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Abstract. Multiobjective optimization problems depending on a probabil-
ity measure correspond to many economic and financial activities. Evidently
if the probability measure is completely known, then we can try to influence
economic process employing methods of a multiobjective deterministic opti-
mization theory. Since this assumption is fulfilled very seldom we have mostly
to analyze the mathematical model and consequently also economic process on
the data base. The aim of the talk will be to investigate a relationship between
“characteristics” obtained on the base of complete knowledge of the probability
measure and them obtained on the above mentioned data base. To this end, the
results of the deterministic multiobjective optimization theory and the results
obtained for stochastic one objective problems will be employed.
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1 Introduction

To introduce a “rather general” multiobjective stochastic programming problem, let (Ω,S, P ) be a
probability space; ξ := ξ(ω) = (ξ1(ω), . . . , ξs(ω)) s–dimensional random vector defined on (Ω,S, P );
F (:= F (z), z ∈ Rs), PF and ZF denote the distribution function, the probability measure and the sup-
port corresponding to ξ. Let, moreover, gi := gi(x, z), i = 1, . . . , l, l ≥ 1 be real–valued (say, continuous)
functions defined on Rn ×Rs; XF ⊂ X ⊂ Rn be a nonempty set generally depending on F, and X ⊂ Rn
be a nonempty deterministic set. If the symbol EF denotes the operator of mathematical expectation
corresponding to F and if for every x ∈ X there exist finite EF gi(x, ξ), i = 1, . . . , l, then a rather general
“multiobjective” one–stage stochastic programming problem can be introduced in the form:

Find minEF gi(x, ξ), i = 1, . . . , l subject to x ∈ XF . (1)

The multiobjective problem (1) corresponds evidently to economic situation in which a “result” of
an economic process is simultaneously influenced by a random factor ξ and a decision parameter x, it is
reasonable to evaluate this process by a few (say l, l ≥ 1) objective functions. The decision vector has
to be determined without knowledge of the random element realization and it seems to be reasonable to
determine “the decision” with respect to the mathematical expectation of the objectives.

It is possible only very seldom to find out simultaneously the solution with respect to all criteria in
(1) and moreover, these problems depend on a probability measure PF that usually has to be estimated
on the data base. Consequently, in applications very often the “underlying” probability measure PF has
to be replaced by empirical one. Evidently, then the “solution” and an analysis of the problem have to
be done with respect to an empirical problem:

Find minEFN gi(x, ξ), i = 1, . . . , l subject to x ∈ XFN , (2)
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where FN denotes an empirical distribution function determined by a random sample {ξi}Ni=1 (not nece-
ssary independent) corresponding to the distribution function F .

To analyze the problem (1), first, the results of the multiobjective deterministic problems have to
be recalled. Since, it follows from multiobjective theory that the results of uni–objective optimization
theory can be useful (under rather general conditions) to investigate the relationship between the results
obtained under complete knowledge of PF and them obtained on the data base, we recall also the results
obtained for uni–objective stochastic programming problems. Our aim will be to focus to “underlying”
distributions with heavy tails, that correspond just to many economic and financial processes (for more
details see e.g. [10] or [12]).

According to the above mentioned facts, the paper is organized as follows. First, we try to recall aux-
iliary assertions concerning deterministic multiobjective theory (subsection 2.1). Stability and empirical
estimates obtained for uni–objective stochastic programming problems are recalled in section 2.2. Section
3 is devoted to the stability analysis of the problem (1). Essential results devoted to the multiobjective
problems can be found in section 4.

2 Some Definition and Auxiliary Assertion

2.1 Deterministic Multiobjective Problems

To recall some results of the multiobjective deterministic optimization theory we consider a multiobjective
deterministic optimization problem in the following form:

Find min fi(x), i = 1, . . . , l
′

subject to x ∈ K, (3)

where fi(x), i = 1, . . . , l
′

are real–valued functions defined on Rn, K ⊂ Rn is a nonempty set.

Definition 1. The vector x∗ is an efficient solution of the problem (3) if and only if there exists no x ∈ K
such that fi(x) ≤ fi(x∗) for i = 1, . . . , l

′
and such that for at least one i0 one has fi0(x) < fi0(x∗).

Definition 2. The vector x∗ is properly efficient solution of the multiobjective optimization problem
(3) if and only if it is efficient and if there exists a scalar M > 0 such that for each i and each x ∈ K
satisfying fi(x) < fi(x

∗) there exists at least one j such that fj(x
∗) < fj(x) and

fi(x
∗)− fi(x)

fj(x)− fj(x∗)
≤M. (4)

Proposition 1. ([4]) Let K ⊂ Rn be a nonempty convex set and let fi(x), i = 1, . . . , r be convex functions
on K. Then x0 is a properly efficient solution of the problem (3) if and only if x0 is optimal in

min
x∈K

r∑
i=1

λifi(x) for some λ1, . . . , λr > 0;

r∑
i=1

λi = 1.

Definition 3. Let h̄(x) be a real–valued function defined on a nonempty convex se K ⊂ Rn. h̄(x) is a
strongly convex function with a parameter ρ > 0 if

h̄(λx1 + (1− λ)x2) ≤ λh̄(x1) + (1− λ)h̄(x2)− λ(1− λ)ρ‖x1 − x2‖2 for every x1, x2 ∈ K, λ ∈ 〈0, 1〉.

Proposition 2. ([6]) Let K ⊂ Rn be a nonempty, compact, convex set. Let, moreover, h̄(x) be a strongly
convex with a parameter ρ > 0, continuous, real–valued function defined on K. If x0 is defined by the
relation x0 = arg min

x∈K
h̄(x), then

‖x− x0‖2 ≤ 2

ρ
|h̄(x)− h̄(x0|| for every x ∈ K.

2.2 Uni–Objective Stochastic Programming Problems

To recall suitable for us assertions of one criteria stochastic optimization theory we start with the problem:

Find ϕ(F, XF ) = inf EF g0(x, ξ) subject to x ∈ XF , (5)



where g0(x, z) is a real–valued function defined on Rn ×Rs.

First, if F and G are two s–dimensional distribution functions for which the Problem (5) is well
defined, then we can obtain by the triangular inequality that

|ϕ(F, XF )− ϕ(G, XG)| ≤ |ϕ(F, XF )− ϕ(G, XF )| + ϕ(G, XF )− ϕ(G, XG)|. (6)

According to the relation (6) we can study separately stability of the problem (5) with respect to
perturbation in the objective function and in constraints set. In this paper we restrict our consideration
to the case XF = X independently of F. To this end we introduce the following assumptions:

A.1 • X is a convex set and there exists ε > 0 such that g0(x, z) is a convex bounded function on
X(ε) (X(ε) denotes the ε–neighborhood of X),

• g0(x, z) is a Lipschitz function of z ∈ Rs with the Lipschitz constant L (corresponding to the
L1 norm) not depending on x.

To introduce the first assertion dealing with the stability of the problem (5) (with XF = X) we denote
by Fi, i = 1, . . . , s one–dimensional marginal distribution functions corresponding to F ; P(Rs) the set of
Borel measures on Rs,M1(Rs) = {P ∈ P(Rs) :

∫
Rs
‖z‖1sP (dz) <∞}, ‖ · ‖1s denote L1 norm in Rs.

Proposition 3. ([7]) Let PF , PG ∈M1(Rs), X be a nonempty set. If A.1 is fulfilled, then

|EF g0(x, ξ)− EGg0(x, ξ)| ≤ L
s∑
i=1

+∞∫
−∞

|Fi(zi)−Gi(zi)|dzi for every x ∈ X.

Proposition 3 reduces (from the mathematical point of view) s–dimensional case to one–dimensional.
Of course, stochastic dependence between components of the random vector ξ is there neglected. Replac-
ing G by an empirical estimate FN of F we can employ Proposition 3 to investigate empirical estimates
of Problem (5) (with XF = X) and according to Proposition 1 also to analyze relationship between
Problems (1) and (2). Evidently, according to Proposition 3 it is reasonable to investigate the behaviour

of
∞∫
−∞
|Fi(zi)− FNi (zi)|dzi, i = 1, . . . , s. To this end, we recall the following assumptions:

A.2 {ξi}∞i=1 is independent random sequence corresponding to F , FN is an empirical distribution func-
tion determined by {ξi}Ni=1,

A.3 PFi , i = 1, . . . , s are absolutely continuous w. r. t. the Lebesgue measure on R1.

Proposition 4. ([15]) Let s = 1 and PF ∈M1(R1). Let, moreover A.2 be fulfilled . Then

P{ω :

∞∫
−∞

|F (z)− FN (z)|dz −→N−→∞ 0} = 1.

Proposition 5. [8] Let s = 1, t > 0 and Assumptions A.2, A.3 be fulfilled. If there exists β > 0, R :=
R(N) > 0 defined on N such that R(N) −−−−→

N→∞
∞ and, moreover,

Nβ
−R(N)∫
−∞

F (z)dz −−−−→
N→∞

0, Nβ
∞∫

R(N)

[1− F (z)]dz −−−−→
N→∞

0,

2NF (−R(N)) −−−−→
N→∞

0, 2N [1− F (R(N))] −−−−→
N→∞

0,

( 12NβR(N)
t + 1) exp{−2N( t

12R(N)Nβ
)2} −−−−−→

N−→∞
0,

(7)

then

P{ω : Nβ

∞∫
−∞

|F (z)− FN (z)|dz > t} −−−−→
N→∞

0. (8)

(N denotes the set of natural numbers.)



Evidently, it follows from the relations (7), (8) and from the classical result of [2] that the validity of
the relation (8) depends on the tails behaviour (for more details see e.g. [9]).

Proposition 6 ([5]). Let s = 1, t > 0, r > 0, the assumptions A.2, A.3 be fulfilled. Let, moreover, ξ
be a random variable such that EF |ξ|r < ∞. If constants β, γ > 0 fulfil the inequalities 0 < β + γ <
1/2, γ > 1/r, β + (1− r)γ < 0, then

P{ω : Nβ

∞∫
−∞

|F (z)− FN (z)|dz > t} −→N−→∞ 0.

Analyzing Proposition 6 we can obtain β := β(r) fulfilling this assertion and simultaneously

β(r) −→r−→∞ 1/2, β(r) −→r−→2+ 0.

Proposition 6 covers also some cases of heavy tails distributions. Unfortunately, we cannot obtain by this
Proposition any results for the case when there exist only EF |ξ|r for r < 2. But just this case corresponds
to stable distributions with the tail (shape) parameter ν < 2 (for more details see e.g. [11] or [13]). The
shape parameter expresses how “heavy” tails of distribution are. The case ν = 2 corresponds to normal
distribution, when the second moment exists. To obtain at least weaker result for the case when the finite
moment exists only for r < 2 (ν < 2), we recall the results of [1].

Proposition 7 ([1]). Let s = 1, {ξi}Ni=1, N = 1, 2, . . . be a sequence of independent random values
corresponding to a heavy tailed distribution F with the shape parameter ν ∈ (1, 2) and let

sup
t>0

tν P{ω : |ξ| > t} <∞, (9)

then

lim
M̄−→∞

sup
N

P{ω :
N

N1/ν

∞∫
−∞

|F (z)− FN (z)| > M̄} = 0. (10)

3 Problem Analysis

To analyze the stability of the multiobjective stochastic problem (1) we define the sets G(F, XF ), X̄ (F, XF ),
Ḡ(F, XF ) and the function ḡ(x, z, λ) by the relations

G(F, XF ) = {y ∈ Rl : yj = EF gj(x, ξ), j = 1, . . . , l for some x ∈ XF ; y = (y1, . . . , yl)},

X̄ (F, XF ) = {x ∈ XF : x is a properly efficient point of the problem (1)},

Ḡ(F, XF ) = {y ∈ Rl : yj = EF gj(x, ξ), j = 1, . . . , l for some x ∈ X̄ (F, XF )}

ḡ(x, z, λ) =
l∑
i=1

λigi(x, z), x ∈ Rn, z ∈ Rs, λ = (λ1, . . . , λl), λi > 0,
l∑
i=1

λi = 1.

(11)

Evidently, if the following assumptions are fulfilled

B.1 • X is a convex set and, moreover, there exists ε > 0 such that gi(x, z), i = 1, . . . , s are for
every z ∈ Rs a convex functions on X(ε),

• gi(x, z), ı = 1, . . . , l are Lipschitz functions of z ∈ Rs with the Lipschitz constant L (corre-
sponding to L1 norm) not depending on x,

then ḡ(x, z, λ) is a convex function on X(ε) and, moreover, it is a Lipschitz function of z with the
Lipschitz constant L not depending on x, λ. Consequently, according to to Proposition 3 we can obtain.

Proposition 8. Let PF , PG ∈M1(Rs), X be a nonempty set. If B.1 is fulfilled, then

|EF ḡ(x, ξ, λ)− EGḡ(x, ξ, λ)| ≤ L

s∑
i=1

+∞∫
−∞

|Fi(zi)−Gi(zi)|dzi, x ∈ X, λi > 0, i = 1, . . . , s,

s∑
i=1

λi = 1.



Proposition 9. Let PF , PG ∈M1(Rs), X be a compact set. If B.1 is fulfilled, then

∆n[G(F, X), G(G, X)] ≤ L
s∑
i=1

+∞∫
−∞

|Fi(zi)−Gi(zi)|dzi,

where the symbol ∆n[·, ·] is reserved for the Hausdorff distance of the subsets of Rn (for the definition
of the Hausdorff distance see e.g. [14]).

Proposition 10. Let X be a convex set. If gi(x, z), i = 1, . . . , l are strongly convex (with a parameter
ρ > 0) function on X, then EF ḡ(x, ξ, λ) is a strongly convex function on X with the parameter ρ.

Proof. The assertion of Proposition 10 follows from Definition 3 and Relation (11).

Employing the assertion of Proposition 1 we can investigate the relationship between the Problems
(1), and (2).

4 Empirical Estimates

Theorem 11. Let Assumptions B.1, A.2, and A.3 be fulfilled, PF ∈ M1(Rs), X be a compact set.
Then

P{ω : ∆n[G(F, X), G(FN , X)] −→N−→∞} = 1.

Proof. The assertion of Theorem 11 follows from Propositions 4, 9 and the relation (11).

Theorem 12. Let t > 0, r > 0, Assumptions B.1, A.2, A.3 be fulfilled. Let, moreover, ξ be a random
vector with the components ξi, i = 1, . . . , s such that EF |ξi|r < ∞. If constants β, γ > 0 fulfil the
inequalities 0 < β + γ < 1/2, γ > 1/r, β + (1− r)γ < 0, then

P{ω : Nβ ∆n[G(F, X), G(FN , X)] > t} −→N−→∞} = 0.

If, moreover, gi(x, z), i = 1, . . . , l are strongly convex with a parameter ρ > 0 function on X, then
also

P{ω : Nβ∆n[X̄ (F, X)), X̄ (FN , X)]2 > t} −→N−→∞ 0.

Proof. First assertion of Theorem 12 follows from Propositions 6 and 9. The second assertion follows
from the first one and from Proposition 2, 10 and the relation 10.

Theorem 13. Let Assumptions B.1, A.2 and A.3 be fulfilled, PF ∈ M1(Rs), M̄ > 0, X be a compact
set. If one–dimensional components ξi, i = 1, . . . , s of the random vector ξ have distribution functions
Fi with tails parameter νi ∈ (1, 2) fulfilling the relations

sup
t>0

tνiPF {ω : |ξi| > t} <∞, i = 1, . . . , s,

then

lim
M̄−→∞

sup
N
P{ω :

N

N1/ν
∆n[G(F, X)), G(FN , X))], > M̄} = 0 with ν = min(ν1, . . . , νs}.

If, moreover, gi(x, z), i = 1, . . . , l are strongly convex with a parameter ρ > 0 function on X, then also

lim
M̄−→∞

sup
N
{ω :

N

N1/ν
∆n[X̄ (F, X)), X̄ (FN , X)]2 > M̄} = 0 with ν = min(ν1, . . . , νs}.

Proof. The assertion of Theorem 13 follows from the assertion of Propositions 2, 7 and 10.

Remark 1. Let us assume that Assumptions of Theorem 13 are fulfilled and β(ν) := 1−1/ν. Then β(ν)
is an increasing function of ν and holds up to

lim
ν−→1+

β(ν) = 0, lim
ν−→2−

β(ν) =
1

2
,



The assertions of Theorems 11, 12 and 13 are introduced (under the approach of properly efficient
points and their functions mapping), however, since the set of properly efficient points is dense in the set
of efficient points our results are not much restricted (for more details see e. g. [3]).

5 Conclusion

The paper deals with multiobjective stochastic programming problems, especially with a relationship
between characteristics of these problems corresponding to complete knowledge of the probability measure
and them determined on the data base. We have restricted ourselves to investigate the characteristics
G(F, X), X̄ (F, X)) and XF = X, generally. Evidently the presented results can be generalized to the
characteristic Ḡ(F, XF ) and (employing Relation (6)) some type of constraints set depending on the
probability measure (see the corresponding results achieved for one objective case [9]). However more
detailed investigation in this direction is beyond the scope of this paper.
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[8] V. Kaňková: Empirical estimates in stochastic optimization via distribution tails. Kybernetika 46 (2010), 3,
459–471.
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