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ORDER STOCHASTIC DOMINANCE -
PORTFOLIO EFFICIENCY ANALYSIS
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Intreduction

The portfolio selection problem is one of the most
important issues of financial risk management.
In order to determine the optimal composition
for a particular portfolio it is crucial to estimate
the dependency among the evolution of
particular risk factors, i.e., the joint distribution
of log-returns of particular assets. However, in
order to formulate the joint distribution, there is
a need for a suitable measure of dependency.
A standard assumption is that the (jeint)
distribution of large porifolios is multivariate
normal and that the dependency can be
described well by a linear measure of correlation
{Pearson coefficient of correlation). Unfortunately,
from real applications it is clear that the Pearson
correlation is not sufficiently robust to describe the
dependency of market returns {see e.g. [22]).

Among more advanced candidates for
a suilable dependency measure we can
classify the well known concordance measures
such as Kendall’s tau or Spearman’s rho. Minimi-
zing these alternative measures of portfolio’s
risk one can obtain several distinct “optimal”
portfolios. The question is how to compare
these portfolios among each other. The easiest
way is based on comparisans of poertfolios’
means. Since seminal work of Markowitz [15]
has been introduced, see also [16], the
portfolios has been described by mean and
variance. Besides that, however, somg other
measures of risk were proposed instead of
variance. Anyway, there is no general agreement
in the question of the “true” risk measure.
Therefore, the alternative ways of portfolio
comparisons were developed.

Stochastic dominance approach is one of
the most popular one. Stochastic dominance

was introduced independently in [6], [7], [23]
and [26]. The definition of second-order stochastic
dominance (SSD) relation uses comparisons of
either twice cumulative distribution functions, or
expected utilities (see for example [2], [3] or
[12]). Alternatively, one can define SSD relation
using cumulative quantile functions or
conditional value at risk (see [18] or [8)]).
Similarly to the well-known mean-variance
criterion, the second-order stochastic dominance
relation can be used in portfolio efficiency
analysis as well. A given portfolio is called SSD
efficient if there exists no other portfolio
preferred by all risk-averse and risk-neutral
decision makers {see for example [24], [t1] or
[8]). To test SSD efficiency of a given portfolio
relative to all portfolios created from a set of
assets [21], [11] and [8] proposed several linear
programming algorithms. While the Post test is
based on representative utility functions and
strict dominance criterion, in order to search for
a utility function satisfying optimality criterion,
the Kuosmanen and the Kapa-Chovanec test
focus on the identification of a dominating portfolio.
For SSD inefficient portfolios, several S8D
portfolio inefficiency measures were introduced
in [24], [11] and [8]. These measures are based
on a “distance” between a tested portfolio and
some other portfolio identified by a SSD
portfolio efficiency test. For SSD efficient portfolio,
{10] developed a measure of SSD efficiency as
a measure of stability with respect to changes
in probability distribution of returns. In all S8D
portfolio efficiency tests the scenaric approach
is assumed, that is, the retums of assets are
modeled by discrete distribution with equiprobable
scenarios. This assumption is not very
restrictive, because every discrete multivariate
distribution with rational probabilities can be




represented by equiprobable scenarios where
some of the scenarios may be repeated.
Besides second-order stochastic dominance,
one can use first-order stochastic dominance in
portfolio efficiency analysis. See [11] and [9] for
details.

In this paper we try to examine the
efficiency of selected portfolios by terms of
second order stochastic dominance because
we assume risk averse decision makers. Our
main idea is that there might by some impact of
{i) altemative dependency measures and/or
(i) shortselling constrains on the efficiency of
a min-var portfolio. Therefore, we identify
several distinct min-var portfolios on the basis
of alternative concordance matrix as defined in
[19]. We also consider two types of restrictions on
short sales (Black model and Markowitz model),
three measures of dependency/concordance
{Pearson, Spearman and Kendall) and two data
sets (year 2007 and year 2008), so that we get
12 distinct portfolios in total. We apply the
Kuosmanen SSD efficiency test to these portfolios
in order to analyze their SSD efficiency. More
particularly, the SSD efficiency/inefficiency
measure is evaluated for each portfalio and the
impact of short sales restriction and choice of
measure of concordance on the SSD efficiency/
finefficiency of min-var portfolios is analyzed.
Special attention is paid to the comparison of
the pre-crises with the stanting-crises results.

We proceed as follows. First, in Section 1, we
summarize the basic theoretical concepts of
concordance measures and portfolio selection
problem. Next, in Section 2, stochastic dominance
approach with a special focus on portfolio
efficiency with respect to second-order stochastic
dominance (SSD) criterion is presented.
| Moreover, three linear programming tests are
briefly recalled. In Section 3, we continue with
a numerical study: We identify 12 min-var portfolios
first and then we test their SSD efficiency. Finally,
we calculate SSD efficiency/inefficiency
measures of these portfolios to be able to
compare their SSD performance. In the last
section the most important conclusions and
remarks are stated.

1. Concordance Measures and
Portfolio Selection

Let us consider a random vectar r = (ry, fz ..., ;)"

of returns of n assets with discrete probability

distribution described by T equiprobable
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scenarios. The returns of the assets for the
various scenarios are given by

where xt = (x}, x}, ..., x) is the t-th row of matrix
X. We will use w = (w,, w,, ..., w,) for the vector
of portfolio weights. Throughout the paper, we
will consider two special sets of portfolio
weights:

Wi f{wFR" :Zu‘, = 1. w, =0 i—l.?..‘..ri}
i1

H'U—{i:'FF":Zn-,AL wy =l '17"1.2.....?3}‘
=1

Besides that, we use the following notation:
expected returns m = (U, 4y, ..., 14, standard
deviations of returns s = {5, o, ..., Ty}, and
correlation matrix A = [p, J, i.e. it consists of all
combinations of Pearson linear coefficient of
correlation Py where i, j=1, ... n.

Following the standard portiolio selection
problem of Markowitz [15] no riskless
investment is allowed and only the mean return
and the risk measure of standard deviation
matter, mainly since the Gaussian distribution
of price returns is assumed. In such a setting,
the efficient frontier of portfolics, i.e., the only
combination of particular assets that should be
considered for risky investments, is bounded by
minimal variance portfolio, Tl ,, from the left and
maximal return pertfolio, Tig, from the right. We
can obtain them as follows.

Task 1 Minimal variance porticlio, T,

with W'
[oi i}
1.

0.

var{ll} — min, var {11)

5.t ']
w

RV T |

Task 2 Maximal return portfolio, I,

w'm
l.
th.

var(ll) - - max.  with  p (1)

sl wl
o

A"

Alternatively, Task 1 (Task 2) can be solved
subject to w, =2 -1, i =1, 2, ..., n, i.e, short
positions in any of the assets are allowed with no
restriction on long positions (Black Mode! [1]).




1z M

Finance

The optimal portfolio under both models
depends on preferences of a particular investor.
It can be detected on the basis of a given utility
function, a performance measure (Sharpe ratio,
information ratio, etc.), a risk measure (VaR,
CVaR) or their combinations.

Obviously, the composition of any portfolio,
except the maximal return one, will depend on
the carrelation matrix. The elements of the
correlation matrix R, i.e., a crucial factor to
determine optimal weights for I1,, describe the
linear dependency among two variables. The
main drawback is that it can be zero even if the
variables are dependent and it does not take
into account tail dependency. It follows that the
correlation is suitable mainly for problems with
elliptically distributed random variables. Since
the assumption about the Gaussianity of financial
returns is unjustifiable — this observation goes
back to early 80’s, see e.g. [13], {14] or [4] -
there is a need for alternative measures, which
should allow us to obtain better performance,
diversification or both.

A general family of measures that is not
restricted to the case of linear dependency
consists of concordance measures. A measure
of concordance is any measure that is
normalized to the interval [-1,1] and pays
attention not only to the dependency but also to
the co-monotenicity and anti-monotonicity. For
more details on all properties of concordance
measures and their proofs see e.g. [17].

Following [17], two random variables (X, Y)
with independent replications (x,,y,) and (x,,y,)
are concordant if x, < x, (x; > Xx,) implies
¥y < Yo (¥q > ¥,) Similarly, the two variables are
discordant if x, > x, (x; > x;) implies y, < ¥,
(v; < ¥ The concordance measures are
easily definable by copula functions, since they
rely only on the "joint" features, having no
relations ta the marginal characteristics. Therg
are two popular measures of concordance —
Kendall's tau and Spearman’s rho, which can
be accompanied by the following measures of
association: Gini's gamma and Blomgvist's
beta.

The first measure of cancordance in mind is
Kendall's tau, 7, since it is defined as the
probability of concordance reduced by the
probability of discordance:

T EX Y Py —eab el 2B Py b - et a0l (1)

with the following simplification for continuous
variables:

P (X V) = (e ) L — ) 2 0) L 2

For n observations it can be estimated on
the basis of observations of concordance (c)
and disconcordance (d) as follows:

¢—d
XYY = ; 3
T A ¢+ d (3)

In order to define the second popular
measure of concordance, Spearman's rho, py,
the third realization of both random variables,
{X5¥5), should be considered:

pa XV BT i ] = 0= Py sl d el (4)

It means that the Spearman's rho is given
as the probability of concordance reduced by
the probability of discordance, in contrast 1o the
Kendall's tau, for the pairs (x,,¥,) and (x,y3). It
also implies that this measure is very similar to
the linear correlation coefficient, except the
fact, that it measures the dependency among
marginal distribution functions:

NV e e zl
pst = Var(Fy {rryvar (b (z;))

cov i Fy o) .’)L vl (5)

it follows, that it can be regarded as the
correlation of copula functions. The proof that
all the measures introduced in this section are
really measures of concerdance can be found
e.g. in [17].

Thus, being equipped with formulas to
calculate (estimate) alternative dependency
measures, we can replace the elements of the
covariance matrix S from Task 1:

cov {X. ¥} = var (X )yvar (Y e L8 Y)

by the elements of a concordance matrix e.g.
by terms of Spearman‘s rho (4):

— yJvarf. var( ALY

or Kendall's tau {1 ):

covg (X.Y)

covg (X1 \/\ ar \/\ ar (3 e (XY

2. Second Order Stochastic
Dominance and Portfolio
Efficiency

Stochastic dominance relation allows comparisen

of two portfolios via comparison of their random




returns. Let F,, (x) denote the cumulative
probability distribution function of retums of
portiolio with weights w. Since each portfolio is
uniquely given by its weight vector we will
shortly denote this portfolio by w, too. The twice
cumulative probability distribution function of
returns of portfolio w is given by:

ot
rA0= [ Fodoa

and we say that portfolio v dominates portfolio
w by second-order stochastic dominance
(rv> ggp rwiif and only if

Ry < Py veeRr

with strict inequality for at least one te R This

relation is sometimes called strict second-order

stochastic dominance because the strict
inequality for at least one te R is required, see

[11] for more details. Alternatively, one may

use several different ways of defining the

second-order stochastic dominance (SSD)
relation:

= V> gop rwif and only it Eu(r'v) = Eu(r'w)
for all concave utility functions ¢ provided
the expected values above are finite and
strict inequality is fulfilled for at least some
concave utility function, see for example
[11].

" v gen Pwif and only if FLY (p) > Fol (p)
for all p e (0,1) with strict inequality for at
least some p where second quantile
functions ,v, F(Hw, are convex conjugate

functions of £, and Fo, | respectively, in
the sense of Fenchel duality, see [18].

" sV > gon Pwif and only if CVaR (—rv) <
< CVaRa(—r'w) for all « (0,1} where
conditional value at risk (CVaR) of portfolic

w can be defined via optimization problem:

'
CVall,{(-r'w) = mm [ E 3

=1
st = —xlw-a

5y =

and for portfolio v as:

CVaR, (=) =

-
17(17,;2;

i @+
m.2y

4
-0 —a
ET N | 3

See [11], [25] and [20] for more details.
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We say that portfolio w € W, is 88D
inefficient with respect to W,,if and only if there
exists portfolio v e W, such that rv > g r'.
Otherwise, portfolio w is SSD efficient with
respect to W,, By analogy, portfolio we Wgis
58D inefficient with respect to Wy if and only if
there exists portfolio v € Wjz such that
r'v > con r'w. This definition classifies portfolio
we Wy or we Wgas SSD efficient if and only
if no other portfolio from Wy, or Wy is better (in
the sense of the SSD relation) for all risk averse
and risk neutral decision makers.

Since the decision maker may form infinitely
many portfolios, the criteria for pairwise com-
pariscns have only limited use in portfolio efficiency
testing. To test whether a given portfolic w is
58D efficient, three linear programming tests
were developed. We formulate the tests for
SSD efficiency with respect to W,, However,
one can easily rewrite it for Wy

2.1 The Post SSD Portfolio
Efficiency Test
The first SSD portfolio efficiency test was
introduced in [21]. Before testing SSD efficiency
of portfolio w, one must order the rows of sce-
nario matrix X in such a way that x'w < x2w <
< ... xTw. The test requires solution of the
following linear program:

G {w) = min 9
e

3
Z Silzlw =2y + T8

t=i

1

- 3
R
!.i‘l

v vy
=
-

H 8*w) > O then portfolio w is SSD
inefficient with respect to W,,

If some ties in elements of X occur, then the
constraints should be modified. See [21] for
more details. Anyway, this criterion failed to
detect SSD inefficiency of portfelio w when
comparing portfolios with identical means. It does
not detect the presence of SSD dominating
portfolio if mean of its returns equals to mean
return of portfolio w. Therefore, the Post test is
only a necessary criterion for SSD portfolio
efficiency with respect to W, This is the reason
why the other two tests were developed.

BM |
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2.2 The Kuosmanen SSD Portfolio
Efficiency Test

The SSD efficiency test proposed in [11] is

based on second quantile criterion. The second

quantile function of portfolioc w can be rewritten

in terms of cumulative returns under scenario

approach assumption, that is:

i
ey [ K Lis
e Colll ko120 T
a(5) - by
B

Dy = e

where {Xw}U denotes the th smallest return of
portfolio w, that is, one has: (Xw)tl= (Xw}2]<...
< (Xw)iTl. Combining it with majorization theo-
rem {principle), see Hardy et al. [7, Thm 46]:

T (XwI <SS (Xvpit k=1, 2, .., T—1and

2 (xwn=3T_ (xvj

< 1 double stochastic matrix P such that
PXw = Xv we have another criterion for SSD
relation;

v > oon rwif and only if there exists a double
stochastic matrix P = {;:.v,j}U 1 Such that (PXw <
< Xv and 1PXw < 1°XV) or (PXw = Xv and
Y1 pii < 1y where 1= (1, 1, ..., 1). See [11]
and [7, Thm 48] for more details.

Using this criterion, [11] proposed the SSD
efficiency test consisted of solving two linear

pragrams, in order to identify a dominating
portfclia (if it exists) which is already SSD
EHCIERL LBE oot T it @
|
xro PXw o< Xr
i I
S b Ny Vol fgh Tied
2= |
voe Wy
and
i
S - jl\)i_li\_ Xz‘t.ﬁf 4,0 {8)
w1 X ;7-1'7.\‘1:‘
s - ,,,ﬁg G T I o
Mgy T L R LT
¥ i
Somet om, [ DL ¢
i1 =1
e Wy
where S* = {s)1T {5537, and

P={p, }‘ jop LBL £ denote the number of k-way
ties in w Then portfolio wis SSD efticient with
respect to W, if and only if

~|-1

i |
Yk

L

ey =0 A 5"

If ¢*(wy} > O then problem (9) need not to be
solved, because portfolio w is SSD inefficient
with respect to W), and the optimal solution v*
is an 88D dominating portfolic which is already
388D efficient with respect to W,, see [11] for
more details.

2.3 The Kopa-Chovanec SSD
Portfolio Efficiency Test

In this section we present the SSD portfolio

efficiency linear programming test in the form of

a necessary and sufficient condition derived in [8].

This test is based on CVaR comparison criterion.

Under scenario assumption, the criterion can

be reduced to T inequalities:

r'v > gon rwif and only if

CVaR.. (~r'v)< CVaR., (~r'w)

for all k=1, 2, ..., T with at least one strict
inequality and portfolio w is SSD efficient with
respect to Wy, if and only if the optimal value of
the following problem:

3
|}|;\\3( Z b Y (9)

s1EVARL T OV ) 8
Sz
rog Wy
is strictly positive. Applying (6), [8] derived from
(9) the linear programming SSD efficiency test:

Let

v

S wi= mu N Zh}
Sk -
¥

ad. CVaR e
i st - g e Z

’ ‘:1 P L O (O I TR
St iy
T e o
¢ Wy

i S*w) > 0 then portfolio w is SSD
inefficient with respectto W, and r'v* > g0 r'we
Otherwise S*(w) = 0, and portfolio w is SSD
efficient with respect to W,

H a given portfolio s SSD inefficient with
respect to W,, then the test identifies
a dominating portfolio which is $8D efficient
with respect to W,, Comparing to the
Kuosmanen test, this test makes use of
asymptotically (for large number of scenarios)
six-times smaller linear program than the
second problem of the Kuosmanen test (8). On
the other hand, for an SSD inefficient portfolio
with respect to W,, the Kuosmanen necessary
test (7) identifies a dominating portfolio by
solving asymptotically two-times smaller linear




program than the Kopa-Chovanec test. If
porticlio w is S8D inefficient with respect to W,
then the Kuosmanen test identifies a SSD
dominating portfolio with the highest mean
return, while the Kopa-Chovanec test chooses
a SSD dominating portfolio with the minimal
risk measured by the average CVaR:

I;ZL, CVaR. . (rv).

More details about the Kopa-Chovanec
S8D portfolio efficiency test and a comparison
of all three tests can be found in [8].

3. Empirical Study
Let us consider daily quotes of FX rates for
EUR, GBP, HUF, PLN, SKK, and USD, each
with respect to CZK (www.cnb.cz). We pick up
daily log-returns over 2007 and 2008, i.e., we
get approximately 8 x 250 log-retums for both
time series, In this way, we can compare the
results for pre-crisis period (year 2007) and
starting crisis period (year 2008).

The first task is t¢ determine the optimal
weights of particular currencies for min-var
portfolios following either the approach of

Finance

Markowitz (nc short selling) or Black (short
selling up to the initial investment is allowed) on
the basis of three distinct dependence/
/concordance matrices .. That is, the min-var
optimal portfolios are obtained as the optimal
solutions of the following guadratic program:

var (I1) = min, with var {IT) = wZzw
Y= [Gicicdu] stwe Wy
for the Markowitz model case and
var {I1) = min, with var (IT) = wZw
L=loooglstlwe Wy
for the Black model case, where dis an element
of either Pearson, Spearman, or Kendall matrix
of dependence/concordance. See Table 1 and
2 for review of all portfolios we deal with. In the
same table we provide for each portfolio the
2007 mean return, classic standard deviation
and concordance measure C defined as

C =Y wiw,

Similarly, the same results based on 2008
data are provided in Table 2.

Denotation of particular portfolios and their characteristics, 2007

Portiolio Correlation (R) | Short selling | Mean return (%) Stand.dev. Measure C
T1_M1 Pearsen No -0.00711 0.00547 0.00547
T1_B1 Pearsen Yes 0.00711 0.00539 0.00539
[1_M2 Spearman No 0.00009 0.00548 0.00562
11_B2 Spearman Yes 0.00234 0.00547 (.00562
I1_M3 Kendall Ne -0.00182 0.00556 0.00518
I1.B3 Kendall Yes -0.00182 0.00556 0.00518

Source: authers' calculation

Denotation of particular portfolios and their characteristics, 2008

Portfolic Correlation (R) Short selling | Mean reiurn (%) Stand.dev. Measure C
_M1 Pearson No -0.01404 0.00260 0.00260
I1_B1 Pearson Yes -0.00869 0.00255 0.00255
_m2 Spearman No -0.01478 0.00260 0.00254
11 B2 Spearman Yes -0.00958 0.00255 0.00250
I1_M3 Kendall No -0.01675 0.00262 0.00235
[1_B3 Kendall Yes -0.01625 0.00261 0.00235

Source: authors’ calculation
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Following these two tables we can see that
all six min-var portfolios for 2008 have smaller
mean return and smaller standard deviation
than corresponding portfolios for 2007 data.
Perhaps surprisingly, the values of measures of
concordance are very close to corresponding
standard deviations. We will proceed with SSD
portfolio efficiency testing of these 12 portfolios.
It is well known, that portfolios with minimal
standard deviation generally need not to be
S8D efficient. To see it, consider the following
simple example. See [11] for more details.

Example 1

Let X = (11 1;_’), that is, we consider only two
assets and two equiprobable scenarios for their
returns. Let portfolio w = (1, 0) and portfolio
v = (1, 0). There is no doubt that w is the
portfolio with minimal standard deviation. It is
easy to check that r'v > 5o, r'w because every
non-satiated, risk averse or risk neutral
decision maker prefers portfolio v to portfolio w.
Hence portfolio wis SSD inefficient.

if we use CVaR as a measure of risk one
can show that if a portfolio with minima! GVaR is
uniquely determined then it is SSD efficient. This
property follows from SSD criterion expressed in
terms of CvVaR. The aim of this paper is to
analyze the relationship between portfolios with
minimal risk and SSD efficient portfolios when
three considered concordance measures are
used as measures of dependency.

Since 12 considered min-var portfolios are
constructed as portfolios with minimal risk we
expect that they have relatively small mean
returns. Therefore we choose the Kuosmanen
test for SSD portfolio efficiency testing. If the
tested portfolio is SSD inefficient, the
Kousmanen test gives us information about
SSD dominating portfolio with the highest mean
return and the SSD inefficiency measure
identifies the maximal possible improvement (in
terms of mean returns) that can be done by
moving from a min-var portfolio to better ones
{in sense of SSD relation). The results of the
Kuosmanen test for considered portfolios are
summarized in Table 3 and Table 4.

SSD efficiency results of min-var portfolios, 2007

Portfolio Correlation Short 58D Mean return | Mean return | Measure C | Measure C
(R} selling efficiency (%} of 85D of 5SD

dominating dominating
portiolio (%) portfolio
I1_M1 Pearson No Ne -0.00711 -0.00700 0.00547 0.00547
.8 Pearson Yes Ne 0.00711 0.02343 0.00539 0.00547
I1_M2 Spearman Ne No 0.00009 0.00017 0.00562 0.00562
T1_B2 Spearman Yes No 0.00234 0.02435 0.00562 0.00579
M3 Kendall No No -0.00182 0.01063 0.00518 0.00529
I1 B3 Kendall Yes No -n.o¢8z 0.03741 0.00518 0.00591

Source: authors' calculation

SSD efficiency results of min-var portfolios, 2008

Portfolio Correlation Short §8D Mean return | Mean return | Measure C | Measure C
(R} selling efficiency {%) of SSD of S8D

dominating dominating
portfolio (%) portfolio
I1_M1 Pearson Ne No -0.01404 -0.01285 0.00260 0.00260
I1_B1 Pearson Yes Ne —0.00869 ~-0.00123 0.00255 0.00260
11_M2 Spearman No No -0.01478 -0.01437 0.00254 0.00254
I B2 Spearman Yes Ne -0.00958 -0.00245 0.00250 0.00255
T1_M3 Kendall No No -(.01675 -0.01080 0.00235 0.00242
¥1_B3 Kendall Yes No -0.01625 0.00690 0.00235 0.00291

Source: authors' calculation




Table 3 and Table 4 show us that all min-var
portfolios were classified as SSD inefficient and
for every min-var portfolio exists some SSD
dominating portfolio with higher mean retum.
Comparing the mean returns and measures of
concordance of SSD dominating portfolios for
2007 data with that for 2008 data, we can
conclude that all SSD dominating portfolios for
2007 data have higher mean return and higher
measure of concordance. The same property
was observed for min-var portfolios.

|
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Finally we compare the differences of mean
returns and measures of concordance between
min-var portfolios and their SSD dominating port-
folios. Firstly, we evaluate the absolute differences
of mean returns (it is equal to the SSD
inefficiency measure) and absolute differences of
measures of concordance. To be able to
compare the differences between each other we
compute the relative differences of mean retumns
and relative differences of measures of
concordance for all 12 portfolios. The results are
summarized in Table 5 and Table 6.

Differences between min-var portfolios and their SSD dominating portfolios,

2007
Portfolio Correlation Short Absolute Absolute Relative Relative
{R) selling difference of | difference of | difference of | difference of
mean returns | measure C | mean returns | measure C
I1_M1 Pearson No 0.00011 % 0 0.01523 0
1_B1 Pearson Yes 0.01632 % 0.00008 2.29456 0.01441
T1_M2 Spearman No 0.00007 % 0 0.79151 0
I1_B2 Spearman Yes 0.02201 % 0.00017 9.41711 0.02952
M3 Kendall No 0.01245 % 0.00012 6.85256 0.02241
1_B3 Kendall Yes 0.03923 % 0.00073 21.59450 0.14168
Source: authors’ calculation
Differences between min-var portfolios and their SSD dominating portfolios,
Tab. 6:
2008
Portiolio Correlation Short Absolute Absolute Relative Relative
(R) selling difference of | difference of | difference of | difference of
mean returns | measure C mean returns | measure
M Pearson No 000118 % 0 £.08500 0
f1_B1 Pearson Yes 0.00745 % 0.00005 0.85804 0.02125
IT_M2 Spearman No 0.00041 % 0 0.02776 Q
It _B2 Spearman Yes 0.00713 % 0.00005 0.74435 0.02109
TI_M3 Kendall Ne 0.00584 % 0.00006 0.34901 0.02667
B3 Kendall Yes 0.02314 % 0.00056 1.42445 0.23394

In both data sets, the portfolio with the

Source: authors' calculation

better than one with minimal

Spearman

smallest measure of SSD inefficiency (absolute
difference of mean returns) is one with minimal
Spearman measure of concordance when no
short sales are allowed. However, compating
the relative differences of mean returns in 2007
data, one can see that portfolio with minimal
Pearson measure of concerdance performs

measure of concordance. Anyway, it is evident
that applying Kendall measure of concordance
leads to larger 88D inefficiency. Therefore, we
suggest using either Pearson or Spearman
measure of concordance. We can see that
portfolios with minimal measures of concordance
in Black model are more SSD inefficient than

BEM|
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that in Markowitz model. Moreover, the higher
values of SSD inefficiency measure correspond
to higher values of differences of concordance
measure. Gomparing the results for 2007 with
that of 2008 we can see that min-var portfolios
were less S8D inefficient in 2008 than the year
before (except of [1_M1). The absclute
differences of concordance measures are
smaller in 2008, too.

Conclusions

In this paper we have studied the ({in)efficiency
of several FX rate portfolios with minimal risk,
when the dependency matrix is build up on the
basis of alternative concordance measures
(namely, Pearson and Kendall measures of
dependency). We have defined the efficient
portfolio in terms of the second order stochastic
dominance and analyzed it on the basis of the
Kuosmanen test. Moreover, the analysis was
executed for two different time series — FX rate
returns of 2007 and 2008.

We have observed that almost all min-var
partfolios in 2008 have smaller SSD inefficiency
measures than corresponding portfolios during
the year before. Hence, during the financial
crises min-var portfolios have performed better
than before the crises. Moreover, from
stochastic dominance point of view, the best
concordance measure is Spearman or Pearson
one. Finally, the choice of a concordance measure
has smaller impact on SSD inefficiency than
the choice of short sales restrictions.

All these results can be of great value for
portfolio managers in banks and other financial
institutions. However, before making a final
conclusion about the suitability of particular risk
and dependency measures in portfolio theory
also other measures of dependency should be
examined assuming wider series of data.
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