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Ladislav Krǐstoufek Miloslav Vošvrda1

Abstract. We utilize long-term memory, fractal dimension and approxi-
mate entropy as input variables for the Efficiency Index [Kristoufek & Vosvrda
(2013), Physica A 392]. This way, we are able to comment on stock market
efficiency after controlling for different types of inefficiencies. Applying the
methodology on 38 stock market indices across the world, we find that the
most efficient markets are situated in the Eurozone (the Netherlands, France
and Germany) and the least efficient ones in the Latin America (Venezuela and
Chile).
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1 Introduction

Efficient markets hypothesis (EMH) is one of the cornerstones of the modern financial economics. Since
its introduction in 1960s [10, 24, 11], EMH has been a controversial topic. Nonetheless, the theory still
remains a stable part of the classical financial economics. Regardless of its definition via a random walk
[10] or a martingale [24], the main idea of EMH is that risk-adjusted returns cannot be systematically
predicted and there can be no long-term profits above the market profits assuming the same risk. The
EMH definition is also tightly connected with a notion of rational homogenous agents and Gaussian
distribution of returns. Both these assumptions have been widely disregarded in the literature [6].

There are several papers ranking various financial markets with respect to their efficiency. Research
group around Di Matteo [8, 9, 7] show that the correlations structure of various assets (stocks, exchange
rates and interest rates) is connected to the development of the specific countries and stock markets.
In the series of papers, Cajueiro & Tabak [3, 4, 2, 5] study the relationship between the long-term
memory parameter H and development stages of the countries’ economy. Both groups find interesting
results connecting persistent (long-term correlated) behavior to the least developed markets but also anti-
persistent behavior for the most developed ones. Lim [20] investigates how the ranking of stock markets
based on Hurst exponent evolves in time and reports that the behavior can be quite erratic. Zunino et
al. [28] utilize entropy to rank stock markets to show that the emergent/developing markets are indeed
less efficient than the developed ones. Even though the ranking is provided in these studies, the type
of memory taken into consideration (either long-term memory or entropy/complexity) is limited and
treated separately. In this paper, we utilize the Efficiency Index proposed by Kristoufek & Vosvrda [19]
incorporating long-term memory, fractal dimension and entropy to control for various types of correlations
and complexity using a single measure. Basing the definition of the market efficiency simply on no
correlation structure, we can state the expected values of long-term memory, fractal dimension and
entropy to construct an efficiency measure based on a distance from the efficient market state. The
procedure is then applied on 38 stock indices from different parts of the world and we show that the
most efficient markets are indeed the most developed ones – the Western European markets and the US
markets – and the least efficient ones are situated in the Latin America and South-East Asia.

The paper is structured as follows. In Section 2, we provide brief description of used methodology
focusing on long-term memory, fractal dimension, entropy and efficiency measure. Section 3 introduces
the dataset and describes the results. Section 4 concludes.
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2 Methodology

2.1 Long-term memory

Long-term memory (long-range dependence) is usually characterized in time domain by a power-law
decay of autocorrelation function and in frequency domain by a power-law divergence of spectrum close
to the origin. More specifically, the autocorrelation function ρ(k) with lag k of a long-range correlated
process decays as ρ(k) ∝ k2H−2 for k → +∞, and the spectrum f(λ) with frequency λ of a long-range
correlated process diverges as f(λ) ∝ λ1−2H for λ→ 0+. The characteristic parameter of the long-term
memory Hurst exponent H ranges between 0 ≤ H < 1 for stationary processes. The breaking value
of 0.5 indicates no long-term memory so that the autocorrelations decay rapidly (exponentially). For
H > 0.5, the series is persistent with strong positive correlations characteristic by a trend-like behavior
while still remaining stationary. For H < 0.5, the series is anti-persistent and it switches the direction of
increments more frequently than a random process does. As the inputs to the Efficiency Index, we utilize
two estimators from the frequency domain – the local Whittle [23] and GPH estimators [13] – which
are more appropriate for rather short financial series with a possible weak short-term memory [25, 26],
which can easily bias the time domain estimators [27, 1, 17]. Moreover, the frequency domain estimators
have well-defined asymptotic properties and the selected two are consistent and asymptotically normal
estimators.

2.2 Fractal dimension

Fractal dimension D is a measure of roughness of the series and can be taken as a measure of local
memory of the series [19]. For a univariate series, it holds that 1 < D ≤ 2. For self-similar processes, the
fractal dimension is connected to the long-term memory of the series so that D + H = 2. This can be
attributed to a perfect reflection of a local behavior (fractal dimension) to a global behavior (long-term
memory). However, the relation usually does not hold perfectly for the financial series so that both D
and H give different insights on the dynamics of the series. In general, D = 1.5 holds for a random series
with no local trending or no local anti-correlations. For a low fractal dimension D < 1.5, the series is
locally less rough and thus resembles a local persistence. Reversely, a high fractal dimension D > 1.5
is characteristic for rougher series with local anti-persistence. For purposes of the Efficiency Index, we
utilize Hall-Wood and Genton estimators [14, 15, 16, 12].

2.3 Approximate entropy

Entropy can be taken as a measure of complexity of the system. The systems with high entropy can
be characterized by no information and are thus random and reversely, the series with low entropy can
be seen as deterministic [22]. The efficient market can be then seen as the one with maximum entropy
and the lower the entropy, the less efficient the market is. For purposes of the Efficiency Index, we need
an entropy measure which is bounded. Therefore, we utilize the approximate entropy introduced by
Pincus [21] which is bounded between 0 (completely deterministic behavior) and 1 (completely random
behavior).

2.4 Capital market efficiency measure

According to Kristoufek & Vosvrda [18, 19], the Efficiency Index (EI) is defined as

EI =

√√√√ n∑
i=1

(
M̂i −M∗

i

Ri

)2

,

where Mi is the ith measure of efficiency, M̂i is an estimate of the ith measure, M∗
i is an expected value

of the ith measure for the efficient market and Ri is a range of the ith measure. In words, the efficiency
measure is simply defined as a distance from the efficient market specification based on various measures
of the market efficiency. In our case, we consider three measures of market efficiency – Hurst exponent H
with an expected value of 0.5 for the efficient market (M∗

H = 0.5), fractal dimension D with an expected
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value of 1.5 (M∗
D = 1.5) and the approximate entropy with an expected value of 1 (M∗

AE = 1). The
estimate of Hurst exponent is taken as an average of estimates based on GPH and the local Whittle
estimators. The estimate of the fractal dimension is again taken as an average of the estimates based
on the Hall-Wood and Genton methods. For the approximate entropy, we utilize the estimate described
in the corresponding section. However, as the approximate entropy ranges between 0 (for completely
deterministic market) and 1 (for random series), we need to rescale its effect, i.e. we use RAE = 2 for
the approximate entropy and RH = RD = 1 for the other two measures so that the maximum deviation
from the efficient market value is the same for all measures.

3 Application and discussion

We analyze 38 stock indices from various locations – the complete list is given in Tab. 1 – between January
2000 and August 2011. Various phases of the market behavior – DotCom bubble, bursting of the bubble,
stable growth of 2003-2007 and the current financial crisis – are thus covered in the analyzed period.
The indices cover stock markets in both North and Latin Americas, Western and Eastern Europe, Asia
and Oceania so that markets at various levels of development are included in the study. The logarithmic
returns are asymptotically stationary (according to the KPSS test), leptokurtic and returns of majority
of the indices are negatively skewed (the results are available upon request).

Figure 1: Hurst exponent, fractal dimension, approximate entropy and efficiency index for analyzed indices.

Let us now turn to the results. In Fig. 1, all the results are summarized graphically. For the utilized
three measures – Hurst exponent, fractal dimension and approximate entropy – we present the absolute
deviations from the expected values of the efficient market for comparison. For the Hurst exponent
estimates, we observe huge diversity – between practically zero (for IPSA of Chile) and 0.18 (for Peruvian
IGRA). Interestingly, for some of the most developed markets, we observe Hurst exponents well below
0.5 (Tab. 1 gives the specific estimates) which is, however, in hand with results of other authors [9, 7].
The results for the fractal dimension again vary strongly across the stock indices. The highest deviation
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is observed for the Slovakian SAX (0.19) and the lowest for the FTSE of the UK (0.02). In Tab. 1, we
observe that apart from FTSE, all the other stock indices possess the fractal dimension below 1.5 which
indicates that the indices are locally persistent, i.e. in some periods, the indices experience significant
positively autocorrelated behavior which is well in hand with expectations about the herding behavior
during critical events. The approximate entropy estimates are more stable across indices compared to
the previous two cases. The highest deviation from the expected value for the efficient market is observed
for the Chilean IPSA (0.98) and the lowest for the Dutch AEX (0.48). Evidently, all the analyzed stock
indices are highly complex as the approximate entropy is far from the ideal (efficient market) value of 1
and such complexity is not sufficiently covered by the other two applied measures. The inclusion of the
approximate entropy into the Efficiency Index thus proves its worth.

Table 1: Ranked stock indices according to the Efficiency Index

Index Country Hurst exponent Fractal dimension Approximate entropy Efficiency index

AEX Netherlands 0.5358 1.4356 0.5246 0.0619

CAC France 0.5118 1.4592 0.5059 0.0628

DAX Germany 0.5334 1.4646 0.4807 0.0698

XU100 Turkey 0.5493 1.4350 0.4870 0.0724

FTSE UK 0.4470 1.5171 0.4500 0.0787

NYA USA 0.5348 1.4457 0.4418 0.0821

NIKKEI Japan 0.5063 1.4716 0.4285 0.0825

KS11 South Korea 0.5137 1.4204 0.4473 0.0829

SSMI Switzerland 0.5297 1.4617 0.3983 0.0929

BEL20 Belgium 0.5481 1.4574 0.3869 0.0981

MIBTEL Italy 0.5267 1.4728 0.3525 0.1063

NASD USA 0.5340 1.4526 0.3428 0.1114

SPX USA 0.5026 1.4437 0.3405 0.1119

KFX Denmark 0.5927 1.4665 0.3516 0.1148

DJI USA 0.4477 1.4685 0.3284 0.1165

BUX Hungary 0.6448 1.4844 0.3811 0.1170

TSE Canada 0.5626 1.4375 0.3272 0.1210

TA100 Israel 0.6536 1.4739 0.3648 0.1251

BUSP Brazil 0.6055 1.4142 0.3435 0.1262

JKSE Indonesia 0.6505 1.3657 0.3986 0.1311

WIG20 Poland 0.5232 1.4545 0.2790 0.1326

ATX Austria 0.6744 1.4455 0.3669 0.1336

HSI Hong-Kong 0.5945 1.4033 0.3033 0.1396

IPC Mexico 0.5550 1.3817 0.2991 0.1398

ASE Greece 0.6210 1.3926 0.2911 0.1518

SSEC China 0.6205 1.3698 0.3019 0.1533

IGBM Spain 0.5615 1.4581 0.1912 0.1691

STRAITS Singapore 0.5937 1.4500 0.2027 0.1702

PX Czech Rep 0.6124 1.4386 0.2053 0.1743

MERVAL Argentina 0.5850 1.3729 0.2225 0.1745

HEX Finland 0.5524 1.4385 0.1747 0.1768

BSE India 0.6139 1.4313 0.1842 0.1841

SET Thailand 0.5591 1.4311 0.1590 0.1851

KLSE Malaysia 0.5489 1.3620 0.1773 0.1906

IGRA Peru 0.6806 1.3435 0.2160 0.2108

SAX Slovakia 0.6673 1.3132 0.1534 0.2421

IBC Venezuela 0.5881 1.3308 0.0890 0.2439

IPSA Chile 0.4997 1.3187 0.0239 0.2711

Putting the estimates of the three measures together, we get the Efficiency Index which is also graph-
ically presented in 1. For the ranking of indices according to their efficiency, we present Tab. 1. The
most efficient stock market turns out to be the Dutch AEX closely followed by the French CAC and the
German DAX. We can observe that the most efficient markets are usually the EU (or rather Eurozone)
countries followed by the US markets and other developed markets from the rest of the world – Japanese
NIKKEI, Korean KS11, Swiss SSMI. The least efficient part of the ranking is dominated by the Asian
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and the Latin American countries. At the very end, we have the Slovakian SAX, Venezuelan IBC and
Chilean IPSA. The efficiency of the stock markets is thus strongly geographically determined which is
connected to the stage of development of the specific markets.

4 Conclusions

We have utilized long-term memory, fractal dimension and approximate entropy as input variables for
the Efficiency Index [19]. This way, we are able to comment on stock market efficiency after controlling
for different types of inefficiencies. Applying the methodology on 38 stock market indices across the
world, we find that the most efficient markets are situated in the Eurozone (the Netherlands, France and
Germany) and the least efficient ones in the Latin America (Venezuela and Chile). The Efficiency Index
thus well corresponds to the expectation that the stock market efficiency is connected to the development
of the market.
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