∈ M1
1(R

s), the assumptions B.1, B.2 be fulfilled (for both
F, G), then there exist Ĉ > 0 such that the following relation
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|EF g0(x,ξ ,EF h(x,ξ ))−EGg0(x,ξ ,EGh(x,ξ ))| ≤ Ĉ
s
∑

i=1

∞
−∞

|Fi(zi)−Gi(zi)|dzi

holds for x ∈ X.
If, moreover, X is a compact set, then also

|ϕ(F, X)−ϕ(G, X)| ≤ Ĉ
s

∑
i=1

∞
−∞

|Fi(zi)−Gi(zi)|dzi. (13)

Proof. Employing the main idea of the proof of Lemma 3.1 in Kaňková and Houda
(2006) we can see that the assertion follows from the relation (12) and assumption B.1
(for more details see also the proof of Proposition 4.1 in Kaňková 2010). 2

Remark 3.

– Ĉ = Lz in the case of problem (1).

– Proposition 2 reduces (from the mathematical point of view) s-dimensional case
to one-dimensional. However, the dependence between components of the ran-
dom vector ξ is there neglected. The idea to reduce s-dimensional case to one-
dimensional appeared already in Pflug (2001) (see also Šmı́d 2009).

– It follows from Proposition 2 that the stability of the problem (2) can be bounded

by
s
∑

i=1

∞
−∞

|Fi(zi)−Gi(zi)|dzi. Consequently, we obtained very similar situation to

the problem (1) (for more details see, e.g. Houda and Kaňková 2012).

3. Problem analysis

To employ the assertion of Proposition 2 to empirical estimates we introduce a system
of the assumptions:

A.1 {ξ i}∞
i=1 is an independent random sequence corresponding to F (we denote by

the symbol FN the empirical distribution function determined by {ξ i}N
i=1);

A.2 PFi , i = 1, . . .s are absolutely continuous w. r. t. the Lebesgue measure on R1;

A.3 For every i ∈ {1, . . . ,s} there exist δ > 0 and ϑ > 0 such that fi(zi) > ϑ for
zi ∈ ZFi , |zi − kFi(αi)| < 2δ ( fi denote probability densities corresponding to Fi,
i = 1, . . . ,s).

Furthermore we recall some assertions important for our investigation.

Lemma 4. (Shorack and Welner 1986) Let s = 1, PF ∈M1
1(R

1) and A.1 be fulfilled.
Then

P{ω :
∞

−∞

|F(z)−FN(z)|dz −→N−→∞ 0}= 1.
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Lemma 5. Let s = 1, α ∈ (0, 1), t > 0. If Assumptions A.1, A.2 and A.3 are fulfilled,
0 < t < δ , then

P{ω : |kFN (α)− kF(α)|> t} ≤ 2exp{−2N(ϑ t)2} for N ∈N .

(N denotes the set of natural numbers.)

The proof of Lemma 5 will be given in Appendix.

Corollary 1. Let ε > 0, X be a nonempty convex compact set. If

(i) ĝ0(x), x ∈ Rn is a Lipschitz function on X(ε),

(ii) gi(x), i = 1, . . . ,s are convex continuous bounded functions on X(ε),

(iii) Assumptions A.1, A.2 and A.3 are fulfilled,

(iv) X(v) are nonempty sets for v ∈ ZF ,

then there exists a constant C > 0 such that

P{ω : | inf
X(kF (α))

ĝ0(x)− inf
X(kFN (α))

ĝ0(x)|| > t} ≤ 2sexp{−2N(ϑ t/LCs))2}

for every N ∈N and t > 0 such that 0 < t < 2δ .

Proof. The assertion of Corollary 1 follows from Proposition 1, Lemmas 1 and 5,
relations (10), (11) and the properties of the Euclidean norm. 2

Remark 4. Assumptions under which the sets X(v) are nonempty can be found, e.g.,
in Birge and Louveaux (1992) or in Kaňková (2007a).

Proposition 3. (Houda and Kaňková 2012) Let s = 1, t > 0 and Assumptions A.1
and A.2 be fulfilled. If there exists β > 0, R := R(N) > 0 defined on N such that
R(N)−→N−→∞ ∞ and, moreover,

Nβ
−R(N)
−∞

F(z)dz −→N−→∞ 0, Nβ
∞

R(N)

[1−F(z)]−→N−→∞ 0,

2NF(−R(N))−→N−→∞ 0, 2N[1−F(R(N))]−→N−→∞ 0,
12Nβ R(N)

t
+1


exp{−2N


t

12R(N)Nβ

2

} −→N−→∞ 0,

(14)

then

P{ω : Nβ

∞
−∞

|F(z)−FN(z)|dz > t} −→N−→∞ 0. (15)

According to the results of Dvoretzky et al. (1956) we can see that (under the
assumptions of Proposition 3) the validity of the relation (14) depends on the tails
behaviour.
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Proposition 4. (Houda and Kaňková 2012) Let s = 1, t > 0, r > 0, Assumptions A.1
and A.2 be fulfilled. Let moreover, ξ be a random variable such that EF |ξ |r < ∞. If
constants β , γ > 0 fulfil the inequalities

0 < β + γ < 1/2, γ > 1/r, β +(1− r)γ < 0, (16)

then the relations (14) are valid.

Propositions 3 and 4 guarantee an existence of β > 0, (β := β (r)) fulfilling (14)
and consequently (15) only in the case when there exists r > 2 such that EF |ξ |r <+∞.
According to heavy tailed distributions it means that the tail parameter ν has to be
greater than 2. Consequently existence of β > 0 is not guaranteed in the case of stable
distributions with the shape parameter ν < 2 (for the definition of the stable distribution
and shape parameter see, e.g, Klebanov 2003). The case ν ∈ (1, 2) corresponds very
often to random elements appearing in the financial applications. To include it in our
investigation we recall the following assertion.

Proposition 5. Let s = 1, {ξ i}N
i=1, N = 1,2, . . . be a sequence of independent random

values corresponding to a heavy tailed distribution F with the shape parameter ν ∈
(1, 2). Then the sequence

N
N1/ν

∞
−∞

|FN(z)−F(z)|dz, N = 1, . . . (17)

is stochastically bounded if and only if

sup
t>0

tν P{ω : |ξ |> t} < ∞. (18)

Proof. The assertion of Proposition 5 follows from Theorem 2.2 of Burrio et al. (1999).
2

According to the definition of the stochastically bounded random sequences it
means (under the relation (18)) that

lim
M−→∞

sup
N

P{ω :
N

N1/ν

∞
−∞

|F(z)−FN(z)|> M}= 0. (19)

Remark 5. The shape parameter ν is determined by tails of the distribution. Smaller
shape parameter corresponds to more heavy tails.

Lemma 6. Let αi ∈ (0, 1), ui
0 > 0, i = 1, . . . ,s. If

(i) X is a compact convex set,

(ii) gi(x), i = 1, . . . ,s are convex continuous bounded function on X ,

(iii) XF defined by the relation (10) are nonempty for v ∈ ZF ,
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then XF is a compact set and fulfils the relation (11).

Proof. The assertion of Lemma 6 follows from the properties of convex functions,
convex sets and the relation (10). 2

4. Main Results

Applying the auxiliary assertions from the former parts we obtain the following results.

Theorem 1. Let Assumptions B.1, B.2, A.1 be fulfilled, X be a compact set and PF ∈
M1

1(R
s), then

P{ω : |ϕ(FN , X)−ϕ(F, X)| −→N−→∞ 0}= 1.

Proof. The assertion of Theorem 1 follows from Proposition 2 and Lemma 4. 2

Remark 6. It follows from Theorem 1 and the properties of the stable distributions
(see. e.g., Klebanov 2003) that (under general assumptions) ϕ(FN , X) is a consis-
tent estimate of ϕ(F, X) also for all stable distributions with the shape parameter
ν ∈ (1, 2〉.

Furthermore, we shall deal with a convergence rate.

Theorem 2. Let Assumptions B.1, B.2, A.1, A.2 be fulfilled, PF ∈ M1
1(R

s), XF = X,
t > 0. If

(i) for some r > 2 it holds that EFi |ξi|r <+∞, i = 1, . . . ,s,

(ii) β , γ > 0 fulfil the inequalities 0 < β + γ < 1/2, γ > 1/r, β +(1− r)γ < 0,

then

P{ω : sup
x∈X

Nβ |EFN g0(x,ξ ,EFN h(x,ξ ))−EF g0(x,ξ ,EF h(x,ξ ))|> t} −→N−→∞ 0.

(20)
If, moreover, X is a compact set, then also

P{ω : Nβ |ϕ(F, X)−ϕ(FN , X)|> t} −→N−→∞ 0. (21)

Proof. The first assertion follows from Proposition 2 and Proposition 4. The second
assertion follows from the first one and from the properties of integrals and compact
sets. (See a similar proof for the problem (1) in Houda and Kaňková 2012). 2

The next assertion deals with a special case in which the objective function does
not depend on the probability measure.

Theorem 3. Let ε > 0, t > 0, αi ∈ (0, 1), i = 1, . . . ,s. Let moreover X be a nonempty
convex compact set. If

(i) ĝ0(x), x ∈ Rn is a Lipschitz function with the Lipschitz constant L,
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(ii) g0(x, z, y) = ĝ0(x), x ∈ Rn, y ∈ Rs, y ∈ Rm1 ,

(iii) Assumptions A.1, A.2 and A.3 are fulfilled,

(iv) X(v), defined by the relation (10), is nonempty set for v ∈ ZF such that ‖v−
kF(α)‖< 2δ ,

(v) gi(x), i = 1, . . . ,s are convex continuous bounded functions on X(ε),

then

P{ω : Nβ |ϕ(F, XF)−ϕ(FN , XFN )|> t} −→N−→∞ 0 for β ∈ (0, 1/2). (22)

Proof. The assertion of Theorem 3 follows from the assertion of Corollary 1. 2

Remark 7. Evidently setting G = FN in Lemma 3 we can see that (under the corre-
sponding assumptions)

EF g0(x,ξ ,EF h(x,ξ )), EFN g0(x,ξ ,EFN h(x,ξ ))

are Lipschitz functions on X with the same Lipschitz constant not depending on ω ∈ Ω.
Consequently, we can see that the assertion of Theorem 3 is valid if the function g0
fulfils the assumptions of Lemma 3 (instead of the assumptions (i), (ii) of Theorem 3).

According to the last Remark applying the relation (9) we can present the following
assertion.

Theorem 4. Let t > 0, X be a nonempty convex compact set, PF ∈ M1
1(R

s). Let,
moreover, αi ∈ (0, 1), ui

0 > 0, α = (α1, . . . ,αs) , u0 = (u1
0, . . . ,u

s
0). If

(i) Assumptions B.1, B.2, A.1, A.2 and A.3 are fulfilled,

(ii) for some r > 2 it holds that EFi |ξi|r <+∞, i = 1, . . . ,s,

(iii) β , γ > 0 fulfil the inequalities 0 < β + γ < 1/2, γ > 1/r, β +(1− r)γ < 0,

(iv) g0(x, y, y), h(x, z) are Lipschitz functions on X with the Lipshitz constants Lg0 ,
Lh not depending on z ∈ ZF ,

(v) X(v), defined by the relation (10), is nonempty set for v ∈ ZF such that ‖v−
kF(α)‖< 2δ ,

(vi) gi(x), i = 1, . . . ,s are convex continuous bounded functions on X(ε),

then
P{ω : Nβ |ϕ(F, XF)−ϕ(FN , XFN )|> t} −→N−→∞ 0. (23)

Proof. Setting in Relation (9) G = FN and applying Remark under Theorem 3 we see
that the assertion follows from Theorems 2, 3. 2

Evidently, the convergence rate β := β (r) introduced by Theorems 2, 4 depends
on the absolute moments existence; it holds that β (r)−→r−→∞ 1/2, β (r)−→r−→2+ 0.
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Consequently, the best convergence rate is valid not only for exponential tails but also
for every distribution with finite all absolute moments (e.g. Weibull); even in the case
when finite moment generating function does not exist. Unfortunately we can not
obtain (by this approach) any results in the case when there exist only finite EF |ξi|r,
i = 1, . . . ,s for r < 2. This is the case of stable distributions (with exception of normal
distribution) or the case of Pareto distribution with a shape parameter ν ≤ 2.

Theorem 5. Let the assumptions B.1, B.2, A.1 and A.2 be fulfilled, PF ∈ M1
1(R

s),
M > 0, X be a compact set. If one dimensional components ξi, i = 1, . . . ,s of the
random vector ξ have the distribution functions Fi with tail parameters νi ∈ (1, 2)
fulfilling the relations

sup
t>0

tνi P{ω : |ξi|> t} < ∞, i = 1,2, . . . ,s,

then

lim
M−→∞

sup
N

P{ω :
N

N1/ν
|ϕ(FN , X) − ϕ(F, X)|> M}= 0 with ν = min(ν1, . . . ,νs).

(24)

Proof. Let M > 0, ν ∈ (1, 2). First, it follows from Proposition 2 successively that

sup
N

P{ω : N
N1/ν

|ϕ(FN , X) −ϕ(F, X)| > M} ≤

sup
N

P{ω : N
N1/ν

L
s
∑

i=1

∞
−∞

|FN(z)−F(z)|dz > M} ≤

s
∑

i=1
sup

N
P{ω : N

N1/νi

∞
−∞

|FN(z)−F(z)|dz > M/Ls}.

Consequently, according to Proposition 5 and (19) we can obtain

lim
M−→∞

sup
N

P{ω : N
N1/ν

|ϕ(FN , X) − ϕ(F, X)|> M} ≤
s
∑

i=1
lim

M′−→∞

sup
N

P{ω : N
N1/νi

∞
−∞

|FN(z)−F(z)|dz > M
′}, M

′
= M/Ls.

Now already we can see that the assertion of Theorem 5 holds. 2

5. Conclusion

The paper deals with empirical estimates in the case of static stochastic optimization
problem. In particular the paper deals with the rate of convergence of optimal value
estimate in the case when the dependence on the probability measure is not linear. Ev-
idently, the results of Houda and Kaňková (2012), Kaňková (2012) are generalized.
Moreover, it was shown that the results corresponding to the case of nonlinear depen-
dence are very similar to them in the case of linear dependence. Consequently, both
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results can be completed by simulation technique credited to M. Houda and published
in Houda and Kaňková (2012) and to V. Omelchenko (for stable distribution) that can
be found in Omelchenko (2012).

The paper deals only with the optimal value estimates. Employing some growth
conditions (see, e.g. Römisch 2003) the introduced results can be transformed to the
estimates of the optimal solution. However the investigation in this direction is beyond
the scope of this paper.
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Dupačová, J. (2009). Portfolio Optimization and Risk Management via Stochastic Pro-
gramming. Osaka, Osaka University Press.
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Kaňková, V. (1978). An Approximative Solution of Stochastic Optimization Problem.
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Appendix

Proof of Lemma 5. First evidently, kF(α) depends on ω ∈ Ω, and, moreover, if (for
some ω ∈ Ω) it holds that FN(kF(α)+ t)> 1−α , FN(kF(α)− t)< 1−α, then

kFN (α) ∈ 〈kF(α)− t, kF(α)+ t〉.

According to the results of Dvoretzky, Kiefer and Wolfowitz (1956),

P{ω : FN(kF(α)+ t)> 1−α), FN(kF(α)− t) < 1−α}=

= P{ω : FN(kF(α)+ t)> F(kF(α)), FN(kF(α)− t) < F(kF(α))}=

= P{ω : F(kF(α)+ t)−FN(kF(α)+ t) < F(kF(α)+ t)−F(kF(α)),

FN(kF(α)− t) − F(kF(α)− t)< F(kF(α))−F(kF(α)− t)} ≥

≥ P{ω : F(kF(α)+ t)−FN(kF(α)+ t)< ϑ t,

FN(kF(α)− t) −F(kF(α)− t)< ϑ t)} ≥

≥ 1−2exp{−2N(ϑ t)2},

we can see that the assertion of Lemma 5 is valid. 2
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