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A New Approach to Interval-Valued Choquet
Integrals and the Problem of Ordering in
Interval-Valued Fuzzy Set Applications
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Abstract—We consider the problem of choosing a total order
between intervals in multiexpert decision making problems. To
do so, we first start researching the additivity of interval-valued
aggregation functions. Next, we briefly treat the problem of pre-
serving admissible orders by linear transformations. We study the
construction of interval-valued ordered weighted aggregation op-
erators by means of admissible orders and discuss their proper-
ties. In this setting, we present the definition of an interval-valued
Choquet integral with respect to an admissible order based on an
admissible pair of aggregation functions. The importance of the
definition of the Choquet integral, which is introduced by us here,
lies in the fact that if the considered data are pointwise (i.e., if they
are not proper intervals), then it recovers the classical concept of
this aggregation. Next, we show that if we make use of intervals in
multiexpert decision making problems, then the solution at which
we arrive may depend on the total order between intervals that has
been chosen. For this reason, we conclude the paper by proposing
two new algorithms such that the second one allows us, by means
of the Shapley value, to pick up the best alternative from a set of
winning alternatives provided by the first algorithm.

Index Terms—Interval-valued Choquet integral, interval-valued
decision making, interval-valued fuzzy set, interval-valued linear
order, interval-valued ordered weighted aggregation (OWA) oper-
ators, Shapley value.

I. INTRODUCTION

IN recent years, there has been an increasing interest in the
use of extensions of fuzzy sets such as interval-valued fuzzy

sets [37], [49] and Atanassov’s intuitionistic fuzzy sets [6], [7]
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A. Kolesárová is with the Institute of Information Engineering, Automation
and Mathematics, Slovak University of Technology, 81237 Bratislava, Slovakia
(e-mail: anna.kolesarova@stuba.sk).

R. Mesiar is with the Slovak University of Technology, 812 43 Bratislava,
Slovakia, and also with the Institute of Information Theory and Automa-
tion, Czech Academy of Sciences, 18208 Prague, Czech Republic (e-mail:
mesiar@math.sk).

Digital Object Identifier 10.1109/TFUZZ.2013.2265090

in many different fields such as image processing [5], [10],
[18], classification [29], or consensus [9]. For many of these
applications, such as, for instance, multiexpert decision making
[40], there exists an order relation that should be fixed and that
plays a crucial role for the proposed results. Here, for illustrative
purposes, we choose a multiexpert decision making example,
but we could use any other example from the cited fields.

A multiexpert decision making problem [9] consists of finding
from a set X = {x1 , . . . , xp}, (p ≥ 2) the alternative which is
the most accepted by a set of n experts E = {e1 , . . . , en}, (n >
2).

In [13], it is stated that the resolution of a multiexpert decision
making problem consists of two steps:

1) Uniform representation of information. In this phase, the
heterogeneous information for the problem (the informa-
tion can be represented by means of preference orderings
or utility functions or fuzzy preference relations) is trans-
lated into homogeneous information by means of different
transformation functions [13], [20].

2) Application of a selection procedure. This procedure con-
sists of two phases:

a) Aggregation phase. A collective preference struc-
ture is built from the set of individual homogeneous
preference structures.

b) Exploitation phase. A given method is applied to the
collective preference structure to obtain a selection
of appropriate alternatives.

We often assume that the information provided by the n ex-
perts is homogeneous and represented by means of fuzzy pref-
erence relations. Otherwise, we apply the techniques developed
in [13]. Moreover, when we use fuzzy preference relations, the
following comes out.

1) In the aggregation phase, we often employ ordered
weighted aggregation (OWA) operators to build the col-
lective relation, and we use, hence, the usual total order
between real numbers.

2) In the exploitation phase, we often aggregate the elements
in each row by means of the Choquet integral. Once the
elements of each row have been aggregated, we order the
resulting numerical values in decreasing order, and we
take as the best alternative the one corresponding to the
row with the highest numerical value. Clearly, the usual
total order between real numbers is again used; therefore,
there are not noncomparable results.

There are problems for which the results these methods pro-
vide are not good enough. This fact can be due to different
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reasons. One of the most common ones is that the numerical
values provided by the experts to describe their preference of
one alternative versus the others are not the most suitable ones.
Sometimes, an expert has doubts on the exact numerical value
to be assigned. When this happens, from our point of view, it
is advisable to ask the experts to describe their preferences by
means of intervals [8]. That is, experts tell us that they prefer
an alternative xi versus alternative xj with a numerical value
which is between a and a, and we represent this fact by means
of the interval [a, a].

However, when we use an interval-valued representation of
preferences, the following problem, which does not exist for
real numbers, arises: choosing a linear (total) order between
intervals.

The choice of the linear order is a very difficult problem.
It may happen that the application forces us to take a specific
order, but usually, this is not the case. It is important to remark
that, in general, this problem is not taken into account in the
literature on the subject [2], [16], [35], and, for the most part, the
order between intervals defined in [42] is considered. However,
we think that the choice of the order in this kind of problems
is determinant, since different orders can lead to completely
different solutions of the same problem [12].

Moreover, in several aggregation techniques, linear orders of
processed data are necessary, and thus, linear orders of intervals
(refining their standard partial order) are of great interest. One
possible approach solving this problem was recently proposed
in [42]. In [12], a new approach to defining linear orders on the
lattice of closed subintervals of the unit interval was proposed.
It was based on the so-called admissible pairs of aggregation
functions, i.e., pairs of aggregation functions satisfying some
appropriate conditions. A crucial advantage of this approach is
that it recovers the most of usual examples of linear orders that
have appeared in the literature, such as that of Xu and Yager [42],
as well as the lexicographic ones.

It is clear that in applications, not only the order is important,
but also some other tools. In particular, aggregation functions
have shown themselves as a very useful tool to deal with many
different problems [19], [21].

These considerations have led us to consider the following
main objectives for this paper:

1) to analyze interval-valued OWA (IVOWA) operators;
2) to present an approach to the interval-valued Choquet in-

tegral such that, whenever the considered intervals are
pointwise (i.e., when we consider degenerate intervals),
we recover the classical Choquet integral;

3) to present some examples in which the relevance of the or-
der choice in interval-valued multiexpert decision making
problems is made explicit;

4) to propose an algorithm for consensus between the differ-
ent total orders that are used in a given problem.

Regarding objective 2, we focus on the specific case of
interval-valued Choquet integrals [15], [22], since such aggrega-
tion techniques, as in the real case, provide the basis for properly
defined averaging aggregation functions [19]. In this sense, we
intend to carry on a study how interval-valued OWAs and Cho-
quet integrals can be defined, and in particular, which of linear

orders defined by means of admissible pairs are of interest for a
meaningful definition of interval-valued Choquet integrals.

For the consensus algorithm in objective 4, we are going to use
the Shapley value. The Shapley function, as one of the most im-
portant payoff indices, has been deeply researched in game the-
ory, which satisfies several reasonable axioms; see [31]. Many
researchers have noticed that the Shapley function is a powerful
tool as an interaction index among players among coalitions.
Therefore, whenever we have several winning alternatives in
the exploitation phase of an interval-valued multiexpert deci-
sion making problem, this index allows us to know which is the
most suitable one, as it takes into account all of the winning
coalitions.

Nevertheless, we want to stress that we have written this
algorithm as an illustration of the influence that the choice of
a linear order for an application may have in its final output. It
would also be possible to look for possible algorithms in many
other fields such as image processing [5], [18] or classification
[29].

The structure of this paper is the following. In the next section,
we start by investigation of the additivity of interval-valued ag-
gregation functions. In Section III, we briefly consider the prob-
lem of preserving admissible orders by linear transformations.
Section IV is devoted to the construction of IVOWA operators
by means of admissible orders and discussion of their properties.
Section V contains the definition of an interval-valued Choquet
integral with respect to an admissible order based on an admis-
sible pair of aggregation functions, including the discussion of
comonotone additivity of such integrals and two open problems.
Then, we present a multiexpert decision making algorithm that
makes use of interval-valued OWA operators and Choquet inte-
grals. Next, we analyze the relevance of the linear order which
has been chosen for our algorithm, and we prove that different
orders lead to different results. We present a method to select a
winning alternative in this case by means of Shapley values. We
finish with some concluding remarks.

II. ADDITIVITY OF INTERVAL-VALUED

AGGREGATION FUNCTIONS

The aim of this section is to investigate the additivity
of interval-valued aggregation functions processing interval-
valued inputs. We begin by recalling the notion of the aggrega-
tion function.

Let (L,�) be a bounded partially ordered set (poset) with a
smallest element (bottom) 0L and a greatest element (top) 1L . A
mapping A : Ln → L is an n-ary (n ∈ N, n ≥ 2) aggregation
function on (L,�) if it is �-increasing, i.e.,
for all x = (x1 , . . . , xn ), y = (y1 , . . . , yn ) ∈ Ln

A(x) � A(y) whenever x1 � y1 , . . . , xn � yn

and satisfies the boundary conditions

A(0L , . . . , 0L ) = 0L , A(1L , . . . , 1L ) = 1L .

If L = [0, 1] and �=≤ is the standard order of reals, we get the
usual definition of an aggregation function on the unit interval
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(see, e.g., [19]). For more details on aggregation functions on
posets, we refer, e.g., to [24].

As we intend to study interval-valued aggregation functions
processing interval-valued inputs, consider L to be the set
L([0, 1]), i.e., the set of all closed subintervals of the unit inter-
val:

L([0, 1]) = {[a, b] | 0 ≤ a ≤ b ≤ 1}.

Throughout this section, consider on L([0, 1]) the standard par-
tial order of intervals, i.e., the binary relation ≤2 defined by

[a, b] ≤2 [c, d] ⇔ a ≤ c ∧ b ≤ d . (1)

(L([0, 1]),≤2) is a poset with the bottom [0, 0] and top [1, 1].
We are interested in finding conditions under which aggregation
functions on (L([0, 1]),≤2) are additive.

First assume that ϕ : (L([0, 1]),≤2) → (L([0, 1]),≤2) is an
additive increasing function, i.e., for all [a, b], [c, d] ∈ L([0, 1]):

1) if [a, b] + [c, d] ∈ L([0, 1]), then ϕ([a, b] + [c, d]) =
ϕ([a, b]) + ϕ([c, d]);

2) if [a, b] ≤2 [c, d], then ϕ([a, b]) ≤2 ϕ([c, d]).
The values of ϕ can be written as

ϕ([a, b]) = [f([a, b]), g([a, b])] (2)

where f, g : (L([0, 1]),≤2) → ([0, 1],≤) are additive and in-
creasing scalar-valued functions of intervals that satisfy, for
each [a, b] ∈ L([0, 1]), the property f([a, b]) ≤ g([a, b]).

For all intervals [p, q], [r, s] ∈ L([0, 1]) whose sum is also in
L([0, 1]), we have

f([p + r, q + s]) = f([p, q] + [r, s]) = f([p, q]) + f([r, s]).

Thus, putting p = a, q = a, r = 0, and s = b − a, we obtain

f([a, b]) = f([a, a]) + f([0, b − a]) = f1(a) + f2(b − a)

where f1 and f2 are additive [0, 1] → [0, 1] functions. As f1 sat-
isfies the Cauchy equation f1(x + y) = f1(x) + f1(y) when-
ever x, y, and x + y are in [0, 1], it is of the form f1(x) = αx
with α ≥ 0 (see [1]). Similarly, f2(x) = βx, where β ≥ 0. Thus

f([a, b]) = αa + β(b − a) = (α − β)a + βb.

Consider a > 0. Then, from f
([

a
2 , b

])
≤ f([a, b]), it follows

that α ≥ β, i.e., γ = α − β ≥ 0. Therefore, f([a, b]) = γa +
βb, where γ, β ≥ 0. Similarly, g([a, b]) = δa + εb, with δ, ε ≥
0. As for each interval [a, b], f([a, b]) ≤ g([a, b]), considering
a = 0 and b > 0, we can derive β ≤ ε, and if a = b = 1, we
obtain γ + β ≤ δ + ε.

Summarizing, for the functions f and g in (2), we have

f([a, b]) = γa + βb, g([a, b]) = δa + εb

where

γ, β, δ, ε ≥ 0, β ≤ ε, γ + β ≤ δ + ε. (3)

Proposition 1: Consider a mapping A : (L([0, 1]))n →
L([0, 1]). Then

1) A is additive and increasing (w.r.t. ≤2) if and only if

A([a1 , b1 ], . . . , [an , bn ])
[

n∑

i=1

(γiai + βibi) ,

n∑

i=1

(δiai + εibi)

]

(4)

where βi, γi, δi , εi ≥ 0, such that βi ≤ εi , γi + βi ≤
δi + εi , and

∑n
i=1(δi + εi) ≤ 1.

2) A is an additive aggregation function on (L([0, 1]),≤2) if
and only if the coefficients in (4) satisfy

βi, γi, δi , εi ≥ 0

βi ≤ εi , γi + βi = δi + εi

and
n∑

i=1

(δi + εi) = 1.

3) A is an additive aggregation function on (L([0, 1]),≤2)
with idempotent element [0, 1] if and only if

A([a1 , b1 ], . . . , [an , bn ]) =

[
n∑

i=1

wiai,
n∑

i=1

wibi

]

where wi ≥ 0,
∑n

i=1 wi = 1.
The proof of this claim is simple and therefore omitted.

III. ADMISSIBLE ORDERS

A. Admissible Orders Generated by Aggregation Functions

A crucial property for defining some types of aggregation
functions on [0, 1], e.g., OWA operators [44], is the linearity of
the standard order of reals which makes possible to compare
any two inputs. The order ≤2 considered in the previous section
is only a partial order on L([0, 1]).

In [12], the notion of admissible orders on L([0, 1]) was intro-
duced and studied. Recall that a binary relation � on L([0, 1]) is
an admissible order if it is a linear order on L([0, 1]) refining≤2 .
The latter property means that for all [a, b], [c, d] ∈ L([0, 1]), if
[a, b] ≤2 [c, d], then [a, b] � [c, d] as well. As shown in [12],
admissible orders on L([0, 1]) can be generated by means of
pairs of aggregation functions on [0, 1]. For the convenience
of the reader, we repeat from [12] that information concerning
admissible orders generated by aggregation functions, which is
relevant for our next work.

Let K([0, 1]) = {(a, b) ∈ [0, 1]2 | a ≤ b}. Intervals from
L([0, 1]) are in a one-to-one correspondence with points from
K([0, 1]), and a partial (linear) order � on one of these sets in-
duces a partial (linear) order on the other, i.e., [a, b] � [c, d] ⇔
(a, b) � (c, d).

Proposition 2 (see [12]): Let A, B : [0, 1]2 → [0, 1] be
two aggregation functions, such that for all (x, y), (u, v) ∈
K([0, 1]), the equalities A(x, y) = A(u, v) and B(x, y) =
B(u, v) can hold only if (x, y) = (u, v). Define the relation
�A,B on L([0, 1]) by

[x, y] �A,B [u, v] if and only if

A(x, y) < A(u, v)

or A(x, y) = A(u, v) and B(x, y) ≤ B(u, v). (5)

Then, �A,B is an admissible order on L([0, 1]).
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We say that a pair (A,B) of aggregation functions described
in Proposition 2 generates the order �A,B . It is called an ad-
missible pair of aggregation functions. In this study, we will
consider admissible orders generated by continuous aggrega-
tion functions only. Moreover, as proved in [12], if (A,B) is
an admissible pair of continuous aggregation functions, then
there exists an admissible pair of aggregation functions (A′, B′)
such that A′, B′ are idempotent continuous aggregation func-
tions, and the orders generated by the pairs (A,B) and (A′, B′)
coincide.

Example 1: Consider the following relations on L([0, 1]):
1) [a, b] �Lex1 [c, d] ⇔ a < c or (a = c and b ≤ d);
2) [a, b] �Lex2 [c, d] ⇔ b < d or (b = d and a ≤ c).

It is clear that both these relations are admissible orders
on L([0, 1]). The order �Lex1 is generated by the pair
(P1 , P2), where Pi, i = 1, 2, is the projection to the ith
coordinate, and similarly, �Lex2 is generated by (P2 , P1).

The orders �Lex1 and �Lex2 are called the lexicographical
orders with respect to the first or second coordinate, respectively.

A particular way of obtaining admissible orders on L([0, 1]) is
defining them by means of Kα mappings. For α ∈ [0, 1], define
the mapping Kα : [0, 1]2 → [0, 1] by

Kα (a, b) = a + α(b − a). (6)

The values of Kα can be written as Kα (a, b) = (1 − α)a + αb;
thus, Kα is a weighted mean. If for α, β ∈ [0, 1], α 
= β, the
relation �α,β on L([0, 1]) is given by

[a, b] �α,β [c, d] ⇔ Kα (a, b) < Kα (c, d)

or (Kα (a, b) = Kα (c, d) and Kβ (a, b) ≤ Kβ (c, d)) (7)

then it is an admissible order on L([0, 1]) generated by an admis-
sible pair of aggregation functions (Kα,Kβ ) [12]. The follow-
ing important property of orders �α,β was also proved in [12].

Proposition 3 (see [12]):
1) Let α ∈ [0, 1[. Then, all admissible orders �α,β with β >

α coincide. This admissible order will be denoted by�α+ .
2) Let α ∈]0, 1]. Then, all admissible orders �α,β with β <

α coincide. This admissible order will be denoted by�α−.
Remark 1
1) The lexicographical orders �Lex1 and �Lex2 are re-

covered by orders �α,β as the orders �0,1=�0+ and
�1,0=�1−, respectively.

2) Xu and Yager defined the order �X Y on L([0, 1]) by

[a, b] �X Y [c, d] ⇔ a + b < c + d

or a + b = c + d ∧ b − a ≤ d − c

see [42]. �X Y is an admissible order which corresponds
to the order �0.5+ . From the statistical point of view,
this order corresponds to the ordering of random variables
based on the expected value as the primary criterion, and
on the variance as the secondary criterion (in the case
of uniform distributions this is a linear order over their
supports).

B. Admissible Orders Preserved by Linear Transformations

In this section, we will discuss admissible orders �A,B on
L([0, 1]) which are preserved by any increasing linear transfor-
mation, i.e., orders satisfying for any increasing linear transfor-
mation R, given by R(x) = px + q, with p > 0, the property

[a, b] �A,B [c, d] ⇒ R([a, b]) �A,B R([c, d]) (8)

provided that all intervals are in L([0, 1]). Note that R([a, b])
means [R(a), R(b)].

Theorem 1: An order �A,B on L([0, 1]) generated by a con-
tinuous admissible pair (A,B) of aggregation functions is pre-
served by any increasing linear transformation, i.e., satisfies
(8), if and only if �A,B coincides with �α− or �α+ for some
α ∈ [0, 1].

Proof: The sufficiency is only a matter of processing. Con-
sider an admissible pair (A,B) of continuous aggregation func-
tions such that the linear order �A,B generated by (A,B), as
mentioned in Proposition 2, is preserved by any increasing linear
transformation. For simplifying, the notation put �A,B =�. As
mentioned earlier, we may suppose that both A and B are idem-
potent. As we are only interested in inputs (a, b) ∈ K([0, 1]),
we may suppose, without loss of generality, that both A and
B are symmetric. Suppose that for intervals [a, b], [c, d] ∈
L(]0, 1[) (closed subintervals of the interval ]0, 1[), it holds
A(a, b) < A(c, d). Then, for any increasing linear transfor-
mation R such that R([a, b]), R([c, d]) ∈ L([0, 1]), it holds
that R([a, b]) ≺ R([c, d]). If A(R(a), R(b)) = A(R(c), R(d)),
then, due to the continuity of A, there exists an ε > 0 such
that [a + ε, b + ε] ∈ L([0, 1]) and A(a + ε, b + ε) < A(c, d)
and, consequently, A(R(a), R(b)) = A(R(a + ε), R(b + ε)) =
A(R(c), R(d)). However, A is constant on the rectangle deter-
mined by points (a, b) and (a + ε, b + ε). This contradicts the
fact that it cannot exist a continuous order isomorphism be-
tween the unit square with a linear order that extends ≤2 and
the [0, 1] interval with the usual order (see [12]). Thus, nec-
essarily A(R(a), R(b)) < A(R(c), R(d)). As a consequence,
we obtain that A(a, b) = A(c, d) implies A(R(a), R(b)) =
A(R(c), R(d)), and from the continuity of A, this result holds on
K([0, 1]), i.e., increasing linear transformations preserve level
lines of A|K([0, 1]). However, this means that these level lines
are necessarily parallel segments, and thus, we have A = Kα

for all (a, b) ∈ K([0, 1]) and some α ∈ [0, 1].
Next, if A|K([0, 1]) = K0 = Min, then since � refines ≤2 ,

we obtain �=�0+ . Similarly, if A|K([0, 1]) = K1 , then nec-
essarily, �=�1−.

Let A|K([0, 1]) = Kα for some α ∈]0, 1[. The aggregation
function B should be injective on each level line of A in K([0,1]).
Suppose that B(0, 1) < B(α, α). Due to continuity (and injec-
tivity on the segment connecting (0, 1) and (α, α), which is just
the α-level line of A), it holds B(0, 1) < B(cα, cα + 1 − α) <
B(α, α) for each c ∈]0, 1[, which corresponds to the admissi-
ble order �α−. Due to the preservation of the order � by any
increasing linear transformation, this result can be extended to
any level line of A, and thus, �=�α−.

Similarly, if B(0, 1) > B(α, α), we get �=�α+ . �
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IV. INTERVAL-VALUED ORDERED WEIGHTED

AGGREGATION OPERATORS

One type of aggregation functions, that are very often dis-
cussed in the literature and applied in practice, are OWA opera-
tors introduced by Yager [44]. Their definition strongly depends
on the fact that the interval [0, 1] with the usual order between
real numbers is a linearly ordered set.

Definition 1: Let w = (w1 , . . . , wn ) ∈ [0, 1]n with w1 +
· · · + wn = 1 be a weighting vector. An OWA operator OWAw

associated with w is a mapping OWAw : [0, 1]n → [0, 1] de-
fined by

OWAw (x1 , . . . , xn ) =
n∑

i=1

wix(i) (9)

where x(i) , i = 1, . . . , n, denotes the ith greatest component of
the input (x1 , . . . , xn ).

It is clear that this definition in the case of real weights can
be extended straightforwardly to the interval-valued setting.

The concept of OWA has been extended to the interval-valued
setting (or more generally, to the type-2 fuzzy sets setting) by
Zhou et al. ( [51], see also [52] for a fast implementation of
the method, and [14]), where weights are given by means of
type-1 fuzzy sets. In these works, the authors, taking into account
the concept of alpha-level aggregation, define OWA operators
with linguistic weights. Our definition, which takes as weights
real numbers in [0,1] and focuses on the choice of the linear
order between intervals, can be seen as a particular case of the
Zhou et al. definition.

Definition 2: Let � be an admissible order on L([0, 1]), and
w = (w1 , . . . , wn ) ∈ [0, 1]n , w1 + · · · + wn = 1, a weighting
vector. An IVOWA operator associated with �, and w is a
mapping IV OWA�

w : (L([0, 1]))n → L([0, 1]) defined by

IV OWA�
w ([a1 , b1 ], . . . , [an , bn ]) =

n∑

i=1

wi · [a(i) , b(i) ] (10)

where [a(i) , b(i) ], i = 1, . . . , n, denotes the ith greatest interval
of the input intervals with respect to the order �.

Note that the arithmetic operations on intervals are given as
follows:

w · [a, b] = [wa,wb] and [a, b] + [c, d] = [a + c, b + d].

Observe that IVOWA operators in Definition 2 are well defined,
since

w1a(1) + · · · + wna(n) ≤ w1 + · · · + wn = 1

and analogously for the upper bound. The increasing mono-
tonicity of real-valued weighted arithmetic means ensures that
the resulting set on the right-hand side of (10) is an interval
[a, b], a ≤ b.

Moreover, although the choice of a permutation (.) in formula
(10) need not be unique (this may happen only if some inputs
are repeated), it has no influence on the resulting output interval.

It is worth saying that Xu and Da in [41, Def. 3.1] also
present a notion of an IVOWA operator, which they call
the uncertain OWA operator, and they use it for a linear

objective-programming model. Their construction differs from
ours mainly in the fact that the authors consider a specific,
fixed order for the intervals rather than a general one. More-
over, Xu [39] carries on a detailed study of OWA operators in
Atanassov’s intuitionistic setting.

Definition 2 extends the usual definition of OWA operators,
as shown in the next proposition.

Proposition 4: Let � be an admissible order on L([0, 1]), and
let w = (w1 , . . . , wn ) ∈ [0, 1]n with w1 + · · · + wn = 1 be a
weighting vector. Then

OWAw (x1 , . . . , xn ) = IV OWA�
w ([x1 , x1 ], . . . , [xn , xn ]).

Proof: Observe that x(1) ≥ . . . ≥ x(n) implies [x(1) , x(1) ] ≥2
. . . ≥2 [x(n) , x(n) ] and, if the order � is admissible, also
[x(1) , x(1) ]  . . .  [x(n) , x(n) ]. Therefore

OWAw (x1 , . . . , xn )

= [OWAw (x1 , . . . , xn ), OWAw (x1 , . . . , xn )]

=

[
n∑

i=1

wix(i) ,
n∑

i=1

wix(i)

]

=
n∑

i=1

wi [x(i) , x(i) ]

= IV OWA�
w ([x1 , x1 ], . . . , [xn , xn ]).

�
However, in general, the representability of IVOWA operators

in the form

IV OWA�
w ([a1 , b1 ], . . . , [an , bn ])

= [OWAw (a1 , . . . , an ), OWAw (b1 , . . . , bn )] (11)

does not hold, as shown in the following example.
Example 2: Consider the weighting vector w = (1, 0, 0)

and the lexicographical order �Lex1 . For the intervals[ 1
2 , 3

4

]
,
[ 1

3 , 1
2

]
, and

[ 1
3 , 1

]
, it holds that

[
1
3
,
1
2

]
�Lex1

[
1
3
, 1

]
�Lex1

[
1
2
,
3
4

]
.

Therefore

IV OWA�L e x 1
w

([
1
2
,
3
4

]
,

[
1
3
,
1
2

]
,

[
1
3
, 1

])
=

[
1
2
,
3
4

]

and on the other hand
[
OWAw

(
1
2
,
1
3
,
1
3

)
, OWAw

(
3
4
,
1
2
, 1

)]
=

[
1
2
, 1

]
.

Note that Xu [39] presents a specific example, for Atanassov’s
intuitionistic case, in which representability holds.

Now, let us investigate several properties of IVOWA
operators.

Example 3: Consider the Xu and Yager’s order �X Y (i.e.,
the order �0.5+ ), here simply denoted by �, and the weighting
vector w = (0.8, 0.2). Then, for intervals

x = [0.5, 0.5], y = [0.1, 1] and z = [0.6, 0.6]
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it holds that x � y � z, and therefore

IV OWA�
w (x,y) =0.8 · [0.1, 1] + 0.2 · [0.5, 0.5]=[0.18, 0.9]

IV OWA�
w (z,y) =0.8 · [0.6, 0.6] + 0.2 · [0.1, 1]=[0.5, 0.68].

Observe that although x = [0.5, 0.5] ≤2 [0.6, 0.6] = z (i.e., we
have increased the first input interval with respect to the order
≤2), the obtained values of the IV OWA�

w operator are not com-
parable in the order ≤2 , i.e., IV OWA�

w is not an aggregation
function with respect to ≤2 .

Example 4: Consider the order �A,B generated by an ad-
missible pair (A,B) of aggregation functions, where A(x, y) =
(
√

x +
√

y)/2 and B(x, y) = y, and the IVOWA operator as-
sociated with the weighting vector w =

( 2
3 , 1

3

)
. Let

x = [0.25, 0.25], y = [0, 1], z = [0.25, 0.28].

Then, x �A,B y �A,B z and

IV OWA
�A , B
w (x,y) =

2
3
y +

1
3
x =

[
1
12

,
3
4

]
,

IV OWA
�A , B
w (z,y) =

2
3
z +

1
3
y =

[
1
6
, 0.52

]
.

Next, A
( 1

12 , 3
4

)
= 0.57735 and A

( 1
6 , 0.52

)
= 0.5646679,

which means that IV OWA
�A , B
w (x,y) �A,B IV OWA

�A , B
w

(z,y), and this contradicts the �A,B - increasing monotonic-
ity of IV OWA

�A , B
w operator.

In the next part, the notation Kα ([a, b]) means that we have
assigned to an interval [a, b] ∈ L([0, 1]) the same value as to the
corresponding point (a, b) ∈ K([0, 1]) by the mapping Kα , i.e.,
Kα ([a, b]) = a + α(b − a).

Proposition 5: Let � be an admissible order on L([0, 1])
generated by a pair (Kα,B), and let IV OWA�

w be an IVOWA
operator defined by (10). Then

Kα

(
IV OWA�

w ([a1 , b1 ], . . . , [an , bn ])
)

= OWAw (Kα ([a1 , b1 ]), . . . , Kα ([an , bn ])) (12)

independently of B.
Proof: It is enough to observe that if [a(1) , b(1) ]  . . . 

[a(n) , b(n) ], then Kα ([a(1) , b(1) ]) ≥ . . . ≥ Kα ([a(n) , b(n) ]) as
well. Next

Kα

(
IV OWA�

w ([a1 , b1 ], . . . , [an , bn ])
)

= Kα

(
n∑

i=1

wi · [a(i) , b(i) ]

)

= Kα

([
n∑

i=1

wia(i) ,

n∑

i=1

wib(i)

])

=
n∑

i=1

wiKα ([a(i) , b(i) ])

= OWAw (Kα ([a1 , b1 ]), . . . , Kα ([an , bn ])) . �

Corollary 1: Let �α,β be an admissible order on L([0, 1])
introduced in (7). Then, the IVOWA operator IV OWA

�α , β
w is

an aggregation function on L([0, 1]) with respect to the order
�α,β .

Proof: To simplify notation, write in the proof � instead
of �α,β . We have to show the increasing monotonicity of
IV OWA�

w operators with respect to the order �. If we in-
crease any input [ai, bi ] to [a′

i , b
′
i ] in �-order, then, certainly,

Kα ([ai, bi ]) ≤ Kα ([a′
i , b

′
i ]), and thus, by Proposition 5, we have

Kα

(
IV OWA�

w ([a1 , b1 ], . . . , [ai, bi ], . . . , [an , bn ])
)

≤ Kα

(
IV OWA�

w ([a1 , b1 ], . . . , [a′
i , b

′
i ] . . . , [an , bn ])

)
.

If the inequality is strict, the result follows. If it turns into
equality, it is possible only if Kα ([ai, bi ]) = Kα ([a′

i , b
′
i ]), but

then Kβ ([ai, bi ]) < Kβ ([a′
i , b

′
i ]). If the increase from [ai, bi ] to

[a′
i , b

′
i ] does not influence the ordinal relation of single inputs,

then

Kβ

(
IV OWA�

w ([a1 , b1 ], . . . , [ai, bi ], . . . , [an , bn ])
)

=
n∑

i=1

wiKβ

(
[a(i) , b(i) ]

)
≤ w1Kβ

(
[a(1) , b(1) ]

)

+ · · · + wiKβ

(
[a′

(i) , b
′
(i) ]

)
+ · · · + wnKβ

(
[a(n) , b(n) ]

)

= Kβ

(
IV OWA�

w ([a1 , b1 ], . . . , [a′
i , b

′
i ], . . . , [an , bn ])

)
.

If this is not a case, then necessarily there are some inputs
[aj , bj ] with

Kα ([ai, bi ]) = Kα ([aj , bj ])

but

Kβ ([ai, bi ]) < Kβ ([aj , bj ]) < Kβ ([a′
i , b

′
i ])

(observe the freedom in the determination of permutation (.) in
Definition 2 if there are some ties). Then

r = Kβ

(
IV OWA�

w ([a1 , b1 ], . . . , [a′
i , b

′
i ], . . . , [an , bn ])

)

− Kβ

(
IV OWA�

w ([a1 , b1 ], . . . , [ai, bi ], . . . , [an , bn ])
)

depends on inputs [aj , bj ] satisfying Kα ([aj , bj ])=Kα ([ai,
bi ]), and [ai, bi ], [a′

i , b
′
i ] only, and due to the linearity of Kβ ,

the result follows. �
Note that IVOWA operators can be seen as modified and

particular cases of intuitionistic OWA operators (see, e.g., [26],
[39], and [45]). However, the approaches in all mentioned papers
are different from the presented one, as the aggregation of inter-
vals is splitted into the aggregation of their left bounds (mem-
bership functions of intuitionistic fuzzy sets) and aggregation of
right bounds (complements to nonmembership functions).

Recently, OWA operators on complete lattices were proposed
and discussed in [25]. As a particular case, OWA operators on
intervals in the form (11) are obtained.

V. INTERVAL-VALUED CHOQUET INTEGRAL

A. Interval-Valued Choquet Integral Based on Aumann’s
Approach

OWA operators are a particular case of more general aggre-
gation functions called Choquet integrals. In this section, we
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introduce discrete interval-valued Choquet integrals of interval-
valued fuzzy sets based on admissible orders �A,B . However,
in the first subsection, we recall an extension of the Choquet in-
tegral to the interval-valued setting, which has been discussed,
e.g., in [22] and [50]. A similar idea led Aumann [4] to introduce
his integral of set-valued functions. These concepts are of the
same nature as is the Zadeh extension principle [49].

Let U 
= ∅ be a finite set. Recall that a fuzzy measure m is a
set function m : 2U → [0, 1] such that

m(∅) = 0, m(U) = 1, and m(A) ≤ m(B)

whenever A ⊆ B.

The discrete Choquet integral (or expectation) of a fuzzy set
f : U → [0, 1] with respect to m is defined by

Cm (f) =
n∑

i=1

f(uσ (i))
(
m

(
{uσ (i) , . . . , uσ (n)}

)

− m
(
{uσ (i+1) , . . . , uσ (n)}

))
(13)

where σ : {1, . . . , n} → {1, . . . , n} is a permutation such that

f(uσ (1)) ≤ f(uσ (2)) ≤ · · · ≤ f(uσ (n))

and {uσ (n+1) , uσ (n)} = ∅, by convention. The discrete Choquet
integral can be extended to the interval-valued setting as follows.

Definition 3: Let F : U → L([0, 1]) be an interval-valued
fuzzy set and m : 2U → [0, 1] a fuzzy measure. The discrete
Choquet integral Cm (F ) of an interval-valued fuzzy set F with
respect to m is given by

{Cm (f) | f : U → [0, 1], f(ui) ∈ F (ui)}. (14)

From the properties of the standard Choquet integral of fuzzy
sets, it follows that

Cm (F ) = [Cm (f∗), Cm (f ∗)] (15)

where f∗, f ∗ : U → [0, 1] are given by f∗(ui) = ai and
f ∗(ui) = bi , and [ai, bi ] = F (ui).

Several properties of the discrete interval-valued Choquet
integral Cm are discussed in [22] and [50]. For example, this
integral is comonotone additive, i.e.,

Cm (F + G) = Cm (F ) + Cm (G)

whenever F, G : U → L([0, 1]) are such that interval F (ui) +
G(ui) ⊆ [0, 1] for each ui ∈ U , and F,G are comonotone, i.e.,

(f ∗(ui) − f ∗(uj ))(g∗(ui) − g∗(uj )) ≥ 0

and

(f∗(ui) − f∗(uj ))(g∗(ui) − g∗(uj )) ≥ 0

for all ui, uj ∈ U .

B. Interval-Valued Choquet Integral With Respect to
�A,B -Orders

The basic idea of the original Choquet integral [15] is based
on the linear order of reals allowing two different looks at func-
tions. The vertical look is based on function values and is a
background of the Lebesgue integral, while the horizontal look

is linked to level cuts and is a basis not only for the Choquet
integral but for several other types of integrals as well (see [23]),
including among others, the Sugeno integral [32]. In this sec-
tion, we introduce a discrete interval-valued Choquet integral
of interval-valued fuzzy sets based on an (admissible) order of
intervals in L([0, 1]) directly, without using the notion of the
Choquet integral of scalar-valued fuzzy sets.

Let �A,B be an admissible order on L([0, 1]) given by a
generating pair of aggregation function (A,B) as explained in
Proposition 2. The discrete interval-valued Choquet with respect
to the order �A,B is defined as follows.

Definition 4: Let F : U → L([0, 1]) be an interval-valued
fuzzy set and m : 2U → [0, 1] a fuzzy measure. The discrete
interval-valued Choquet integral with respect to an admis-
sible order �A,B (�A,B -Choquet integral for short) of an
interval-valued fuzzy set F with respect to m, with the nota-
tion C�A , B

m (F ), is given by

C�A , B
m (F ) =

n∑

i=1

F (uσA , B (i))
(
m

(
{uσA , B (i) , . . . , uσA , B (n)}

)

−
(
m

(
{uσA , B (i+1) , . . . , uσA , B (n)}

)
(16)

where σA,B : {1, . . . , n} → {1, . . . , n} is a permutation such
that

F (uσA , B (1)) ≤ F (uσA , B (2)) ≤ . . . ≤ F (uσA , B (n))

and {uσA , B (n+1) , uσA , B (n)} = ∅, by convention.
Observe that if F (ui) = [ai, bi ], i = 1, . . . , n, then (16) can

be written as
[

n∑

i=1

aσA , B (i)
(
m

({
uσA , B (i) , . . . , uσA , B (n)

})

− m
({

uσA , B (i+1) − uσA , B (n)
}))

n∑

i=1

bσA , B (i)
(
m

({
uσA , B (i) , . . . , uσA , B (n)

})

− m
({

uσA , B (i+1) − uσA , B (n)
})

)

]

.

Next, for any fixed F : U → L([0, 1]) such that the correspond-
ing f∗ and f ∗ are comonotone, i.e., for all ui, uj ∈ U

(f∗(ui) − f∗(uj )) (f ∗(ui) − f ∗(uj )) ≥ 0

it holds that for any admissible pair (A,B) of aggregation func-
tions, the Choquet integrals of F introduced in Definitions 3 and
4 coincide, i.e., C�A , B

m (F ) = Cm (F ).
The concept of an interval-valued Choquet integral C�A , B

m

introduced in Definition 4 extends the standard discrete Choquet
integral given by (13). Indeed, if F : U → L([0, 1]) is singleton-
valued, i.e., it is a fuzzy subset of U , then

C�A , B
m (F ) = Cm (F ) = Cm (F )

independently of A and B.
Moreover, observe that if m is a symmetric fuzzy mea-

sure [36], then, similarly to the classical case, C�A , B
m =
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IV OWA
�A , B
m , where w = (w1 , . . . , wn ), wi = m({i, i +

1, . . . , n}) − m({i + 1, . . . , n}), i = 1, . . . , n, with conven-
tion {n + 1, n} = ∅ .

C. Comonotone Additivity Based on �A,B -Orders

Recall that in [30], a comonotone additive aggregation func-
tion H : [0, 1]n → [0, 1] is just the Choquet integral with respect
to a fuzzy measure m given by m(Y ) = H(1Y ). It can easily
be seen that the Choquet integral based on an order �A,B ,
where �A,B is generated by an admissible pair (A,B) of ag-
gregation functions, is comonotone additive. To simplify nota-
tion, put �A,B =�. The comonotonicity of two interval vec-
tors x = ([a1 , b1 ], . . . , [an , bn ]) and y = ([c1 , d1 ], . . . , [cn , dn ])
means that there is a common permutation σ : {1, . . . , n} →
{1, . . . , n} such that

[aσ (1) , bσ (1) ] ≤2 . . . ≤2 [aσ (n) , bσ (n) ]

and

[cσ (1) , dσ (1) ] ≤2 . . . ≤2 [cσ (n) , dσ (n) ].

In general, for two different linear orders �1 and �2 , the cor-
responding Choquet integrals differ, and thus, the comonotone
additivity cannot be a sufficient condition for defining the �-
Choquet integral. This integral is also ≤2-increasing and, thus,
a ≤2-aggregation function on L([0, 1]). However, in general, a
�-Choquet integral is not �-comonotone additive.

Example 5: Let U = {1, 2}. Consider the weakest fuzzy
measure m∗ on U (i.e., m∗(Y ) = 0 for each Y � U ) and
the aggregation functions A, B on [0, 1], A(u, v) = u2 +v 2

2 and
B(u, v) = uv. Let � be the linear order on L([0, 1]) generated
by the pair (A,B).

As [0.5, 0.5] � [0.2, 0.7], the interval vectors

x = ([0.5, 0.5], [0.2, 0.7]), y = ([0.2, 0.2], [0.2, 0.2])

are clearly �-comonotone.
Note that any input interval vector u = ([a1 , b1 ], [a2 , b2 ]) is

an interval-valued function on U , given by u(i) = [ai, bi ]. By
Definition 4, C�

m ∗(x) is the �-minimal input, and hence

C�
m ∗(x + y) = C�

m ∗([0.7, 0.7], [0.4, 0.9]) = [0.4, 0.9]

which violates the comonotone additivity of C�
m ∗ .

Hence, �-comonotone additivity is not a necessary condition
to define the �-Choquet integral axiomatically.

Open problem 1: Is there an axiomatic characterization of the
�-Choquet integral?

Proposition 6: Let �α,β be a linear order on L([0, 1]) in-
troduced in (7). Then, the �α,β -Choquet integral is �α,β -
comonotone additive.

Proof: Recall that �α,β is a linear order generated by the
aggregation functions A = Kα and B = Kβ , where Kα (a, b) =
a + α(b − a) = (1 − α)a + αb and, analogously, Kβ .

We first prove that if [a1 , b1 ] �α,β [c1 , d1 ] and [a2 , b2 ] �α,β

[c2 , d2 ], then, in addition

[a1 + a2 , b1 + b2 ] �α,β [c1 + c2 , d1 + d2 ].

If Kα (a1 , b1)=(1 − α)a1 + αb1 < (1 − α)c1 +αd1 =Kα (c1 ,
d1), then due to Kα (a2 , b2) ≤ Kα (c2 , d2), it holds that

Kα (a1 + a2 , b1 + b2) = Kα (a1 , b1) + Kα (a2 , b2)

< Kα (c1 , d1) + Kα (c2 , d2) = Kα (c1 + c2 , d1 + d2).

Thus

[a1 + a2 , b1 + b2 ] �α,β [c1 + c2 , d1 + d2 ].

A similar result can be shown in all remaining cases, i.e.,
when Kα (a1 , b1) = Kα (c1 , d1) and Kα (a2 , b2) < Kα (c2 , d2),
or when

Kα (a1 , b1) = Kα (c1 , d1), Kα (a2 , b2) = Kα (c2 , d2)

Kβ (a1 , b1) ≤ Kβ (c1 , d1), Kβ (a2 , b2) ≤ Kβ (c2 , d2).

Then, if x,y ∈ (L([0, 1]))n are �α,β -comonotone interval vec-
tors, for a permutation σ related to �α,β -comonotonicity,
it also holds that [aσ (1) + cσ (1) , bσ (1) + dσ (1) ] �α,β . . . �α,β

[aσ (n) + cσ (n) , bσ (n) + dσ (n) ], and the �α,β -comonotone ad-
ditivity of the �α,β -Choquet integral follows from its
definition. �

Open problem 2: Is it true that a �α,β -comonotone additive
aggregation function C on L([0, 1]), where the order �α,β is
defined by (7), is necessarily the �α,β -Choquet integral?

VI. APPLICATION TO MULTIEXPERT DECISION MAKING

Consider n experts E = {e1 , . . . , en}, (n > 2) and a set of p
alternatives X = {x1 , . . . , xp}, (p ≥ 2). Our goal is to find the
alternative which is the most accepted one by the n experts.

Many times experts have difficulties to determine the exact
value of the preference of an alternative xi against xj for each
i, j ∈ {1, . . . , p}. When this happens, they usually give their
preferences by means of elements in L([0, 1]), i.e., by means of
intervals. In these cases, we say that the preference of the expert
is given by a numerical value inside the interval.

Interval-valued fuzzy preference relations have been studied
by many authors, as, for instance, Turksen and Biljic [34] or
Xu [38]. In this paper, as already stated in Section I, we use
them to illustrate the importance that the choice of a linear order
has for many applications.

A. Interval-Valued Preference Relations

We know that an interval-valued fuzzy binary relation RIV on
X is defined as an interval-valued fuzzy subset of X × X , i.e.,
RIV : X × X → L([0, 1]). The interval RIV (xi, xj ) = RIV i j

denotes the degree to which elements xi and xj are related
in the relation RIV for all xi, xj ∈ X [17], [38]. Particularly,
in preference analysis, RIV i j

denotes the degree to which an
alternative xi is preferred to alternative xj .

Each expert e provides his/her preferences by means of an
interval-valued fuzzy relation RIV e

with p rows and p columns
and where the elements in the diagonal are not considered, i.e.,
RIV e

, shown at the bottom of the next page,
To find the solution alternative for the problem, we propose

the following algorithm:
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Aggregation phase:

IV D1) Choose a linear order � between intervals.
IV D2) Choose a weighting vector w.
IV D3) Calculate the interval-valued collective fuzzy rela-

tion RIV c using the operators IV OWA�
w .

Exploitation phase:

IV D4) For each row i in RIV c , build the fuzzy measure
mi :

mi({xij})i 
=j =

⎛

⎜
⎜
⎝

Rij + Rij
∑p

l = 1
l 
= i

(Ril + Ril)

⎞

⎟
⎟
⎠

2

mi({xij , xik}) i 
= j
i 
= k
j < k

=

⎛

⎜
⎜
⎝

Rij + Rij + Rik + Rik
∑p

l = 1
l 
= i

(Ril + Ril)

⎞

⎟
⎟
⎠

2

. . . (17)

that is, given i ∈ {1, . . . , p}, for every A ⊆ {1, . . . , n}\{i}

mi({xij |j ∈ A}) =

⎛

⎜
⎜
⎝

∑
j∈A Rij + Rij

∑p
l = 1
l 
= i

(Ril + Ril)

⎞

⎟
⎟
⎠

2

.

IV D5) For each row of RIV c , aggregate the intervals by
means of the interval-valued Choquet integral constructed
with the order � chosen in step IV D1) and the measure built
in step IV D4).

IV D6) Take as solution the alternative corresponding to
the row with the biggest interval with respect to the order �
chosen in step IV D1).

Algorithm 1
Remarks:
I.− Note that if the preference relations provided by the ex-

perts are numerical, then with this algorithm, we recover the
classical methods which are used for multiexpert decision mak-
ing and which make we use of the Choquet integrals in the
exploitation phase [46].

II.− In step IV D4, for each row, i.e., for each alternative,
we use (17) since the values obtained with this measure are
proportional to the preferences provided by the experts for one

alternative against the others. This way, with this measure, we
take into account all the information originally provided by the
experts.

Proposition 7: The measure defined in (17) is superadditive,
i.e., for any two nonintersecting subsets A,B ∈ X,A ∩ B = ∅

mi(A ∪ B) ≥ mi(A) + mi(B)

for each row i = 1, . . . , p (18)

Proof: The fact follows from the superadditivity of the
quadratic function f(x) = x2 on [0, 1]. �

III.− Note that we do not require that RIV e
is reciprocally

additive [17], [27], i.e., we do not demand the following prop-
erty:

Rei j
+ Rej i

= 1 and Rej i
+ Rei j

= 1.

The advantage of not demanding it is that we do not modify the
preferences provided by the experts in order to ensure additivity.

B. Choice of the Best Alternative Using the Shapley Value

The result of Algorithm 1 depends on the order � and the
weighting vector w that we use. In both cases, the choice we
make is linked to the application in which we are working.
Usually, the choice of the weighting vector is easier, since the
weights are often related to the quantifiers given in [44], and
it is the application which determines that we have to consider
aggregations of the type: most of the experts say . . . or at least
one half of the experts say . . . etc.

The choice of the order is more complicated. Both the appli-
cation and the experts should be taken into account. For instance,
if the experts are considered to be optimistic, it may be logical to
use the order�Lex2 . On the contrary, if they are considered to be
pessimistic, the order �Lex1 might be more suitable. However,
in many cases, we do not have this information. Clearly, if the
application determines the order to be used, we apply Algorithm
1 straight.

If we do not know which is the most appropriate order, we
propose to run Algorithm 1 with different orders, for instance,
with s different orders. If for all the considered orders we obtain
the same result, i.e., the same alternative, then we have finished
and we choose as the winning alternative that one. However, if
we obtain different winning alternatives, then we propose the
following algorithm (i.e., Algorithm 2):

SC1 Run Algorithm 1 for each of the s selected orders.

RIV e
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x1 x2 · · · , · · · , xp

x1 − [Re1 2
, Re1 2 ] [Re1 3

, Re1 3 ] · · · , [Re1 p
, Re1 p

]

x2 [Re2 1
, Re2 1 ] − [Re2 3

, Re2 3 ] · · · , [Re2 p
, Re2 p

]

· · · · · · · · · − · · ·

xp [Rep 1
, Rep 1 ] [Rep 2

, Rip 2 ] · · · · · · −

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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SC2 For each interval-valued collective fuzzy relation
RIV c

l with l = 1, . . . , s, calculate the fuzzy preference rela-
tion such that each of its elements is obtained as the midpoint
of the corresponding interval in the relation RIV c

l .
SC3 Calculate the arithmetic mean matrix MP of the s

fuzzy matrices obtained in Step SC2:

MP =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

− a12 a13 · · · , a1p

a21 − a23 · · · , a2p

· · · · · · · · · − · · ·

ap1 ap2 · · · ap(p−1) −

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

SC4 Build the measure (19), shown at the bottom of the
page, that is, for each A ⊆ {1, . . . , p}

m({xi |i ∈ A}) =
(∑

i∈A

∑
j∈{1,...,p}\{i} aij

∑n
i=1

∑
j∈{1,...,p}\{i} aij

)2

.

SC5 Using the measure m from step SC4, calculate the
Shapley value:

ϕ(xi) =
∑

A⊆X \{xi }

1

n

(
n − 1

|A|

) (m(A ∪ {xi}) − m(A))

(20)
for each of the solutions obtained in step SC1.

SC6 Take as solution the alternative corresponding to the
highest Shapley value.

Algorithm 2
Remarks:
I.−We use the Shapley value ϕ since, once the winning alter-

natives xi have been calculated with Algorithm 1 (i = 1, . . . , s),
ϕ(xi) measures the relevance of alternative xi in possible coali-
tions with other alternatives.

II.− The advantage of using the measure given in (19) is
that it takes into account all the preference values provided by
all the experts. This way, the Shapley value is calculated using
the same matrix MP for all the winning alternatives. This is the
main difference between the measure given in (17) and the one
given in (19). Note that the measure in (19) is superadditive as
well.

If with Algorithm 2 we get the same Shapley value for dif-
ferent alternatives and we cannot decide which is the best one,
then we can take as solution the one which appears most times
as winner when we run Algorithm 1 with the s different orders.

In [43], Xu proposes an example that we develop next. Xu
makes use of Atanassov’s multiplicative intuitionistic fuzzy sets

TABLE I
RANKINGS OF OBTAINED ALTERNATIVES

in the range [ 1
9 , 9]. We adapt this example to the interval-valued

setting [3] in the lattice [0, 1] by means of the linear transforma-
tion f(x) = 80x+1

9 .
Example 6: Four university students share a house, where they

intend to have broadband internet connection installed. There
are four options available to choose from, which are provided
by three internet service providers:

1) x1 : 1 Mb/s broadband;
2) x1 : 2 Mb/s broadband;
3) x1 : 3 Mb/s broadband;
4) x1 : 4 Mb/s broadband.
Since the internet service and its monthly bill will be shared

among the four students {e1 , e2 , e3 , e4} with the weight vector
w = (0.3, 0.3, 0.2, 0.2), they decide to perform a multiexpert
decision making problem. Suppose that the students reveal their
preference relations for the options independently and anony-
mously as in (21), shown at the bottom of the next page.

First, we run Algorithm 1 with the order �X Y in step IV D1)
and the operator IV OWA�X Y

w for step IV D3). Then, the col-
lective matrix RIV c is given as the second expression at bottom
of the next page.

Using the measure given in (17) for the exploitation phase in
Algorithm 1, we have

Altx1 [0.0493545, 0.865581]

Altx2 [0.0282378, 0.656260]

Altx3 [0.1158570, 0.881090]

Altx4 [0.0954420, 0.909448]. (22)

As the considered order is �X Y , we have the following
ranking of preferences: Altx4 X Y Altx3 X Y Altx1 X Y

Altx2 .
We repeat Algorithm 1 for �Lex1 ,�Lex2 , and �α,β with α =

1
3 and β = 2

3 . In Table I, we present the rankings of alternatives
that we have obtained.

From Table I, we deduce that depending on the consid-
ered order relation, the winning alternative may be the third
or the fourth. To decide which one of them we choose, we use
Algorithm 2. After calculating the midpoints of the intervals for

m({xi}) =
(

ai1 + · · · + ai(i−1) + ai(i+1) + · · · aip

a12 + · · · + a1p + · · · + ai1 + · · · + aip + · · · + ap1 + · · · + ai(p−1)

)2

m({xi, xj}) =
(

ai1 + · · · + ai(i−1) + ai(i+1) + · · · aip + aj1 + · · · + aj (j−1) + aj (j+1) + · · · ajp

a12 + · · · + a1p + · · · + ai1 + · · · + aip + · · · + ap1 + · · · + ai(p−1)

)2

· · · (19)
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each of the collective matrices, we have the following arithmetic
mean matrix:

MP =
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

− 0.466625 0.441875 0.498125

0.564125 − 0.3498125 0.37990625

0.57078125 0.662 − 0.486875

0.5121875 0.63209375 0.5196875 −

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Using the measure given in (19), we have the following Shap-
ley values:

ϕ(x3) = 0.2626754310172201

ϕ(x4) = 0.25479505453479. (23)

Therefore, we have to pick up alternative x3 .
Clearly, it would also be possible to choose other decision

making methods, as, for instance, the one proposed by Xu [38].
However, in this method, a real-valued compatibility is used to
determine the ranking between alternatives, whereas in our case,

RIV 1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

− [0.01, 0.675] [0.025, 0.9] [0.04375, 0.9]

[0.325, 0.99] − [0.015625, 0.7875] [0.025, 0.7875]

[0.1, 0.975] [0.2125, 0.984375] − [0.025, 0.9]

[0.1, 0.95625] [0.2125, 0.975] [0.1, 0.975] −

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

RIV 2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

− [0.025, 0.7875] [0.015625, 0.7875] [0.025, 0.9]

[0.2125, 0.975] − [0.01, 0.675] [0.015625, 0.7875]

[0.2125, 0.984375] [0.325, 0.99] − [0.04375, 0.9]

[0.1, 0.975] [0.2125, 0.984375] [0.1, 0.95625] −

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

RIV 3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

− [0.2125, 0.975] [0.025, 0.7875] [0.1, 0.975]

[0.025, 0.7875] − [0.015625, 0.675] [0.01, 0.675]

[0.2125, 0.975] [0.325, 0.984375] − [0.1, 0.95625]

[0.025, 0.9] [0.325, 0.99] [0.04375, 0.9] −

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

RIV 4 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

− [0.025, 0.9] [0.04375, 0.9] [0.04375, 0.95625]

[0.1, 0.975] − [0.01, 0.5625] [0.015625, 0.675]

[0.1, 0.95625] [0.4375, 0.99] − [0.04375, 0.9]

[0.04375, 0.95625] [0.325, 0.984375] [0.1, 0.95625] −

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (21)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

− [0.07825, 0.855] [0.02875, 0.855] [0.056875, 0.939375]

[0.18625, 0.942] − [0.013375, 0.68625] [0.0173125, 0.7425]

[0.1675, 0.9740625] [0.33625, 0.98775] − [0.056875, 0.916875]

[0.07375, 0.950625] [0.28, 0.9841875] [0.08875, 0.950625] −

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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we look for an interval-valued valuation of each alternative,
since our main objective is to make clear the importance of
the choice of the order between intervals for the applications.
Nevertheless, in future works, we intend to carry on an analysis
of possible combinations of our ideas with Xu’s method.

VII. CONCLUDING REMARKS

In this paper, starting from the notion of admissible order
built by means of admissible pairs of aggregation functions, we
have proposed the construction of interval-valued Choquet in-
tegrals. To do so, we have analyzed several properties of admis-
sible orders, with a special focus on their preservation by linear
transformations, which is a crucial characteristic for defining
Choquet integrals.

Our study of interval-valued Choquet integrals has allowed
us to define IVOWA operators. The interest of this definition
lies in the fact that admissible orders enable us to build many
different OWA operators, that, on one hand, extend usual opera-
tors, but, on the other hand, leave some free space for choosing
the most appropriate one for the problem under consideration.
The question of determining the most suitable linear order for
a given problem is of great interest, as we have exhibited for
multiexpert decision making when we use intervals to repre-
sent the alternatives. The theoretical studies in this paper have
allowed us to present an algorithm (i.e., Algorithm 1) similar
to the classical ones for decision making but using intervals.
Running this algorithm for different orders shows that depend-
ing on the order, the winning alternative may change. For this
reason, we have presented another algorithm (i.e., Algorithm 2)
to select the best winning alternative. To do so, we have made
use of the Shapley value.
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Anna Kolesárová was born in Bratislava, Slovakia.
She received the M.Sc. degree in mathematics and
physics from the Comenius University, Bratislava, in
1974 and the Ph.D. degree in mathematics from the
Slovak Academy of Sciences, Bratislava.

In 1998, she became an Associate Professor of
Applied Mathematics with the Slovak University of
Technology, Bratislava, where she is currently a Pro-
fessor with the Institute of Informatization, Automa-
tion and Mathematics, Faculty of Chemical and Food
Technology. Her research interests include measure

and integration theory, fuzzy set theory and its applications, and aggregation
functions.

Radko Mesiar received the Graduate degree in 1974
and the Ph.D. degree in 1979 with thesis title “Subad-
ditive Martingale processes,” both from the Faculty
of Mathematics and Physics, Comenius University,
Bratislava, Slovakia. He also received the D.Sc. de-
gree from the Institute of Information and Automa-
tion, Czech Academy of Sciences, Prague, Czech Re-
public, in 1996.

Since 1978, he has been a member of the Depart-
ment of Mathematics, Faculty of Civil Engineering,
Slovak University of Technology, Bratislava, where

he became an Associate Professor in 1983, a Full Professor in 1998, and is
currently the Head of the department. He has also been a Fellow Member of the
Institute of Information and Automation, Czech Academy of Sciences, since
1995, and of the Institute for Research and Applications of Fuzzy Modeling,
University of Ostrava, Ostrava, Czech Republic, since 2006. He is a coauthor
of two scientific monographs Triangular Norms (Norwell, MA, USA: Kluwer,
2000) and Aggregation Functions (Cambridge, U.K.: Cambridge Univ. Press,
2009), as well as five edited volumes. He is an author of more than 200 pa-
pers in WOS in journals such as Fuzzy Sets and Systems, Information Sciences,
the IEEE TRANSACTIONS ON FUZZY SYSTEMS, the International Journal of
General Systems, the Journal of Mathematical Analysis and Applications, the
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
Kybernetika, the European Journal of Operational Research, Applied Mathe-
matics Letters, and Nonlinear Analysis. He is the Founder and Organizer of the
International Conference on Fuzzy Sets Theory and Its Applications and of the
International Summer School on Aggregation Operators.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


