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Abstract. Economic processes are usually influenced simultaneously by a random factor
and a decision parameter. Since the decision parameter has to be mostly determined before
realization of the random element, deterministic optimization problems which depend on
a probability measure often correspond to the above mentioned situations. A complete
knowledge of the “underlying” measure would be a necessary assumption to determine
both an exact optimal solution and an exact optimal value. Since this condition is not
usually fulfilled, the solution is often determined on an empirical data base. Corresponding
estimates can only be obtained using this approach.
Many efforts have been made to investigate the above mentioned estimates. The consis-
tency, convergence rate and an asymptotic distribution have been examined. This was
mostly done under assumptions of linear dependence on the probability measure, distri-
butions with “thin” tails and an assumption of independent data. The aim of this paper
is to consider the cases in which these assumptions are rather relaxed. To this end we
employ stability results based on the Wasserstein metric corresponding to L1 norm and
some results on mixing sequences.
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1. Introduction

To introduce a “classical” one–stage stochastic programming problem, let (Ω,S, P )
be a probability space; ξ := ξ(ω) = (ξ1(ω), . . . , ξs(ω)) s–dimensional random vector
defined on (Ω,S, P ); F := F (z) where z ∈ Rs, PF and ZF denote the distribution
function, the probability measure and the support corresponding to ξ. Let, more-
over, g0 := g0(x, z) be a real–valued (say, continuous) function defined on Rn ×Rs;
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XF ⊂ X ⊂ Rn be a nonempty set generally depending on F, and X ⊂ Rn be a
nonempty deterministic set. If the symbol EF denotes the operator of mathemat-
ical expectation corresponding to F and if for every x ∈ XF there exists a finite
EFg0(x, ξ), then a rather general “classical” one–stage stochastic programming prob-
lem can be introduced in the form:

Find ϕ(F, XF ) = inf{EFg0(x, ξ) |x ∈ XF}. (1)

In real–life models it is often necessary to replace the measure PF by its stochastic
estimate to obtain at least an approximate optimal value and an optimal solution.
An empirical probability measure is a very suitable candidate for this estimate.
Consequently, the solution to Problem (1) often has to be sought with respect to an
empirical problem:

Find ϕ(FN , XFN ) = inf{EFNg0(x, ξ) |x ∈ XFN}, (2)

where FN denotes an empirical distribution function determined by a random sam-
ple {ξi}Ni=1 (not necessarily independent) corresponding to the distribution function
F . If we denote the optimal solutions sets of (1) and (2) by X (F, XF ),X (FN , XFN ),
then (under rather general assumptions) ϕ(FN , XFN ),X (FN , XFN ) are “good”
stochastic estimates of ϕ(F, XF ), X (F, XF ). The properties of the above–mentioned
estimates have been investigated many times in stochastic programming literature.
It was shown that these estimates are consistent under rather general assumptions.
The convergence rate and asymptotic distributions have been studied as well. It has
been proven that the corresponding estimates usually have very “pleasant” proper-
ties. However, these results have mostly been obtained for “underlying” “classical”
situations. This means, under the assumptions of the distribution with “thin” tails,
random data corresponding to independent samples and the problems depending
linearly on the probability measure. More recently it has been recognized that ran-
dom elements corresponding to economic and financial situations do not fulfill these
conditions everywhere. Consequently, a question has arisen if the above mentioned
estimates then also have “acceptable” properties. The aim of this paper is to recall
some results obtained also under the assumptions of the distributions with “heavy”
tails (including the stable distributions) and random data which fulfill mixing con-
ditions.

The paper is organized as follows. First, we try to give a brief survey of cor-
responding historical results and approaches (section 2). Section 3 is devoted to
necessary definitions and some auxiliary assertions. The essential results are pre-
sented in Section 4 (starting with a survey of heavy tails in economic and financial
applications, and followed by mathematical results). Finally, Section 5 deals with
dependent random samples in empirical estimates.

2. Brief Survey

The investigation of the empirical estimates started in [50] in 1974; followed by
many works (see, e. g., [6], [13], [16], [35], [37], [41], [47]). Let us recall some of these
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well–known results. We emphasize that the first results were obtained mostly under
the assumption XF = X.

Theorem 1. [13] If

1. X is a compact set, g0(x, z) is a uniformly continuous bounded function on
Rs ×X,

2. {ξi}∞i=−∞ is an ergodic sequence,

then
P{ω : |ϕ(FN , X)− ϕ(F, X)| −−−→

N→∞
0} = 1.

Remark 2. Theorem 1 was proven under the assumption that {ξi}∞i=1 is an ergodic
sequence (for the definition of the ergodic random sequence see, e.g. [2]). Of course
the ergodic property covers an independent random sample.

The results on consistency have many times been generalized. Later on we shall
see that the consistency results are guaranteed (under some additional assumptions)
by the finite first moments of the random elements. But now let us recall one of the
well–known result concerning this problem.

Theorem 3. Let X be a nonempty compact set. If

1. for every x ∈ X the function g0(x, z) is a continuous function of x for almost
every z ∈ ZF (w.r.t. PF ),

2. g0(x, z), x ∈ X is dominated by an integrable (w.r.t. F ) function,

3. {ξi}Ni=1, N = 1, 2, . . . is an independent random sample,

then
P{ω : |ϕ(FN , X)− ϕ(F, X)| −−−→

N→∞
0} = 1.

Proof. The assertion of Theorem 3 follows immediately from Proposition 5.2 and
Theorem 7.48 proven in [39].

Investigation of the convergence rate began back in 1978 [14] by this assertion:

Theorem 4. [14] Let t > 0, X be a nonempty compact, convex set. If

1. g0(x, z) is a uniformly continuous function on X ×ZF , bounded by M
′
> 0 (i.

e., |g0(x, z)| ≤M
′
),

2. g0(x, z) is a Lipschitz function on X with the Lipschitz constant L′ not de-
pending on z,

3. {ξi}Ni=1, N = 1, 2, . . . is an independent random sample,

then there exist constants K(t,X, L′), k1(M
′
) > 0 such that

P{ω : |ϕ(F, X)− ϕ(FN , X)| > t} ≤ K(t,X, L′) exp{−Nk1(M
′
)t2}.
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Remark 5. K(t,X, L′) depends on t,X, L
′

and k1(M
′
) on M

′
. Employing their esti-

mates presented in [14] it has been proven in [18] that

P{ω : Nβ|ϕ(F, X)− ϕ(FN , X)| > t} −−−−→
N−→∞

0 for β ∈ (0, 1
2
).

Moreover, if g0(x, z) is a uniformly strongly convex function of x ∈ X with a
parameter ρ > 0, then X (F, X) and X (FN , X) are singletons and

P{ω : Nβ‖X (F, X)−X (FN , X)‖2 > t} −−−−→
N−→∞

0 for β ∈ (0, 1
2
).

Recall that g0(x, z) is a (uniformly) strongly convex function on convex set X if
there exists a constant ρ > 0 such that the relation

g0(x, z) ≤ λg0(x1, z) + (1− λ)g0(x2, z)− λ(1− λ)ρ‖x1 − x2‖2

is valid for every λ ∈ 〈0, 1〉, x = λx1 + (1 − λ)x2, x1, x2 ∈ X, z ∈ Rs (for more
details see e.g. [34]; ‖ · ‖ = ‖ · ‖2

n denotes the Euclidean norm in Rn).

The assertion of Theorem 4 is valid independently of distribution function F , and
consequently it is true for distribution functions with heavy tails as well. On the
other hand, g0 must be a bounded function. This condition substitutes, evidently,
the assumption on a bounded support of the random element in the Hoeffding paper
[8]. Today the assumptions of Theorem 1 and Theorem 3 seems very strong. However
we can mention that results very similar to Theorem 4 have been proven by A.
Tsybakov in 1981 (see [45]). More recently, the theory of large deviations has been
employed to investigate the convergence rate (see, e.g., [3], [12]). If the moment–
generating function Mg0(u), corresponding to g0(x, ξ) is defined by the relation

Mg0(u) := EF{eu[g0(x,ξ)−EF g0(x,ξ)]}, u ∈ R1,

then the following assertion was presented in [38].

Theorem 6. [38] Let X ⊂ Rn be a nonempty compact set. If

1. for every x ∈ X the moment generating function Mg0(u) is finite valued for
all u in a neighbourhood of zero,

2. there exists a measurable function κ : ZF → R+ and a constant γ
′
> 0 such

that
|g0(x′, z)− g0(x, z)| ≤ κ(z)‖x′ − x‖γ

′

for all z ∈ ZF and all x, x′ ∈ X,

3. the moment generating function Mκ(u) of κ(ξ) is finite valued for all u in a
neighbourhood of zero,

4. {ξi}Ni=1, N = 1, 2, . . . is an independent random sample,

then for any t > 0 there exist positive constants C̄ := C̄(t) and β̄ := β̄(t), indepen-
dent of N , such that

P{sup
x∈X
|EFNg0(x, ξ)− EFg0(x, ξ)| ≥ t} ≤ C̄(t)e−Nβ̄(t).
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Remark 7. In Theorem 6 it is assumed that the function g0 is Lipschitz with respect
to the decision parameter and, moreover, the Lipschitz constant can depend on the
random element. The upper bound is exponential; however since the types of the
functions C̄, β̄ are not specified, the results of Theorem 6 are not suitable for the
determination of the convergence rate.

The stability results and the large deviations technique have been employed to
investigate convergence rate of empirical estimates. First, the Kolmogorov metric
was employed (see, e.g., [15]). Later, e.g., the Lipschitz metric, Wasserstein metric
based on the Euclidean norm, and Fortet–Mourier metric were employed (for the
definitions see e.g., [31]). The special metric depending on the problem (with mathe-
matical expectation generally also constrainted) has been constructed; see e.g., [36].
A relationship between convergence rate and the “underlying” probability measure
was investigated therein.

The recalled approaches have been employed mostly for independent data. How-
ever, results admitting some types of dependence have appeared in the literature.
The investigation of estimates corresponding to the dependent data also began in
1990s (see, e.g., [17], [48]). Since then others approaches have appeared (see, e.g.
[26], [49]).

3. Some Definitions and Auxiliary Assertions

We introduce the essential system of the assumptions:

A.1 • g0(x, z) is either a uniformly continuous function on X×Rs or there exists
ε > 0 such that go(x, z) is a convex bounded function on X(ε)
(X(ε) denotes the ε–neighborhood of the setX),

• g0(x, z) is for x ∈ X a Lipschitz function of z ∈ Rs with the Lipschitz
constant L (corresponding to the L1 norm) not depending on x,

A.2 {ξi}∞i=1 is an independent random sequence corresponding to F
(we denote by symbol FN an empirical distribution function determined by
{ξi}Ni=1, N = 1, 2, . . . ),

A.3 PFi , i = 1, . . . , s are absolutely continuous w. r. t. the Lebesgue measure on R1

(Fi, PFi , i = 1, 2, . . . , s denote one–dimensional marginal distribution func-
tions and probability measures corresponding to F ),

A.4 For every i ∈ {1, . . . , s} there exist δ > 0 and ϑ > 0 such that fi(zi) > ϑ
for zi ∈ ZFi , |zi − kFi(αi)| < 2δ
( kFi(αi) = sup{zi : PFi{ω : zi ≤ ξi(ω)} ≥ αi}, αi ∈ (0, 1).)

First, employing the triangular inequality for two s–dimensional distribution
functions F, G for which the Problem (1) is well defined, we can obtain

|ϕ(F, XF )−ϕ(G, XG)| ≤ |ϕ(F, XF )−ϕ(G, XF )| + |ϕ(G, XF )−ϕ(G, XG)|. (3)
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Furthermore, if there exist real–valued continuous functions gi := gi(x), x ∈ Rn

and αi, i = 1, 2, . . . , s such that

XF (:= XF (α)) =
s⋂
i=1

{x ∈ X : P [ω : gi(x) ≤ ξi] ≥ αi},

αi ∈ (0, 1), i = 1, . . . , s, α = (α1, . . . , αs),
(4)

and if Assumption A.3 is fulfilled, then

XF =
s⋂
i=1

{x ∈ X : gi(x) ≤ kFi(αi)}. (5)

Consequently, setting

X̄(v) =
s⋂
i=1

{x ∈ X : gi(x) ≤ vi}, v = (v1, . . . , vs) (6)

we obtain

XF = X̄(kF (α)), α = (α1, . . . , αs), kF (α) = (kF1(α1), . . . , kFs(αs)).

Let us recall the definition of the Hausdorff distance in the space of nonempty subsets
of Rn.

Definition 8. [34] If X
′
, X

′′ ⊂ Rn are two nonempty sets, then the Hausdorff dis-
tance of these sets ∆n[X

′
, X

′′
] is defined by

∆n[X
′
, X

′′
] = max [δn(X

′
, X

′′
), δn(X

′′
, X

′
)],

δn(X
′
, X

′′
) = sup

x′∈X′
inf

x′′∈X′′
‖x′ − x′′‖,

where ‖ · ‖ = ‖ · ‖2
n denotes the Euclidean norm in Rn.

Proposition 9. Let X be nonempty set. If

1. ĝ0 := ĝ0(x), x ∈ Rn is a Lipschitz function on X with the Lipschitz constant
L,

2. X̄(v) are nonempty sets for every v ∈ ZF and, moreover, there exists a con-
stant Ĉ > 0 such that

∆n[X̄(v(1)), X̄(v(2))] ≤ Ĉ‖v(1)− v(2)‖ for v(1), v(2) ∈ ZF ,

then

| inf
x∈X̄(v(1))

ĝ0(x)− inf
x∈X̄(v(2))

ĝ0(x)| ≤ LĈ ‖v(1)− v(2)‖ for v(1), v(2) ∈ ZF .

Proof. Proposition 9 is a slightly modified version of Proposition 1 in [20].
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Employing the technique of [20] or [22] we can see that the following assertion is
valid.

Lemma 10. [20] Let ε > 0, X be a convex, compact and nonempty set. If

1. gi(x), i = 1, . . . s are convex, continuous, bounded functions on X(ε),

2. X̄(v) is a nonempty set for every v ∈ Rs, v ∈ ZF ,

then there exists C > 0 such that

∆n[X̄(v(1)), X̄(v(2))] ≤ C‖v(1)− v(2)‖ for every v(1), v(2) ∈ ZF .

Lemma 11. Let s = 1, α ∈ (0, 1). If Assumptions A.2, A.3 and A.4 are fulfilled,
0 < t

′
< δ, then

P{ω : |kFN (α)− kF (α)| > t
′} ≤ 2 exp{−2N(ϑt

′
)2}, N ∈ N.

(N denotes the set of natural numbers.)

Proof. First, kFN (α) evidently depends on ω ∈ Ω, and, moreover, if (for some ω ∈ Ω)
it holds that FN(kF (α) + t

′
) > 1− α, FN(kF (α)− t′) < 1− α, then

kFN (α) ∈ 〈kF (α)− t′ , kF (α) + t
′〉.

According to the assumptions and to the classical results of [7] we can obtain that

P{ω : FN(kF (α) + t
′
) > 1− α, FN(kF (α)− t′) < 1− α} =

= P{ω : FN(kF (α) + t
′
) > F (kF (α)), FN(kF (α)− t′) < F (kF (α))} =

P{ω : F (kF (α) + t
′
)− FN(kF (α) + t

′
) < F (kF (α) + t

′
)− F (kF (α)),

FNkF (α)− t′) − F (kF (α)− t′) < F (kF (α))− F (kF (α)− t′)} ≥

P{ω : F (kF (α) + t
′
)− FN(kF (α) + t

′
) < ϑt

′
,

FN(kF (α)− t′) − F (kF (α)− t′) < ϑt
′} ≥

1− 2 exp{−2N(ϑt
′
)2}.

Now we can already see that the assertion of Lemma 11 is valid. �

(For the exponential convergence rate of empirical quantiles see also [42].)

Corollary 12. Let X be a convex, compact and nonempty set, αi ∈ (0, 1), i =
1, . . . , s, α = (α1, . . . , αs). If

1. ĝ0(x), x ∈ Rn is a Lipschitz function on X with the Lipschitz constant L,

2. A.2, A.3, A.4 are fulfilled,
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3. X̄(v) are nonempty sets for v ∈ ZF ,

4. there exists ε > 0 such that gi(x), i = 1, . . . , s are convex continuous functions
on X(ε),

then there exists a constant C > 0 such that

P{ω : | inf
X̄(kF (α))

ĝ0(x)− inf
X̄(k

FN
(α))

ĝ0(x)|| > t} ≤ 2s exp{−2N(ϑt/LCs)2}

forN ∈ N and t > 0 such that 0 < t/LCs < δ.

Proof. The assertion of Corollary 12 follows from the assertions of Lemmas 10 and,
11 and the properties of the Euclidean norm and the probability measure.

To recall the definition of the Wasserstein metric dW 1
1
(F, G) := dW 1

1
(PF , PG),

let P(Rs) denote the set of all (Borel) probability measures on Rs. If M1
1(Rs) =

{ν ∈ P(Rs) :
∫
Rs
‖z‖1

sν(dz) < ∞} and D(PF , PG) denotes the set of those measures

on P(Rs × Rs) whose marginal measures are PF and PG, ‖ · ‖1
s corresponds to the

L1 norm in Rs, then

dW 1
1
(F, G) := dW 1

1
(PF , PG) = inf{

∫
Rs×Rs

‖z − z̄‖1
sκ(dz × dz̄) : κ ∈ D(PF , PG)}

forPF , PG ∈Mp
1(Rs), p = 1, 2.

(For more general types of the Wasserstein metric see, e.g., [31].)

Employing the Wasserstein metric corresponding to L1 norm and the results of
[46], the following stability assertion has been proven.

Proposition 13. [21] Let PF , PG ∈ M1
1(Rs) and let X be a compact set. If As-

sumption A.1 is fulfilled, then

|ϕ(F, X)− ϕ(G, X)| ≤ L

s∑
i=1

+∞∫
−∞

|Fi(zi)−Gi(zi)|dzi.

Proposition 13 reduces (from the mathematical point of view) an s– dimensional
case to one–dimensional. Of course, a stochastic dependence between components
of the random vector is neglected there. The idea to reduce an s–dimensional case,
s > 1 to a one dimensional case is credited to G. Pflug [30] (see also [44]).

Remark 14. Consider two very simple optimization problems:
Find min

x∈〈1, 2〉
EFξξx ; Find min

x∈〈1, 2〉
EFηηx,

where ξ is a random value with uniform distribution Fξ on 〈0, 1〉 and η = ξ+a, a ∈
(0, 1). Evidently, then

| min
x∈〈1, 2〉

EFξξx− min
x∈〈1, 2〉

EFηηx| = a
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and, simultaneously,

∞∫
−∞
|Fξ(u)− Fη(u)| du =

∞∫
−∞

(Fξ(u)− Fη(u))du =

a∫
0

udu+
1+a∫
1

(1− u+ a)du+
1∫
a

adu = a2

2
+ a2

2
+ a− a2 = a.

(Fη denotes the distribution function of η.)
Consequently setting F := Fξ, G := Fη and X := 〈1, 2〉 in Proposition 13 we

have a case in which the inequality introduced in Proposition 13 turns to an equality.

Replacing G by FN in Proposition 13, we can investigate properties of the
empirical estimate ϕ(FN , X). It follows from Proposition 13 that properties of

|ϕ(F, X) − ϕ(FN , X)| follows from the properties of
+∞∫
−∞
|Fi(zi) − FN

i (zi)|dzi, i =

1, 2, . . . , s. We recall the following assertions:

Lemma 15. [43] Let s = 1 and PF ∈ M1
1(R1). Let, moreover, Assumption A.2 be

fulfilled. Then

P{ω :

∞∫
−∞

|F (z)− FN(z)|dz −−−→
N→∞

0} = 1.

Proposition 16. [9] Let s = 1, t > 0 and Assumptions A.2, A.3 be fulfilled. If there
exists β > 0, R := R(N) > 0 defined on N such that R(N) −−−→

N→∞
∞ and, moreover,

Nβ

−R(N)∫
−∞

F (z)dz −−−→
N→∞

0, Nβ

∞∫
R(N)

[1− F (z)]dz −−−→
N→∞

0,

2NF (−R(N)) −−−→
N→∞

0, 2N [1− F (R(N))] −−−→
N→∞

0,

(
12NβR(N)

t
+ 1) exp{−2N(

t

12R(N)Nβ
)2} −−−−→

N−→∞
0,

(7)

then

P{ω : Nβ

∞∫
−∞

|F (z)− FN(z)|dz > t} −−−→
N→∞

0. (8)

N denotes the set of natural numbers.

According to the assertion of Proposition 16 and to the old results of Dvoretzky–
Kiefer–Wolfowitz (see, e.g., [7]) we recognize that the convergence rate can depend
on the distribution tails. Evidently, if Fi, i = 1, . . . , s have exponential tails, then
(8) is valid for β ∈ (0, 1/2) (compare with the Kolmogorov limit theorem; [33]).
Consequently, the case of heavy tails is more interesting.
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4. Heavy Tails in Stochastic Optimization

4.1. Heavy Tails in Economic and Financial Applications

Previously, it was assumed (in stochastic optimization theory) that the “underlying”
probability measures belong to the class of distribution functions with thin tails.
Consequently it was supposed that distributions can mostly be approximated by
the normal distributions. However, recently it has been recognized that many data
correspond to distributions for which the above mentioned assumptions are not
fulfilled. In particular, empirical distributions determined by the data are “near” to
the heavy–tailed distributions

A relatively good analysis of the “heavy”–tailed distributions in economy and
finance is presented, e.g., in [28]. In particular it was discovered that some data on
river flow, cotton, exchange rate and returns correspond to different random param-
eters with heavy–tailed distributions. The Weibull distribution often corresponds
to lifetime value as well as to problems about wind speed and power, and rainfall
intensity. (It seems useful to comment on the position of the Weibull distribution
that can belong to the thin and also the heavy tails distributions depending on
the parameter value.) Furthermore, it was mentioned in [11] that some gold prices,
telecommunication, quality control data, well as problems about incomes correspond
to the lognormal distribution. A relationship between heavy–tailed distributions and
the stable distributions can be found, e.g. in [25]. The relationship between the tails
of the stable distributions and the Pareto tails is shown in [40].

According to the aforementioned facts, it is easy to see that the distributions with
“heavy” tails correspond well to many economic and financial data. Consequently,
a question arises: how good are empirical estimates corresponding to them? Are
these estimates consistent and what can be said about the convergence rate and an
asymptotic distribution? Some results about consistency as well as well convergence
rate are already known. In this paper we try to also cover the results corresponding
to heavy–tailed distributions including the stable distributions with a shape param-
eter, corresponding to the tail, ν ∈ (1, 2) (for the definition of the shape parameter
and stable distributions see, e.g., [25]). An alternative approach to the optimization
problems with the“underlying” heavy–tailed distribution can be found, e.g., in [32].

4.2. Consistency

First, according to Proposition 13 and Lemma 15 the following assertion is valid.

Theorem 17. Let Assumptions A.1, A.2, and A.3 be fulfilled, PF ∈M1
1(Rs), X be

a compact set. Then

P{ω : |ϕ(FN , X)− ϕ(F, X)| −−−→
N→∞

0} = 1.

Remark 18. According to Theorem 17 we can see that ϕ(FN , X) is (under rather
general assumptions) a consistent estimate of ϕ(F, X). Evidently this assertion is
also valid for the stable distributions with the shape parameter ν > 1.
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4.3. Convergence Rate

The next assertion follows from Proposition 13 and Relations (7), (8).

Theorem 19. [9] Let Assumptions A.1, A.2, and A.3 be fulfilled, PF ∈ M1
1(Rs),

t > 0, X be a compact set. If

1. for some r > 2 it holds that EFi |ξi|r < +∞, i = 1, . . . , s,

2. constants β, γ > 0 fulfill the inequalities 0 < β + γ < 1/2, γ > 1/r,
β + (1− r)γ < 0,

then
P{ω : Nβ|ϕ(F, X)− ϕ(FN , X)| > t} −−−→

N→∞
0.

Evidently, the convergence rate β := β(r) (introduced by Theorem 19) generally
depends on existence of the finite absolute moments and, moreover, it is easy to see
that

β(r) −−−−→
r→+∞

1/2, β(r) −−−→
r→2+

0.

Unfortunately, we cannot obtain (using this theoretical approach) results in the
case when there exist only EF |ξi|r, i = 1, . . . s for r < 2. It seems that a relationship
exists between the convergence rate and a domain of attraction for a normal law
(for the definition of domain of attraction see, e.g. [27]). To obtain at least a weaker
result for the case when the finite moment exists only for r < 2, we recall the results
of [1]. To this end we mention that stable distributions with ν < 2 belong to this
class. The stable distributions, with exception of a normal case, belong to the heavy
tails distributions. The shape parameter expresses how “heavy” the tails of the
distribution are. The case ν = 2 correspond to normal distribution; of course where
the finite second moment exists. However, the finite second moment does not exist
for ν < 2.

Proposition 20. [1] Let s = 1, {ξi}Ni=1, N = 1, 2, . . . be a sequence of indepen-
dent random values corresponding to a heavy–tailed distribution F with the shape
parameter ν ∈ (1, 2). Then the sequence

N

N1/ν

∞∫
−∞

|FN(z)− F (z)|dz, N = 1, . . . , (9)

is stochastically bounded if and only if

sup
t>0

tν P{ω : |ξ| > t} <∞. (10)

The assertion of Proposition 20 follows from Theorem 2.2 [1]. According to the
definition of stochastically bounded random sequences, it holds (under the validity
of the relation (10)) that

lim
M−→∞

sup
N

P{ω :
N

N1/ν

∞∫
−∞

|F (z)− FN(z)| > M} = 0. (11)
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Applying the assertion of Proposition 20, the following weaker assertion can be
proven.

Theorem 21. [24] Let Assumptions A.1, A.2 and A.3 be fulfilled, PF ∈ M1
1(Rs),

M > 0, X be a compact set. If one–dimensional components ξi, i = 1, . . . , s of
the random vector ξ have distribution functions Fi with tails parameters νi ∈ (1, 2)
fulfilling the relations

sup
t>0

tνi P{ω : |ξi| > t} <∞, i = 1, 2, . . . , s,

then

lim
M−→∞

sup
N

P{ω :
N

N1/ν
|ϕ(FN , X) − ϕ(F, X)| > M} = 0 with ν = min(ν1, . . . , νs).

(12)

Remark 22. Let us assume that Assumptions of Theorem 21 are fulfilled and β :=
β(ν) = 1− 1/ν. Then β(ν) is an increasing function of ν and holds up to

lim
ν−→1+

β(α) = 0, lim
ν−→2−

β(ν) =
1

2
.

We have considered the special case XF = X. However, a generalized assertion
can be proven in the case of XF fulfilling Relation (4).

Theorem 23. Let X be a convex compact nonempty set, PF ∈ M1
1(Rs), t, ε >

0, αi ∈ (0, 1), i = 1, . . . , s, α = (α1, . . . , αs). If

1. A.1, A.2, A.3 and A.4 are fulfilled,

2. for some r > 2 it holds that EFi |ξi|r < +∞, i = 1, . . . , s,

3. β, γ > 0 fulfill inequalities 0 < β + γ < 1/2, γ > 1/r, β + (1− r)γ < 0,

4. g0(x, z) is a Lipschitz function on X(ε) with the Lipschitz constant L
′

not
depending on z ∈ ZF ,

5. XF := XF (α) is defined by Relation (4) with the continuous convex and
bounded functions gi(x), i = 1, . . . , s on X(ε) and, moreover, X̄(v) (defined
by Relation (6)) are nonempty sets for v ∈ ZF ,

then
P{ω : Nβ|ϕ(F, XF )− ϕ(FN , XFN )| > t} −−−→

N→∞
0. (13)

Proof. First, according to the assumptions and to the relations (4), (5) and (6)
we can see that XF (α) is, for a fixed α, a convex, compact and nonempty set;
consequently it follows from Theorem 19 that

P{ω : Nβ|ϕ(F, XF )− ϕ(FN , XF )| > t} −−−→
N→∞

0. (14)
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It follows from Lemma 10 and Assumption 5 that a constant C
′

exists such that for
ω ∈ Ω the following inequality is valid

∆n[X̄(kF (α)), X̄(kFN (α))] ≤ C
′‖kF (α)− kFN (α)‖.

According to Assumption 4 we can see that EFNg0(x, ξ) on X(ε) is a Lipschitz
function of x with the Lipschitz constant L

′
not depending on ω ∈ Ω. Consequently,

according to Proposition 9 we can obtain

| inf
X̄(kF (α))

EFN g0(x, ξ)− inf
X̄(k

FN
(α))

EFNg0(x, ξ)| ≤ L
′
C
′‖kF (α)−kFN (α)‖ for ω ∈ Ω;

consequently also for t > 0

P{ω : | inf
X̄(kF (α))

EFN g0(x, ξ)− inf
X̄(k

FN
(α))

EFNg0(x, ξ)| > t} ≤

P{ω : L
′
C
′‖kFN (α)− kF (α)‖ ≥ t}.

Now, employing the assertion of Lemma 11 and the properties of the Euclidean
norm, we obtain for every t > 0 such that t/L

′
C
′
s < δ that

P{ω : | inf
X̄(kF (α))

EFN g0(x, ξ)− inf
X̄(k

FN
(α))

EFNg0(x, ξ)| > t} ≤ 2s exp{−2N(ϑt/sL
′
C
′
)2}.

However, it evidently follows from the last inequality that for β > 0 and enough
large N ∈ N that

P{ω : Nβ| inf
X̄(kF (α))

EFN g0(x, ξ)− inf
X̄(k

FN
(α))

EFNg0(x, ξ)| > t} ≤

2s exp{−2N(ϑt/NβL
′
C
′
s)2}

.

and furthermore, employing the properties of the exponential functions we obtain

P{ω : Nβ| inf
X̄(kF (α))

EFN g0(x, ξ)− inf
X̄(k

FN
(α))

EFNg0(x, ξ)| > t} −−−→
N→∞

0,

for β ∈ (0, 1/2).
(15)

The assertion of Theorem 23 now follows immediately from Relations (3), (14)
and (15).

�

The following assertion follows from the arguments used in the proof of Theorem
23 (of Relation (15)).

Corollary 24. Let X be a convex, compact nonempty set, PF ∈ M1
1(Rs), t, ε >

0, αi ∈ (0, 1), i = 1, . . . , s, α = (α1, . . . , αs). If

1. A.1, A.2, A.3 and A.4 are fulfilled,

2. there exists a function ĝ0 defined on Rn such that g0(x, z) = ĝ0(x) for x ∈
X(ε), z ∈ ZF ,
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3. XF := XF (α) is defined by Relation (4) with the continuous convex and
bounded functions gi(x), i = 1, . . . , s on X(ε) and, moreover, X̄(v) (defined
by Relation (6)) are nonempty sets for every v = (v1, . . . , vs), v ∈ ZF ,

then

P{ω : Nβ|ϕ(F, XF )− ϕ(FN , XFN )| > t} −→N−→∞ 0 for β ∈ (0, 1/2). (16)

Proof. Since it follows Assumption 2 of Corollary 24 that

EFg0(x, ξ) = ĝ0(x), EFNg0(x, ξ) = ĝ0(x), for every x ∈ X(ε),

we can see that

ϕ(F, XF ) = inf
XF (α)

EFg0(x, , ξ) = inf
XF (α)

ĝ0(x)

ϕ(FN , XF ) = inf
XF (α)

EFNg0(x, , ξ) = inf
XF (α)

ĝ0(x)

and so

Nβ|ϕ(F, XF )− ϕ(FN , XF )| = 0 for every ω ∈ Ω, β > 0, N ∈ N.

Consequently,

P{ω : Nβ|ϕ(F, XF )− ϕ(FN , XFN )| > t} =

P{ω : Nβ| inf
X̄(kF (α))

EFN g0(x, ξ)− inf
X̄(k

FN
(α))

EFNg0(x, ξ)| > t}.

The assertion of Corollary 24 follows from the last relation and Relations (3), (15).

�

Remark 25. In the case when the function under the operator of mathematical expec-
tation in (1) does not depend on the random factor, we obtain the “best” convergence
rate under very general conditions (including the class of the stable distributions
with the shape parameter from the interval (1, 2).)

Theorem 26. Let Assumptions A.1, A.2, A.3 and A.4 be fulfilled, PF ∈ M1
1(Rs),

M > 0, ε > 0, αi ∈ (0, 1), i = 1, . . . , s, α = (α1, . . . , αs), X be a compact set. If

1. one–dimensional components ξi, i = 1, . . . , s of the random vector ξ have the
distribution functions Fi with the shape parameters νi ∈ (1, 2) fulfilling the
relations

sup
t>0

tνi P{ω : |ξi| > t} <∞, i = 1, 2, . . . , s,

2. g0(x, z) is a Lipschitz function on X(ε) with the Lipschitz constant not de-
pending on z ∈ ZF ,

3. XF := XF (α) is defined by Relation (4) with the continuous convex and
bounded functions gi(x), i = 1, . . . , s on X(ε) and, moreover, X̄(v) (defined
by Relation (6)) are nonempty sets for every v = (v1, . . . , vs), v ∈ ZF ,
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then
lim

M−→∞
sup
N

P{ω : N
N1/ν |ϕ(FN , XFN ) − ϕ(F, XF )| > M} = 0

with ν = min(ν1, . . . , νs).

Proof. We can successively obtain

lim
M−→∞

sup
N

P{ω : N
N1/ν |ϕ(FN , XFN ) − ϕ(F, XF )| > M} ≤

lim
M−→∞

sup
N

P{ω : N
N1/ν |ϕ(FN , XF ) − ϕ(F, XF )| > M/2}+

lim
M−→∞

sup
N

P{ω : N
N1/ν |ϕ(FN , XFN ) − ϕ(FN , XF )| > M/2}.

Employing the main idea of the proof of Theorem 24 we can first see that the
following assertion is brought forth from Theorem 21

lim
M−→∞

sup
N

P{ω :
N

N1/ν
|ϕ(FN , XF ) − ϕ(F, XF )| > M/2} = 0;

furthermore,

lim
M−→∞

sup
N

P{ω : N
N1/ν |ϕ(FN , XFN ) − ϕ(FN , XF )| > M/2} ≤

lim
M−→∞

sup
N

P{ω : N (1−1/ν)|ϕ(FN , XFN ) − ϕ(FN , XF )| > M/2} ≤

lim
M−→∞

sup
N

P{ω : N (1−1/ν)‖kF (α)− kFN (α)‖} > M/2} ≤

lim
M−→∞

sup
N

2s exp{−2N(M/2N (1−1/ν))2} ≤ lim
M−→∞

2s exp{−2(M))2}.

We can see that, the assertion of Theorem 26 follows from the last systems of the
relations.

�

5. Dependent Samples in Stochastic Optimization

5.1. Historical Survey

It has often been recognized that the data do not correspond to an independent
random sample. On the other hand, it can frequently be assumed that a stochastic
dependence between elements of the corresponding random sequence is going to zero
with growing time. It means that such data can often be modeled by mixing random
sequences. Some applications leading to such situations can be found, e.g. in [4],
[5], [29] or [51].

The investigation of empirical estimates with an “underlying” dependent random
sample started in the 1990s (see, e.g., [17], [19] or [48]). These results have been
followed by [3], [10], [23], [26], [49]. In this paper we focus on the convergence
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rate. To this end, we first, let {ξi}+∞
i=−∞ be a random sequence defined on (Ω,S, P ).

Moreover, let B(−∞, a) be a σ–field generated by . . . , ξa−1, ξa, and B(b, +∞) be
the σ–field generated by ξb, ξb+1, . . . . We recall some definitions:

Definition 27. [5] The sequence {ξi}+∞
i=−∞ is said to be m–dependent if B(−∞, a),

B(b, +∞) are mutually independent for b− a > m.

Definition 28. [51] The sequence {ξi}+∞
i=−∞ is called Φ–mixing (uniformly mixing)

whenever there exists ΦN such that ΦN −→ 0 as N −→∞ fulfilling the relation

|P (A
⋂
B)− P (A)P (B)| ≤ ΦNP (A), A ∈ B(−∞, k), B(k +N, +∞),

−∞ < k <∞, N ≥ 1.

Definition 29. [51] Let {ξi}+∞
i=−∞ be a strongly stationary random sequence. We

say that {ξi}+∞
i=−∞ is absolutely regular with β̄(N) if

β̄(N) = sup
k

E sup
A∈B(N+k,+∞)

|P (A|B(−∞, k))− P (A)| ↓ 0 (N −→∞).

In [19] certain convergence rates for Problems (1) with XF = X were proven
under the assumptions of {ξi}+∞

i=−∞ fulfilling the assumptions of one of the above
mentioned type of dependence. Moreover, some results were also introduced in the
case of XF corresponding to the joint probability constraints (for the definition of
the problems with joint probability constraints see, e.g., [39]). Some assertions on
convergence rate can also be found in [23]. In this paper we focus mostly on the
case of m–dependent random samples and generalization by the assertions recalled
above.

5.2. m–dependent Random Sample

Consider the cases when s = 1 and when {ξi}+∞
i=−∞ is an m–sequence. Employing the

technique of [21] it is easy to see that for N ∈ N, n > m there exist k ∈ {0, 1, . . . , }
and r ∈ {0, 1 . . . , m} such that N = mk + r and

|FN(z)− F (z)| ≤
m∑
j=1

Nj

N
|FNj(z)− F (z)|, (17)

where FNj are empirical distributions functions already determined by Nj indepen-
dent random variables with the distribution function F ; moreover Nj = k + 1 for
mk + 1 ≤ N ≤ mk + r and Nj = k for mk + r < N ≤ m(k + 1).

Accordingly, it is easy to see that results very similar to Theorem 19, and The-
orem 21 are also valid in the case of m–random samples. Some results valid under
the Φ conditions can be found in [23].

6. Conclusion

This paper deals with the investigation of empirical estimates of the optimal value
in the case of one–stage “classical” (rather general) stochastic programming prob-
lems. The aim of the paper is to recall some known results under non–standard
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assumptions. The majority has been devoted to the case when the “underlying”
distribution function has heavy tails. The presented results also cover stable distri-
butions with a shape parameter from the interval (1, 2). Employing the idea used
in [22] we can see that practically all results for heavy–tailed distributions can be
generalized to some subclass of optimization problems in which dependence of the
objective function on the probability measure is not linear (see e.g. [22]). Theo-
retical results corresponding to the part of distributions with heavy tails has been
completed by simulations. The corresponding models are credited to M. Houda [9]
and V. Omelchenko (published in the same issue). These simulation results appear
to confirm the theoretical hypothesis.

The second part has been devoted to the case of weakly dependent random data
where attention has mainly been focused on the m–sequences. Great effort will
need to be paid to dependent sample in the future. However, in both parts the
results have only been presented for estimates of the optimal value. By employing
some of the growth conditions, the introduced results can be transformed to the
corresponding estimates of the optimal solution (see, e.g., [36]).

Both of these groups of results appear to be suitable for the investigation of
empirical estimates in the case of stochastic multistage problems with an “underly-
ing” random sequence corresponding to an autoregressive random dependence (for
the corresponding definition of the multistage stochastic programs see, e.g., [39]).
However the investigation in all of these directions goes beyond the scope of this
paper.

The author would like to thank anonymous referees for their many helpful comments.
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[6] J. Dupačová and R. J.-B. Wets: Asymptotic behaviour of statistical estimates and
optimal solutions of stochastic optimization problems. Ann. Statist. 16 (1984), 1517–
1549.

[7] A. Dvoretzky, J. Kiefer, and J. Wolfowitz: Asymptotic minimax character of the sam-
ple distribution function and the classical multinomial estimate. Ann. Math. Statist.
27 (1956), 642–669.

108



[8] W. Hoeffding: Probability inequalities for sums of bounded random variables. Journal
of Americ. Statist. Assoc. 58 (1963), 301, 13–30.
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[13] V. Kaňková: Optimum Solution of a Stochastic Optimization Problem. In: Trans.
7th Prague Conf. 1974, Academia, Prague, 1977, 239–244.
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[21] V. Kaňková and M. Houda: Empirical Estimates in Stochastic Programming. In:
Proceedings of Prague Stochastics 2006 (M. Hušková and M. Janžura, eds.), MAT-
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