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Abstract

We analyze the market efficiency of 25 commodity futures across various groups – metals,
energies, softs, grains and other agricultural commodities. To do so, we utilize recently
proposed Efficiency Index to find that the most efficient of all the analyzed commodities
is heating oil, closely followed by WTI crude oil, cotton, wheat and coffee. On the other
end of the ranking, we detect live cattle and feeder cattle. The efficiency is also found
to be characteristic for specific groups of commodities – energy commodities being the
most efficient and the other agricultural commodities (formed mainly of livestock) the
least efficient groups. We also discuss contributions of the long-term memory, fractal
dimension and approximate entropy to the total inefficiency. Last but not least, we come
across the nonstandard relationship between the fractal dimension and Hurst exponent.
For the analyzed dataset, the relationship between these two is positive meaning that local
persistence (trending) is connected to global anti-persistence. We attribute this to specifics
of commodity futures which might be predictable in a short term and locally but in a long
term, they return to their fundamental price.
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1. Introduction

Efficient markets hypothesis (EMH) has been a cornerstone of financial economics for
decades and it has been brought to the centre by the influential paper of Fama (1970)
summarizing empirical findings following the idea of the efficient markets hypothesis by
Fama (1965) and Samuelson (1965). Even though the actual definitions differ, the former
study builds on a random walk definition and the latter one on a martingale definition, the
qualitative consequences are the same – the efficiency of a market originates in impossibil-
ity of systematic beating of the market, usually in a form of above-average risk-adjusted
returns. Fama (1991) later separated the efficiency hypothesis into three forms – weak,
medium and strong – which differ by different information sets taken into consideration and
all are based on inclusion of the information sets in market prices. The weak-form EMH
says that all past price movements (and associated statistics) are already reflected in the
market prices. Prediction of market movements based on historical time series (technical
analysis) is thus not possible for this form. The medium-form EMH states that all publicly
available information are already contained in the prices, the strong-form EMH adds all
(even privately) available information. The medium-form thus discards fundamental anal-
ysis as well and the strong-form eliminates even insiders from making profit. Evidently, a
weaker form of EMH is always a subset of a stronger form. Even though EMH has been
repeatedly disparaged both empirically and theoretically (Cont, 2001; Malkiel, 2003), and
even more so after an outbreak of the Global Financial Crisis in 2007/2008, its validity
remains an open issue, yet still it persists in standard textbooks of financial economics
(Elton et al., 2003).

Comparison of efficiency across various assets has been discussed in different studies.
In a series of papers, Di Matteo et al. (2003, 2005) and Di Matteo (2007) study long-
term memory and multi-scaling of a wide portfolio of stock indices, foreign exchange rates,
Treasury rates and Eurodollar interbank interest rates using various estimators of long-term
memory. They show that stock indices of more developed countries are also more efficient
yet showing a weak signs of anti-persistence (properties of long-term memory are described
in detail in the Methodology section), finding no deviations from EMH for all analyzed
maturities of Eurodollar and Treasury rates. For US dollar exchange rates, the authors
find diverse results with no evident pattern connecting exchange rate efficiency level with
geographical or geopolitical properties. In another series of papers, Cajueiro and Tabak
(2004a,b,c, 2005) compare stock market indices from different continents finding that the
US and Japanese markets are the most efficient ones whereas the Asian and Latin American
ones are detected as the least efficient ones. Lim (2007) studies non-linear dependencies,
their evolution in time and connection to market efficiency for a set of stock markets.
The author finds the US market to be the most efficient one followed by Korea, Taiwan
and Japan. On the other end of the ranking, Malaysia, Chile and Argentina are placed.
Zunino et al. (2010) utilize the complexity-entropy causality plane to rank stock market
indices to show that the emergent markets are less efficient than the developed ones as one
would expect. The difference is attributed to a lower entropy and a higher complexity of
the emergent markets. Kristoufek and Vosvrda (2013) introduce the Efficiency Index and
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come up with a ranking of stock market indices finding that the most efficient markets are
located in Western Europe, USA and Japan whereas the least efficient markets are situated
in Latin America and Asia.

However, up to our best knowledge, proper attention has not been given to a comparison
of the efficiency of commodity markets. In this paper, we analyze futures markets for a wide
range of commodities – energy, metals and various agricultural commodities – and compare
their efficiency using the Efficiency Index proposed by Kristoufek and Vosvrda (2013).
The paper is structured as follows. Section 2 covers literature dealing with the efficiency
of commodities. Section 3 describes the methodology in detail. Section 4 describes the
analyzed dataset and brings the results. Section 5 concludes. We show that efficiency is
related to a type of commodity (energy commodities being the most efficient ones and other
agricultural commodities being the least efficient ones). In addition, we find a nonstandard
relationship between the local and global properties of the series as most of the series show
local persistence while in global, they are mean-reverting. The series thus follow quite
strong local trends but in a long term, they return to their fundamental value.

2. Literature review

Testing the market efficiency in commodities markets has a long history. Roll (1972)
examines the commodity price index and argues that the market is inefficient due to sig-
nificant serial correlations of its returns. Danthine (1977) disputes such claim and shows
that the violation of the standard martingale condition does not imply inefficiency in the
commodity spot markets with support of risk aversion and no arbitrage opportunities.
Gjolberg (1985) analyzes oil spot prices at the Rotterdam market, rejects the efficiency
hypothesis and constructs a profitable trading rule for daily, weekly and monthly price
changes. Panas (1991) studies the Rotterdam oil market as well together with the Italian
market and based on leptokurtic monthly price changes, he rejects the markets’ efficiency.
Herbert and Kreil (1996) examine the US spot (cash) and futures markets for natural gas
and find these to be inefficient. They argue that such inefficiency is caused by the specific
structure of the US gas markets.

More recently, Tabak and Cajueiro (2007) analyze the efficiency of Brent and WTI
crude oil using the rescaled range analysis and show that the markets are becoming more
efficient in time. Alvarez-Ramirez et al. (2008) study the auto-correlation structure of the
crude oil process using the detrended fluctuation analysis. They show that in long-term,
the market is efficient but in short-term, the auto-correlation structure leads to rejection
of the efficiency. Alvarez-Ramirez et al. (2010) further inspect the crude oil markets using
lagged detrended fluctuation analysis and argue that multi-scaling and deviations from the
random walk behavior cause the spot prices to be inefficient. The research on evolution
of efficiency in time is further extended by Wang and Liu (2010) where the authors study
short-, medium- and long-term efficiency for various scales of the detrended fluctuation
analysis approach. They show that the WTI crude oil becomes more efficient in time for
all three analyzed scales. Using also the detrended fluctuation analysis, Wang et al. (2011)
argue that WTI crude oil spot and futures are not efficient for short time scales below one
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month. Crude oil markets (Brent and WTI) are also analyzed by Charles and Darné (2009)
who use the variance ratio tests to show that the Brent market is weak-form efficient but
the WTI market is not while providing some discussion about effects of deregulation on
the markets.

Lee and Lee (2009) study four energy commodities – coal, oil, gas and electricity – using
panel data stationarity tests to uncover that none of the studied markets is efficient in the
strict stationarity sense. Lean et al. (2010) study WTI crude oil spot and futures prices
using mean-variance and stochastic dominance approaches finding no arbitrage opportuni-
ties between spot and futures prices while the findings are robust for various sub-periods
and critical events. Narayan et al. (2010) study long-term relationship between spot and
futures prices of gold and oil. They find that investors use the gold market to hedge against
inflation and for our purposes also more importantly that crude oil market predicts the
gold market and vice versa implying inefficiency.

Wang and Yang (2010) study high-frequency futures data of crude oil, heating oil,
gasoline and natural gas using various nonlinear models. For heating oil and natural gas,
the authors find market inefficiencies which are profound mainly during the bull market
conditions. Gebre-Mariam (2011) focuses on the US natural gas market (spot and futures)
finding no arbitrage opportunities for daily prices but in general, the author claims that
the markets can be seen as efficient only for contracts with approximately a month to
maturity. Martina et al. (2011) utilize entropy approaches to WTI crude oil spot prices
and find various cycles in its prices. Entropy is also applied by Ortiz-Cruz et al. (2012)
who again study daily WTI prices finding the market to be efficient with two episodes of
inefficiency connected to the early 1990s and late 2000s US recessions. The authors stress
that deregulation of the market has helped improving its efficiency.

Zunino et al. (2011) apply information theory methods (specifically the permutation
entropy and permutation statistical complexity) to the commodity markets allowing them
for efficiency ranking finding silver, copper and cotton to be the most efficient commodi-
ties. Wang et al. (2011) study the gold market using the multifractal detrended fluctuation
analysis to show that the market becomes more efficient in time especially after 2001. Kim
et al. (2011) use the random matrix theory and network analysis to show that stock and
commodity markets are well decoupled except for oil and gold showing signs of inefficiency.
Kim et al. (2011) then focus on the Korean agricultural market using the detrended fluc-
tuation analysis finding anti-correlated series with strong volatility clustering aiming at
inefficiency.

Out of these selected papers, it is evident that analysis of efficiency of commodity
markets is fruitful with many approaches to the topic. However, the studies usually focus on
a single (or a pair) of efficiency measures to test whether the specific markets are or are not
efficient. Moreover, the analysis is usually strongly focused on a single commodity or a small
group of commodities. Here, we contribute to the literature by applying various efficiency
measures on a wide portfolio of commodities ranging from energy and agricultural (with
several subgroups) commodities to metals. Moreover, we utilize the efficiency measure
introduced by Kristoufek and Vosvrda (2013) to rank the commodities according to their
efficiency.
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3. Methodology

Efficient market can be defined in several ways. The main distinction roots back to
1965 when Fama (1965) and Samuelson (1965) used different definitions – a random walk
and a martingale, respectively. We stick to the martingale definition efficiency because it
is less restrictive. Based on this definition, we assume that the returns of a financial asset
are serially uncorrelated and with finite variance for the efficient market situation. Such a
simple definition allows to use various measures of market efficiency, which are described
in this section. Eventually, we refer to the Efficient Index which takes these statistics into
consideration and it helps to rank different assets according to their efficiency while using
various dynamic properties of the time series under study.

3.1. Long-term memory

Long-term memory (long-range dependence) series are characteristic with values in
(even distant, in theory infinitely distant) past influencing the present and future values.
These processes are standardly described with the long-term memory parameter H (Hurst
exponent) which ranges between 0 ≤ H < 1 for stationary invertible processes. The
midpoint, H = 0.5, holds for uncorrelated (or in general short-term memory) processes, i.e.
processes of the efficient market. For H > 0.5, the processes are positively correlated with
long-term memory and are usually referred to as persistent. These processes systematically
follow local trends while still remaining stationary. ForH < 0.5, we have long-term memory
processes with negative correlations – anti-persistent processes. Such processes switch the
direction more often than a random process does.

More formally, the long-term memory processes are defined in both time and frequency
domains. In the time domain, it is connected to a power-law decaying auto-correlation
function. For the auto-correlation function ρ(k) with time lag k, the decay is characterized
as ρ(k) ∝ k2H−2 for k → +∞. In the frequency domain, the spectrum f(λ) with frequency
λ of the long-range dependent process diverges at the origin so that f(λ) ∝ λ1−2H for
λ → 0+. These definitions further lead to non-summable auto-correlations and diverging
covariance of partial sums of the process for the persistent series. These properties are used
in various estimators of parameter H. For comparison of both time and frequency domain
estimators, see Beran (1994); Taqqu et al. (1995); Taqqu and Teverovsky (1996); Robinson
(1995); Geweke and Porter-Hudak (1983); Di Matteo et al. (2003); Di Matteo (2007);
Barunik and Kristoufek (2010); Teverovsky et al. (1999). Out of theses estimators, we opt
for the local Whittle and GPH estimators which are suitable for short time series with a
possible weak short-term memory (Taqqu et al., 1995; Taqqu and Teverovsky, 1996), which
can easily bias the time domain estimators (Teverovsky et al., 1999; Kristoufek, 2012).
Moreover, these estimators have well-defined asymptotic properties – they are consistent
and asymptotically normal estimators.

Local Whittle estimator

The local Whittle estimator (Robinson, 1995) is a semi-parametric maximum likelihood
estimator utilizing a likelihood function of Künsch (1987) and focusing only on a part of
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the spectrum f(λ) near the origin. The full parametric specification is thus not needed
and one does not need to assume any specific underlying long-term memory model but
only a model with divergent at origin spectrum. This way, the estimator does not take
into consideration high frequencies and it is in turn resistant to the short-term memory
bias. As an estimator of the spectrum of series {xt}, we use the periodogram defined as
I(λj) = 1

T

∑T
t=1 exp(−2πitλj)xt with j = 1, 2, . . . ,m where m ≤ T/2 and λj = 2πj/T .

The local Whittle estimator is defined as

Ĥ = arg min
0≤H<1

R(H), (1)

where

R(H) = log

(
1

m

m∑
j=1

λ2H−1j I(λj)

)
− 2H − 1

m

m∑
j=1

log λj. (2)

The local Whittle estimator is consistent and asymptotically normal, specifically
√
m(Ĥ −H0)→d N(0, 1/4). (3)

GPH estimator

Contrarily to the local Whittle estimator, the GPH estimator, named after the authors
of Geweke and Porter-Hudak (1983), is based on a full functional specification of the
underlying process as the fractional Gaussian noise implying a specific spectral form:

log f(λ) ∝ −(H − 0.5) log(4 sin2(λ/2)) (4)

Again, the spectrum is estimated using the periodogram and the Hurst exponent is esti-
mated using the ordinary least squares on

log I(λj) ∝ −(H − 0.5) log(4 sin2(λj/2)). (5)

The GPH estimator is consistent and asymptotically normal (Beran, 1994), specifically
√
T (Ĥ −H0)→d N(0, π2/6). (6)

The GPH estimator is thus asymptotically infinitely more efficient than the local Whit-
tle estimator. However, this is true only if the true underlying process is in fact the
fractional Gaussian noise. In financial and economic time series, this is frequently not the
case as the processes are mostly a combination of short-term (such us autoregressive mov-
ing average – ARMA – processes of various specifications) and long-term memory (such as
the aforementioned fractional Gaussian noise of fractionally integrated ARMA) processes.
In this case, the GPH estimator becomes biased. To avoid the bias, the GPH estima-
tor is based only on a part of the spectrum (periodogram) close to the origin as for the
local Whittle estimator. The regression in Eq. 5 is then applied only for a part of the
periodogram based on the same parameter m as for the local Whittle estimator1.

1In our analysis, we apply m = T 0.6 (Phillips and Shimotsu, 2004).
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3.2. Fractal dimension

Contrary to the long-term memory, which can be seen as a characteristic of global
dependence and correlation structure, the fractal dimension D can be taken as a measure
of local memory of the series as it is a measure of roughness of the series (Kristoufek and
Vosvrda, 2013). As the series can be differently rough or smooth for its specific parts,
it can be locally serially correlated even though on a global level, the correlations might
vanish and are not necessarily observable or detectable.

For a univariate series, the fractal dimension ranges between 1 < D ≤ 2. For self-similar
processes, the fractal dimension is tightly connected to the Hurst exponent (long-term
memory) of the series so that D = 2−H. In economic terms, this can be understood as a
perfect transmission of a local behavior (fractal dimension) to a global behavior (long-term
memory). However, the relation usually does not hold perfectly for the financial series so
that both D and H give different insights into the dynamics of the series making it worth
studying them separately.

In general, D = 1.5 holds for an uncorrelated series with no local trending or no local
anti-correlations and thus it is also a value of D for the efficient market. For a low fractal
dimension D < 1.5, the roughness of the series is lower than for an uncorrelated process
so that we observe local trending and the series is said to be locally persistent. Reversely,
a high fractal dimension D > 1.5 characterizes a series rougher than the uncorrelated one,
which is connected to local anti-persistence, i.e. the series are negatively auto-correlated
locally. For purposes of the Efficiency Index introduced later in this section, we utilize
Hall-Wood and Genton estimators (Gneiting and Schlather, 2004; Gneiting et al., 2010).

Hall-Wood estimator

Hall-Wood estimator (Hall and Wood, 1993) is a box-counting procedure which utilizes
scaling of absolute deviations between steps. Formally, we have

Â(l/n) =

⌊
l

n

⌋ bn/lc∑
i=1

|xibl/nc − x(i−1)bl/nc| (7)

representing the absolute deviations. Using the definition of the fractal dimension (Gneiting
and Schlather, 2004; Gneiting et al., 2010), the Hall-Wood estimator is given by

D̂HW = 2−
∑L

l=1 (sl − s̄) log(Â(l/n))∑L
l=1 (sl − s̄)2

(8)

where L ≥ 2, sl = log(l/n) and s̄ = 1
L

∑L
l=1 sl. To minimize potential bias, Hall and Wood

(1993) propose using L = 2 so that we obtain the estimate of the fractal dimension D̂HW

as

D̂HW = 2− log Â(2/n)− log Â(1/n)

log 2
. (9)
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Genton estimator

Gneiting and Schlather (2004) and Gneiting et al. (2010) propose a method of moments
estimator based on the robust variogram of Genton (1998). The variogram is defined as

V̂2(l/n) =
1

2(n− l)

n∑
i=l

(xi/n − x(i−l)l/n)2, (10)

and the Genton estimator is obtained as

D̂G = 2−
∑L

l=1 (sl − s̄) log(V̂2(l/n))

2
∑L

l=1 (sl − s̄)2
(11)

where again L ≥ 2, sl = log(l/n) and s̄ = 1
L

∑L
l=1 sl. Davies and Hall (1999) and Zhu and

Stein (2002) again suggest to use L = 2 to reduce the potential bias so that the estimate

D̂G reads

D̂G = 2− log V̂2(2/n)− log V̂2(1/n)

2 log 2
. (12)

3.3. Approximate entropy

Entropy can be considered as a measure of complexity of the considered system. The
systems with high entropy can be characterized by no information flows and are thus
random up to uncertainty and reversely, the series with low entropy can be seen as deter-
ministic (Pincus and Kalman, 2004). The efficient market can be then seen as the one with
maximum entropy and the lower the entropy, the less efficient the market is. For purposes
of the Efficiency Index, we need an entropy measure which is bounded. Therefore, we
utilize the approximate entropy introduced by Pincus (1991).

Let m be a positive integer and let r be a positive real number. For a time series
{u1, u2, ..., uT}, with a time series length T , let us form a sequence of vectors X1,X2, ...,XT−m+1

in Rm where Xi = (ui, ui+1, ..., ui+m−1). Using the Takens metrics of distance

d [Xi,Xj] = max
k=1,...,m

(|u (i+ k − 1)− u (j + k − 1)|) , (13)

and defining a characteristic function χm
i (r) as a number of times d [Xi,Xj] ≤ r/ (T −m+ 1)

for each 1 ≤ i ≤ N −m+ 1, we define

Φm(r) =
1

T −m+ 1

T−m+1∑
i=1

log [χm
i (r)] (14)

which is further used in

ERm = lim
r→0

lim
T→∞

[
Φm(r)− Φm+1(r)

]
. (15)
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The approximate entropy (ApEn) is then defined as

ApEn = lim
m→∞

ERm. (16)

Since r can be seen as an discriminating factor for the distance measured by the Takens
metrics and m is the number of elements whose closeness is measured, the approximate
entropy measures whether different segments of the series follow similar patterns. For an
identically uniformly independently distributed random process, the approximate entropy
converges to − log

(
r/
√

3
)

for all m (Pincus, 1991). For a completely deterministic process,
the entropy goes to 0. Therefore, we can rescale the approximate entropy so that 0 ≤
ApEn ≤ 1, where 0 characterizes a completely deterministic process and 1 a completely
uncertain process characteristic for the efficient market. In turn, it can be utilized in the
Efficiency Index, definition of which follows.

3.4. Capital market efficiency measure

Kristoufek and Vosvrda (2013) introduce the Efficiency Index (EI) is defined as

EI =

√√√√ n∑
i=1

(
M̂i −M∗

i

Ri

)2

, (17)

where Mi is the ith measure of efficiency, M̂i is an estimate of the ith measure, M∗
i is

an expected value of the ith measure for the efficient market and Ri is a range of the ith
measure. In words, EI is simply a distance from the efficient market situation. Here,
we base the index on three measures of market efficiency – Hurst exponent H with an
expected value of 0.5 for the efficient market (M∗

H = 0.5), fractal dimension D with an
expected value of 1.5 (M∗

D = 1.5) and the approximate entropy with an expected value of
1 (M∗

AE = 1). Hurst exponent is taken as an average of the GPH and the local Whittle
estimates. In the same way, the fractal dimension is set as an average of the Hall-Wood and
Genton estimates. For the approximate entropy, we utilize the estimate described in the
corresponding section. The approximate entropy need to be rescaled as it ranges between
0 and 1 with the efficient market of ApEn = 1. We thus have RAE = 2 and RD = RH = 1.

4. Data description and results

We analyze daily front futures prices, i.e. futures with the earliest delivery, of 25 com-
modities in period between 1.1.2000 and 22.7.20132. The dataset contains 4 energy (Brent
crude oil, WTI crude oil, heating oil and natural gas), 5 metals (copper, gold, silver, palla-
dium and platinum), 7 grains (corn, oats, rough rice, soybean meal, soybean oil, soybeans
and wheat), 5 softs (cocoa, coffee, cotton, orange juice and sugar) and 4 other agricul-
tural commodities (feeder cattle, lean hogs, live cattle and lumber) futures from Chicago

2The time series were obtained from http://www.quandl.com server on 23.7.2013.
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Board of Trade (CBOT), Chicago Mercantile Exchange (CME), IntercontinentalExchange
(ICE), New York Mercantile Exchange (NYMEX) and its division Commodity Exchange
(COMEX), which are summarized in Tab. 1. We analyze logarithmic prices Si,t = logPi,t,
where Pi,t is the price of futures i at time t, for the fractal dimension and logarithmic
returns ri,t = Si,t−Si,t−1 for the long-term memory and approximate entropy. The returns
of all the analyzed futures are stationary according to ADF (Dickey and Fuller, 1979) and
KPSS (Kwiatkowski et al., 1992) tests (we do not report the p-values here).

Estimated Hurst exponents, fractal dimensions and approximate entropies are sum-
marized in Tab. 2. We observe that majority of commodities is characteristic with the
fractal dimension below 1.5 which indicates local persistence. These series are thus locally
trending. This is most evident for feeder cattle, lean hogs and live cattle, i.e. majorly
livestock futures. On the contrary, the energy commodities – namely both the crude oils
and natural gas – are close to fractal dimension of 1.5 and as such, they do not show any
signs of local inefficiencies. For the long-term memory part, most of the futures are below
0.5 indicating anti-persistence which translates into a mean-reversion of prices, something
that is not standardly observed for stocks, stock indices and exchange rates which are
characteristic by a unit-root behavior. The strongest anti-persistence is seen for cocoa,
oats and orange juice. Nonetheless, there is a portion of commodities which show signs
of persistence. These are copper, palladium, platinum and sugar. Cotton and natural gas
get the closest to the value of the efficient market. For the approximate entropy, several
values are close to 1 for the efficient market3 – lumber, sugar and heating oil. The most
complex, and thus the least efficient, series include feeder cattle and live cattle.

Putting these results together, we arrive at the Efficiency Indices and efficiency ranking
which are graphically represented in Fig. 1. The most efficient of the commodities turns
out to be heating oil closely followed by WTI crude oil. Cotton, wheat and coffee come
after these with a similar level of efficiency. The ranking is then supplemented by other
commodities, efficiency of which increases quite steadily across the ranking. Feeder cattle is
the least efficient commodity in this set quite closely followed by live cattle. The livestock
futures thus seem to be rather inefficient compared to the others. Connected to this finding,
we also show an average Efficiency Index for commodities according to their type. In Fig.
2, we can see that the energy futures are the most efficient ones followed by softs, grains and
metals. By far the least efficient group consists of the other agricultural commodities, i.e.
feeder cattle, lean hogs, live cattle and lumber. This is well in hand with the observations
about very inefficient livestock futures.

In Figs. 3 and 4, we decompose the efficiency index into its parts. In Fig. 3, the actual
futures ranked according to the Efficiency Index are represented, and in Fig. 4, these are
sorted according to their type to better see possible patterns and regularities. We observe
that for about half of the futures, the approximate entropy is the dominant inefficiency
source. Interestingly, it is the most important part for both the most and the least efficient
commodities. For the others, the long-term memory part is dominant. Fractal dimension

3Several values even reach value above 1 due to the finite sample.
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forms usually only a smaller part of the inefficiency and only for wheat, it contributes
the most. When we look at the whole groups of commodities, we observe that for energy,
grains and other agricultural commodities, the approximate entropy forms an important or
even a dominant part for most of them. For grains, fractal dimension creates a significant
part for three of the group. For softs, the long-term memory is the most important of the
inefficiency contributors. And for metals, the evidence is mixed.

Fig. 5 then illustrates a relationship between fractal dimension and Hurst exponent.
For self-similar processes, it holds that D = 2 − H. In economic terms, self-similar pro-
cesses are characteristic by translating the local properties into the global ones. Therefore,
for a locally persistent process with D < 1.5, this translates into the global persistence
with H > 0.5, and vice versa. However, we do not observe such relationship for the ana-
lyzed commodities. Actually, the dependence is reversed so that with the increasing Hurst
exponent, the fractal dimension increases. This is in contrast with the results for stock
indices (Kristoufek and Vosvrda, 2013). Nonetheless, such result can be well explained
by characteristics of commodities futures – locally (or in the short term), the changes in
futures prices are partially predictable, but globally, the prices return to their fundamental
values.

5. Conclusion

We have analyzed the market efficiency of 25 commodities futures across various groups
– metals, energies, softs, grains and other agricultural commodities. To do so, we have
utilized the recently proposed Efficiency Index to find that the most efficient of all the
analyzed commodities is heating oil, closely followed by WTI crude oil, cotton, wheat
and coffee. On the other end of the ranking, we have detected live cattle and feeder
cattle. The efficiency also seems to be characteristic for specific groups of commodities –
energy commodities have been found the most efficient, followed by softs, grains and metals
whereas the other agricultural commodities (formed mainly of livestock) form the least
efficient group. Apart from that, we have also discussed the contributions of the long-term
memory, fractal dimension and approximate entropy to the total inefficiency. We have
uncovered that the contribution is type-dependent as well even though the regularities
are not strongly pronounced. Last but not least, we have come across the nonstandard
relationship between the fractal dimension and Hurst exponent. For the analyzed dataset,
the relationship between these two is positive meaning that local persistence (trending) is
connected to global anti-persistence. We attribute this to specifics of commodity futures
which might be predictable in a short term and locally but in a long term, they return to
their fundamental price, which differs from the results found for stock indices (Kristoufek
and Vosvrda, 2013).
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Figure 1: Efficiency Index of commodity futures. Commodities are sorted from the most efficient
one (left) to the least efficient one (right).
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Figure 2: Average Efficiency Index for groups of commodities. Groups are sorted from the most
(left) to the least (right) efficient ones.

Figure 3: Contribution to inefficiency I. Commodities are sorted according to their efficiency with
respect to Fig. 1.
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Figure 4: Contribution to inefficiency II. Commodities are sorted according to their group.

Figure 5: Relationship between Hurst exponent and fractal dimension. For self-similar processes,
we expect D = 2−H, i.e. a negative slope. The red dashed line represents the least squares fit uncovering
positive relationship between D and H.
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Table 1: Analyzed commodities

Full name Short name Type

CBOT Corn C1 Corn Grains
CBOT Oats O1 Oats Grains

CBOT Rough Rice RR1 Rough Rice Grains
CBOT Soybean Meal SM1 Soybean Meal Grains
CBOT Soybean Oil BO1 Soybean Oil Grains

CBOT Soybeans S1 Soybeans Grains
CBOT Wheat W1 Wheat Grains

CME Feeder Cattle FC1 Feeder Cattle Other agriculturals
CME Lean Hogs LN1 Lean Hogs Other agriculturals
CME Live Cattle LC1 Live Cattle Other agriculturals

CME Lumber LB1 Lumber Other agriculturals
COMEX Copper HG1 Copper Metals
COMEX Gold GC1 Gold Metals
COMEX Silver SI1 Silver Metals

ICE Brent Crude Oil B1 Crude Oil (Brent) Energy
ICE Cocoa CC1 Cocoa Softs
ICE Coffee KC1 Coffee Softs

ICE Cotton No 2 CT1 Cotton Softs
ICE Orange Juice OJ1 Orange Juice Softs
ICE Sugar No 11 SB1 Sugar Softs

NYMEX Crude Oil CL1 Crude Oil (WTI) Energy
NYMEX Heating Oil HO1 Heating Oil Energy
NYMEX Natural Gas NG1 Natural Gas Energy

NYMEX Palladium PA1 Palladium Metals
NYMEX Platinum PL1 Platinum Metals
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Table 2: Results

Commodity AE DHW DG HLW HGPH EI

Cocoa 0.9728 1.4665 1.4605 0.3542 0.3367 0.1594
Coffee 0.9680 1.4948 1.4606 0.4575 0.4665 0.0469
Copper 0.8264 1.5613 1.4974 0.6205 0.6992 0.1843
Corn 0.9015 1.4592 1.4299 0.5241 0.4858 0.0744

Cotton 0.9564 1.4702 1.4564 0.5057 0.4735 0.0439
Crude Oil (Brent) 0.8919 1.5307 1.5084 0.5620 0.5986 0.0988
Crude Oil (WTI) 0.9427 1.5243 1.4987 0.5466 0.4499 0.0309

Feeder Cattle 0.3857 1.3498 1.3166 0.5751 0.3882 0.3500
Gold 0.5759 1.5161 1.4707 0.4278 0.4067 0.2277

Heating Oil 0.9568 1.4943 1.4916 0.5081 0.4592 0.0280
Lean Hogs 0.7081 1.3894 1.3584 0.3795 0.4256 0.2161
Live Cattle 0.4527 1.4206 1.3773 0.4433 0.4306 0.2985

Lumber 1.0040 1.4301 1.4428 0.4278 0.3603 0.1236
Natural Gas 1.1140 1.5246 1.4781 0.5210 0.5204 0.0607

Oats 0.9365 1.3926 1.3696 0.4105 0.2364 0.2152
Orange Juice 0.8770 1.4266 1.3899 0.4126 0.3399 0.1659

Palladium 1.0230 1.4266 1.4210 0.5625 0.5970 0.1109
Platinum 0.7443 1.4686 1.4845 0.5535 0.5465 0.1393

Rough Rice 0.8525 1.4278 1.4181 0.4512 0.4635 0.1149
Silver 0.8515 1.5161 1.4914 0.4685 0.4448 0.0861

Soybean Meal 0.8861 1.4448 1.4328 0.4878 0.4548 0.0884
Soybean Oil 0.7286 1.4735 1.4364 0.5330 0.5307 0.1465

Soybeans 0.7649 1.4900 1.4745 0.5266 0.5173 0.1209
Sugar 0.9759 1.4786 1.4818 0.5543 0.5505 0.0573
Wheat 0.9133 1.5129 1.4829 0.4626 0.5117 0.0453
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