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Abstract. According to Shapley’s game-theoretical result, there exists
a unique game-value of finite cooperative games that satisfies axioms
on additivity, efficiency, null-player property and symmetry. The origi-
nal setting requires symmetry with respect to arbitrary permutations of
players. We analyze the consequences of weakening the symmetry axioms
and study quasi-values that are symmetric with respect to permutations
from a group G < S,,. We classify all the permutation groups G that
are large enough to assure a unique G-symmetric quasi-value, as well as
the structure and dimension of the space of all such quasi-values for a
general permutation group G.

We show how to construct G-symmetric quasi-values algorithmically by
averaging certain basic quasi-values (marginal operators).

1 Introduction

A cooperative game is an assignment of a real number to each subset of a given
set of players (2. This illustrates an economic situation where a coalition profit de-
pends on the involved players in a generally non-aditive way. Several approaches
deal with the question of redistributing the generated profit to the individual
players in a stable or in a “fair” way. The mathematical theory of cooperative
games was developed in forties by Neumann and Morgenstern [17]. Values of
games provide a tool for evaluating the contibutions of the individual players
such that certain natural axiomas are satisfied. A value is a function from coop-
erative games on a fixed played set 2 to R satisfying certain natural properties.
The most famous value is the Shapley value introduced in 1953 [22] that exists
and is unique for all finite sets 2.

There exist many axiomatic systems on game-values such that the Shapley
value is their only solution: the original Shapley’s axiomatics [22], Neyman’s [18],
Young’s [24], van den Brink’s [3] and Kar’s axiomatics [15]. One of its important
characteristics is the symmetry with respect to any permutation of players. This
means, roughly speaking, that the value of a player is calculated only from his
contributions to various coalitions and not from his identity. One may consider
this to represent the equality of all payers. However, this is probably not a



realistic assumption in many real-world situations where personal friendships and
linkage play a major role. Some examples of values with restricted symmetry were
studied, such as the Owen value [20] or the weighted Shapley value in [14], and
the formal concept of quasi-value, where one completely relaxes any symmetry
requirement, was introduced by Gilboa and Monderer in 1991 [10]. It is known
that for a particular player set, there exists an infinite number of quasi-values.

In this work, we analyze one particular way of weakening the symmetry
axiom. We suppose that a group G of permutations of (2 is given and define
a G-symmetric quasi-value to be any quasi-value symmetric to all permutations
in G. Informally, the equality of players is restricted to a group of permutations
of players, not necessarily to all permutations. The group G expresses the mea-
sure of symmetry. If G is the full symmetry group, then the only G-symmetric
quasi-value is the Shapley value; if G is the trivial group, then it carries no sym-
metry requirement and each quasi-value is G-symmetric. Our contribution is the
classification of all permutation groups G of finite sets of players {2 for which
there exists a unique G-symmetric quasi-value. It turns out that while in the
infinite setting for non-atomic games, one may reduce the group of symmetries
in a number of ways [16,19], in the finite setting, only few subgroups of the
full permutation group assure uniqueness. Even if the group G acts transitively
on {2 (i.e. for any two players a, b, there exists a permutation m € G such that
m(a) = b), there may still exist many G-symmetric quasi-values different from the
Shapley value. We also calculate the dimension of the space of all G-symmetric
quasi-values for a general permutation group G.

In the second section, we give the formal definitions of Shapley value, G-
symmetric quasi-value and some necessary definitions from group theory includ-
ing our definition of a super-transitive group action. In the third section, we show
that the space of all G-symmetric quasi-values is an affine subspace of the vector
space of all values and derive a formula for its dimension. We further classify all
permutation groups G such that there exists a unique G-symmetric quasivalue.
In the fourth section, we give some examples of G-symmetric quasi-values and
show how more examples can be constructed by averaging the marginal opera-
tors. The last section (Appendix) contains the proof of an auxiliary statement
from group theory that we use in the proof of Theorem 3. We postpone this
technical issue to the end in order to keep the rest of the text fluent.

2 Definitions and notation

2.1 Cooperative games
Let £2 be a set of players. In this paper, we always suppose that {2 is finite.

Definition 1. A cooperative game is a function v : 2 — R such that v(()) = 0.
A cooperative game is additive, if for all T, R € 2°, RNT = 0 implies v(RUT) =
v(R) +v(T). We denote by I the set of all cooperative games and Iy the set of
all additive cooperative games. A game value is an operator v : I' — I'y. For a
game value 1 and i € 2, we define ;(v) = P(v)({i}).
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For each game v, ¢(v) is uniquelly determined by the numbers ;(v).
Shapley theorem [22] proves the existence and uniqueness of a game-value
operator ¢ assuming it satisfies the following four axioms:

1. Linearity: o(av + pw) = ap(v) + fe(w) for all v,w € I" and «, f € R.

2. Null-player property: if i € £ is a “null-player”, i.e. VR C 2 v(RU {i}) =

v(R), then ¢;(v) = 0.

Efficiency: Y, pi(v) = v(£2) for all games v.

4. Symmetry (sometimes called anonymity): (7 -v) = 7 - p(v) for every per-
mutation 7 of 2, where the game - v is defined by (7-v)(R) := v(7~1(R))
for any R C (2.

©w

The value defined by these axioms is called Shapley value. Axioms 1-4 are inde-
pendent. Gilles [11] and Schmeidler [5] give examples of values satisfying any 3
of them and not the 4th.

Any game value satisfying axioms 1, 2 and 3 is called a quasi-value. In the
original economic interpretation, the fourth axiom (Symmetry) is an expression
of equality of all the participating players. It can be formulated in a more elegant
way by the commutativity of the following diagram.

r —*.n

- »

r —*.n

Axiom 4 requires that it commutes for each permutation of players 7.
The following definition introduces the main object of our study.

Definition 2. Let G by a group of permutations of 2. A G-symmetric quasi-
value is a game value that satisfies axioms 1, 2, 3 and such that o(m-v) = 7-©(v)
for every permutation © € G. In other words, diagram (1) commutes for all
meQG.

Throughout this work, we will need the following standard basis of the space
of cooperative games, introduced in Shapley’s original paper [22].

Definition 3. The unanimity basis is the basis {ur}p.rco of the vector space
of all cooperative games over the set (2 defined by ur(S) =1 if RC S and 0
otherwise.

2.2 Group theory

We say that a group G acts on the set X, if G is a subgroup of the group Sx
of permutations of X. Any set G -z is called an orbit, or a G-orbit of x. The
set of all G-orbits is denoted by X/G. The action of G on X is transitive, if for
each z,y € X, there exists a g € G such that g-x = y. The stabilizer of a subset
A C X is the subgroup G4 of all elements g € G such that g- A C A. For a



subgroup H of G, g- H denotes a left and H - g a right coset of H and any group
H' =g 'Hg is conjugate to H.

We introduce here a definition that will help us to describe a property of
permutation groups we will need later.

Definition 4. Let G be a group acting on a set X. We say that the action is
a supertransitive action, if the stabilizer G4 of any subset A C X acts transi-
tively on A. A permutation group G C S,, is supertransitive, if the stabilizer G 5
acts transitively on each A C {1,...,n}.

For any n, S,,_1 may be embedded into .S,, as a set of permutations preserving
one element. However, for n = 6, there exists an embedding of S5 into Sg different
from the standard one. This embedding S5 < Sg may be realized as the action of
the projective linear group PGL(2,5) on the projective line over Zs. The reader
may find the details in the literature [7, p. 60-61], [4]. We will call this embedding
an ezxotic embedding. It is well known that such a nonstandard embedding is
only one up to conjugation by an element of Sg. In this paper, we only need the
property that the image of the exotic embedding is a super-transitive subgroup
of Sg. This is proved in the appendix.

3 Dimension of G-symmetric quasi-values

If a quasi-value is symmetric with respect to a set of permutation, it is also
symmetric with respect to any permutation they generate in Sy, hence the set
of all symmetries of a quasi-value is always a group. For a finite set {2 and a
group G C S of permutations we denote by Ag the set of all G-symmetric
quasi-values.

First we show how to represent Ag as a space of matrices. Each game value ¢
can be represented as a map from I to R by the natural identification I, ~ R*.
Choosing the unanimity basis on I" (Def. 3) and the canonical basis (e;);c on
R, we may represent linear game values as matrices of the size [2| x (2! —1).
The null player property applied to the unanimity basis implies ¢(ur)({i}) =0
for each i ¢ R, because such player i doesn’t contribute to any coalition in the
game ug. As a consequence, a matrix A with elements (a;r)ic, rcg corresponds
to a linear game value satisfying the null-player-property iff a;z = 0 for all pairs
(i, R) such that i ¢ R.

Further, the game value satisfies the efficiency axiom iff for any nonempty
R C 2, o(ur)(§2) = 1, which translates to a constraint on matrix coefficients
> icr@ir =1 for each § # R C 2.

The G-symmetry of a game value requires ¢(g-v) = g - (¢(v)) for any game
v and permutation g € G, the action of G on I" defined by (?7?). An element ug
from the unanimity basis satisfies (g - ug)(S) = ur(¢g=(S)) = uyr(S), so the
unanimity basis is invariant with respect to the group action and g - ur = ugrg.
The symmetry axiom is equivalent to

((g- ) (ur))({7}) = (p(ugr))({7}),



for all i € 2 and R C 2. The left-hand side is equal to ¢(ug)({g~ti}). In

the matrix representation of ¢, the symmetry axiom translates to the condition

a(g-1i) R = Q4 (gR), O Simply a;r = a(4i) (yr) for all i € £ and R C §2.
Summarising this, we have the following.

Observation 1 Choosing the unanimity basis of I' and the canonical basis of
R? ~ I, Ag may be identified with a set of matrices A = (a;r) with elements
satisfying the following equations:

—arp=01ifi¢ R,
— The sum of elements in each column is 1,
— Matriz elements a;r are constant on the orbits of the G-action g - (i, R) =

(9i,9R).

All these conditions are linear equations for matrix elements a;r and they are
all satisfied for the Shapley value. So, Ag is nonempty affine space.

Theorem 2. Let X = {(i,R);i € R C 2}, x = {R; 0 # R C 2} and let
G C Sg be a group of permutations acting on sets X and x, extending naturally
its action on 2. Then the dimension of Ag is | X/G| — |x/G|. Ezplicitly it can
also be expressed as

dZz
dim Ag = (dT:f —Z6)|2,2.2)+1 (2)

where Zg is the cycle index of the group G [8, p. 85]

Zo(wra) = g 2 A el 3)

TeG
Jr(m) denotes the number of cycles of length k in the permutation .

Proof. We will call the G-orbits of X “orbits” and the G-orbits of x “metaorbits”
and identify elements of Ag with matrices as described in 1.

Let p: X — x be the map (i, R) — R. For any z := (i,R) € X and g € G,
p(gx) € g(p(x)). For any R C {2, the stabilizer Gr acts on R and R splits
into kg orbits {Ry,..., Ri,} with respect to this action. If R’ = gR is on the
same metaorbit, then the stabilizer of R’ is gGrg~' and g maps any G g-orbit
R; C R bijectively onto a Gr-orbit R, C R'. So, kg = kr and |R;| = |R}]|
for i = 1,...,kgr. For a meta-orbit m, we define k,, := kg for any R € m and
lmi = |R;| for i =1,..., kp,. These numbers are independent on the choice of R.

We will say that a metaorbit m contains an orbit Gz, if p(z) € m. A metaor-
bit m contains k,, orbits. For any metaorbit m € x/G containing the orbits
{01,...,0k, }, we may choose real numbers ¢,,; such that Zl | Cmilms = 1 with
km—1 degrees of freedom. Choosing such numbers ¢,,; for all metaorbits m gives

Y (km—1)= Y kn—x/Gl =|X/G| - [x/C

mex/G meM



degrees of freedom. Any such choice of ¢,,; defines a matrix of game-value oper-
ator given by
_Jemiifie R CRem
“REY0 i i¢ R

These are exactly matrices A constant on the orbits of X satisfying >, a;gr =1
for all R and a;r = 0 for all 4 ¢ R. The number of degrees of freedom for the
choice of ¢,,; is equal to the dimension of Ag. This proves the first part.

Burnside lemma [21, p. 58] enables to express the number of orbits of a group
action in an explicit way. If a finite group H acts on a finite set Y, then

Y/H| = llthz;{ {y € Y; h(y) = 4} (4)

A permutation m € G fixes those sets R C (2 that don’t split any cycle of .
There exists 2# <¥<les(™) guch sets, 2# <veles(m) _ 1 of them nonempty. So,

1
IX/Gl = (g Do 2* ™) 1.

T

Elements of X fixed by 7 are pairs (4, R) such that ¢ € R, (i) = ¢ and 7(R) = R.
There exists # fizedpoints(m)*2% eyeles(m)=1 gych pairs. We derived the following
equation:

1
dim Aqg = —( Z (#fixedpoints(m) * Q#Cydes(”)_l) — Z Q#Cydes(”)) + 1.

|G| TeG TeG
The statement of the theorem follows from this by a direct calculation. [J

The cycle index Zg is known in a more explicit form than (3) for many subgroups
of S, and it has also been generalized and computed for finite classical groups [9].

Further, we will show for which groups G the dimension of Ag is zero, i.e.
for which G the only quasi-value they contain is the Shapley value. In Section
2.2, we defined a group G C S, to be supertransitive, if the stabilizer G acts
transitively on R for each subset R C (2. In other words, if for each R and
each i,j € R, there exists a g € G such that g(R) = R and g -7 = j. We will
show that this condition is equivalent to the existence of a unique G-symmetric
quasi-value.

Theorem 3. Let {2 be finite and G < Sq,. There exists a unique G-symmetric
quasi-value if and only if G acts supertransitively on (2. Equivalently, this is if
and only one of the following conditions is satisfied:

— G = Sp, the full symmetric group

— 2] > 3 and G = Agq, the alternating group

— 2] = 6 and G is the image of an exotic embedding S5 — Sg (see Sec-
tion 2.2).



Proof. We will work with the matrix representation of Ag, described in Obser-
vation 1. Let (a;r) be a matrix representing a value in Ag.

If the action of G on {2 is supertransitive, then for each ) # R C {2 and each
i,7 € R, there exists an element g € G such that ¢g(i) = j and g(R) = R. For a
particular (} # R C 2, all elements {(¢, R); i € R} lie on the same G-orbit of G,
so all these elements are equal. The null-player property implies that a;r = 0 for
i ¢ R and together with the efficiency condition we obtain that for each i € R,
a;r = 1/|R|. This implies uniqueness.

If the action of G on (2 is not supertransitive, then there exists a nonempty
subset R C {2 such that the stabilizer G has not a transitive action on R. So,
R contains at least two G g-orbits. We may define the matrix a;z as follows.
In the matrix column corresponding to R we choose a5 =0ifi ¢ R and the
other elements a;z arbitrary, constant on G g-orbits and such that -, a;5 = 1.
For all R’ on the G-orbit of R, we define the coefficients a;g in a unique way
so that they are constant on the G-orbits and the remaining matrix elements
may be equal to elements of the original Shapley matrix. In this way, we may
construct an infinite number of different G-symmetric quasi-values which proves
that dim Ag > 1.

For the classification part, it remains to prove that the groups listed in the
theorem are exactly the groups acting supertransitively on {1,...,n}. The proof
of this is technical and we postpone it to the Appendix (Chapter 5). O

4 Consequences

4.1 Examples

First we will give some examples of groups and G-symmetric quasi-values. In all
these examples, we assume that the player set {2 consists of n players.

Example 1. Let G = {id} be the trivial group. In this case, any quasi-value is
G-symmetric. Consider a selector 7y : 2 — 2 with y(R) € R for all ) # R C 2.
Now we define the value ¥ as

Yi(v) = Y Ay(R) (5)

i=v(R)

where A,(R) € R is a Harsanyi dividend of the coalition R C (2 defined by
Ay(R) = Y g p(—1)EI=ITIy(T). This value satisfies efficiency, null player prop-
erty and linearity. However, the number of maps v : 2 — (2 satisfying v(R) € R
is much larger, so many of the quasi-values defined by (5) are affine dependent.
The cycle index of the trivial group is Z(z1) = =7 and substituting into (2)
yields dim Ag = n2"~! — 2" + 1. For n > 4, this is strictly smaller than n! — 1
which implies that marginal vectors are affine dependent. It was shown in [6]
that such values satisfy the axioms for quasi-values. 3

3 In the matrix representation, such values correspond to matrices a; r = div(R)-



Example 2. (“Caste system”) The set {2 is split into k& nonempty disjoint
subsets (“castes”) (21,...,82 and G is chosen so that it guarantees equality
within each 2;. Formally, G = {7 € Sq; Vi w(£2;) = 2;}.

Some examples of G-symmetric quasivalues have been described in the liter-
ature. The Owen value, first described in [20], can be obtained as the expected
value of marginal vectors (see Section 4.2), if we first randomely choose an order
of the castes and then the order of the players within each caste. Another related
concept is the weighted Shapley value, studied by Kalai and Samet in [14]. Here
an order of the castes is given and within each caste, the profit is diveded among
players proportional to their weights. In the case of equal weights of all players,
the weighted Shapley value is symmetric with respect to all G-permutations.

The cycle index is Zg = Hle Zs,, - We know from the proof of Theorem
2 that the number of metaorbits is |x/G| = |—é” PO 2#eyeles(9) Tn particular, for
G = Sy, |x/G| = n+ 1, because metaorbits of S,, are O, = {R C §2; |R| = s}
for s =0,1,...,n. This enables as to calculate

1 . . 1 -
anl( 2,..,2) = o 22]1+-..+]n — ~ ZQ#Cg;cles( ) |X/Sn| —n41.
s s

If G = S,, then the Shapley value is the only game value, so it follows
from Theorem 2 that ( —Zs,)|@,..2)+1=0 and “Zsx 2| (2,....2) = n. So, for

G = Hr:l

Zs,,

d k
S e = Z e T] Zsa oy = S 120 ] +122)

s#r r=1 S#T

and
dim A (zk: 192, f[ (14 [92.]) +
m = —
¢ e VU

For the case of two castes k = 2 this simplifies to |£21] x |£23].

Example 3. (Cyclic group) This example illustrates that transitive group action
does not imply a unique G-symmetric quasi-value. If G is the cyclic group C,, C
Sp, the cycle index is Z¢, = %Zﬂn ¢(f)x?/f, where ¢(f) is the Euler totient
function ¢(f) = p}fl Ypr—1).. .pFr=1(p,.—1), where f = p]fl ...p¥r is the prime
number decomposition.[8, p. 86]. Substituting into the formula in Theorem 2
gives

1 .
di —_on—1_ = n/f )
imAg =2 n2¢(f)2 +1
fin
In the case of n = 3, the dimension turns out to be 22 — %(23 +2x2)+1=1,

so there exists a one-dimensional space of quasi-values symmetric with respect
to cyclic permutations of players.



4.2 Shapley-value as an expected value of non-uniformly distributed
marginal vectors

Suppose that 2 = {1,2,...,n}, i.e. an order is given on the set of player. For
a game v € I' and a permutation © € S,,, we may define a quasi-value m, by

(Mmz)(v)r1) = v(7(1)) and
(mr (0)) iy = v({m(1), 7(2), ..., 7(0)}) = o({x(1), 7(2), .., 7(i — 1)})

for i = 2,...,n. We call m, the marginal operator and m,(v) the marginal
vector [p. 19][2]. It corresponds to a situation where the players arrive in the
order m(1),7(2),...,m(n) and each player is assigned the value of his or her

contribution to the coalition of all players that have arrived before. The eval-
uation of m, on a game ug from the unanimity basis is m.(ug)({7(i)}) =
ug(m(l),...,7(i)) — ug(mw(1),...,m(i — 1)) which is equal to 1 if and only if
(1) € R and 7(j) ¢ R for j > i and 0 otherwise. After the identification 1, we
can represent m, is as a matrix

1iff i € R and 77 1(i) = max7 1 (R)
(mﬂ') iR — .
0 otherwise.

A theorem of Weber [23] shows that if 7 is a random permutation taken from
a uniform distribution on S, then for any game v, the expected value of a
marginal operator m, is exactly the Shapley value. This can be generalized to
the following statement.

Proposition 1. Let G be a subgroup of S,, and A™ be a probability distributioin
on S, constant on the right cosets {G -}y, i.e. AT = A9™ for all g € G and
7w € Sy. Then Y A" m, € Ag is a G-symmetric quasi-value.

Proof. We will show that the identity holds if evaluated on games from the
unanimity basis of I'. For the game up (Definition 3), we start with the following
equation:

(g - mx)(ur) = mgx(ugr). (6)
To prove this, we evaluate both sides on {i} and rewrite the left-hand side to
the equivalent equation

(mx(ur) ({97 (D)}) = (mg(ugr))({i})-

Both sides are equal to 1 if and only if 771(g71(i)) = max7~1(R) and 0 oth-
erwise, which proves (6) for all R C §2, i € 2 and g € G. The G-symmetry of
ZWE s, ATmy follows from

ZAm7T UR) ZA’Tgm,r UR) ZAmgﬂugR

TES, TESy TESy
= Z ATmg x(ugr) = Z AT mTr (g -ur) Z AT mTr ’ ( R)
TES, gm=n'€S, ' €Sn

where we used (6) in the second and A™ = A9™ in the third equality. O
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An immediate consequence of the classification Theorem 3 is that for |£2| > 3
any quasi-value symmetric with respect to the alternating group A, is already
the Shapley value. It follows from the last proposition that ) _A™m;, is the
Shapley value not only for A™ = % but also for A™ = > for w even and A" = Qn;,s
for m odd, s € [0, 2]. In fact, there are many other possibilities how to express the
Shapley value as a convex combination of marginal operators. The space of all
quasi-values on §2 is (n2"~! — 2" + 1)-dimensional and the set of all probability
distributions on S,, is a (n! — 1)-dimensional convex region in R™, so there are
at least n! — n2" 4+ 2"~1 — 2 degrees of freedom for the choice of a distribution
A™ such that )~ A™m, = Shapley.

Exponentially many (with respect to n) of these probability distributions A™
can be constructed as follows. Choose 2y C {2, [£29] > 3 and define Sy to be a
group of all permutations 7 acting identically on 2\ £2y. Choose « € (0,2) and
define a probability distribution on S, by

% lf e ¢ S()
A" ($2) = { & if 7 € Sp and 7 is even
%ifﬂ'eso and 7 is odd
One can verify that the corresponding expected value of marginal operators m,;
is the Shapley value. For a set {21, $2,..., 2} s.t. £2; € 2; for all i and j,
the vectors (A7 (§2;) — %)Z € R™ are linearly independent and the distributions
(A™(£2;)); are affine independent.

5 Appendix

Here we finish the proof of Theorem 3 by the classification of supertransitive
groups. Our proof is based on a classification of set-transitive permutation groups
given by Beamont and Petrson in 1955 [1]. Another proof of the supertransitive
groups classification was given by Michal Jordan on mathoverflow [13].

Theorem 4. G is a supertransitive subgroup of S, if and only if one of the
following conditions holds:

— G is the full symmetric group S, for some n,
— G is the alternating group A,, for n > 3,
— G is conjugate to the image of an exotic embedding of S5 to Sg.

Proof. Let G C S, be a group of permutations acting supertransitively on
{1,...,n}. This means that the stabilizer of each A C {1,...,n} acts tran-
sitively on A. Let B C {1,...,n} and i,j ¢ B. Then G acts transitively on
B U {i,j} and there exists a permutation = € G taking BU {i} to BU {j} such
that 7(j) = ¢. This implies that for each A and B s.t. |A| = |B| > 1, there exists
a permutation 7w € G s.t. 7(A) = B. If |A| = |B| = 1, the same is true because
super-transitivity implies transitivity. We have shown that if the action of G is
super-transitive, it is also set-transitive.



If G has a supertransitive action on {1,...,n}, then its order has to be
divisible by each k < n, because each k-element set A is isomorphic to G/G 4,
hence |G| = |A| x |G 4]. So, G has to be divisible by the lowest common multiple
of {1,...,n}.

Beamont and Petrson classified all set-transitive permutation groups in [1].
It follows that such subgroups of S,, are exactly the full symmetric group S, for
any n, the alternating group A,, for n > 2 and 5 exceptions. The first and second
exceptions are subgroups of S5 of order 10, resp. 20. These groups cannot have
a supertransitive action on {1,...,5}, because the lowest common multiple of
{1,...,5} is 60. Two other exceptions in Beamont’s classification are subgroups
of Sy of orders 504 and 1512. These numbers are not divisible by the lowest com-
mon multiple of {1,...,9} so we can exclude them as well. The last exception is
a subgroup of Sg of order 120. This groups is equivalent to the exotic embedding
of S5 to Sg and we will show that it acts supertransitively on Sg.

In [12], the authors realize this group action on {1,...,6} as the conjugate
action of S5 on its six Sylow 5-subgroups. Using this realisation, we may show
that this action is super-transitive by direct calculation. Let as denote the Sylow
5-subgroups by I = ((12345)), IT = ((12354)), ITI = ((12435)), IV = ((12453)),
V = ((12534))) and ((12543)). The conjugate action of S5 acts transitively on
{I,...,VI}. An elementary calculation shows that the image of a product of
two disjoint transpositions in S5 is the product of two disjoint transpositions
in Se, e.g. (1,2)(3,4) € S5 — (I,V)(III,VI) in the above realisation. So,
for any permutation (ay,...,ayy) of (I,...,VI), there exists an element in S
interchanging Ay and Ay, Arrr and Ajy and fixing Ay and Ay ;. This imme-
diately implies both 2-, 3-, 4- and 5-supertransitivity, so this subgroup of Sg is
super-transitive.

It remains to prove that A,, is supertransitive if and only if n > 3. First note
that Ay = {id}, reps. Az = ((123)) are not super-transitive, because no element
of these groups takes 1 to 2 and preserves {1,2}. Let n >3 and A C {1,...,n}
be a k-set. If £ < n — 1, then any permutation of A can be extended to an even
permutation of {1,...,n}. If k =n — 1 > 2, then for each i,j € A, there exists
an even permutation of A taking ¢ to j and hence the complement of ¢ to the
complement of j. This completes the proof. [
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