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Abstract—The mean defined by Bonferroni in 1950 (known
by the same name) averages all non-identical product pairs of
the inputs. Its generalizations to date have been able to capture
unique behavior that may be desired in some decision-making
contexts such as the ability to model mandatory requirements. In
this paper, we propose a composition that averages conjunctions
between the respective means of a designated subset-size parti-
tion. We investigate the behavior of such a function and note the
relationship within a given family as the subset size is changed.
We found that the proposed function is able to more intuitively
handle multiple mandatory requirements or mandatory input
sets.

Index Terms—Aggregation functions, Bonferroni mean,
mandatory criteria, decision making.

I. INTRODUCTION

The selection of an appropriate aggregation function is an
important step in any context where a summarized representa-
tion or overall evaluation of an input set is required. Although
standard functions such as the arithmetic mean or median often
produce reasonable results, in some situations more complex
aggregation functions are required in order to reflect the
preferences of decision makers or the nuances of the problem
at hand. There is no best aggregation function, so researchers
continue to search for new methods and study aggregation
behavior that could be useful in practical situations.

In the original paper where the Bonferroni mean was defined
[1], of particular interest were the inequalities associated with
different choices of the exponent parameters. It has gained
interest today as a useful aggregation function for decision
making, as generalizations of the Bonferroni mean proposed in
[2], [3] allow users to model an arbitrary number of mandatory
requirements whilst also taking into account weights and the
contribution of all inputs.

Semantically, the generalized Bonferroni mean takes the
average of the evaluations of each statement

xi AND the average of the remaining xj , j 6= i.

Here we propose a construction that considers all partitions
of the input set for a given size, i.e. we evaluate the statements,

the average of {xi : i ∈ E}

AND

the average of the remaining {xj : j ∈ Ec},

where Ec denotes the complement of E and each input x ∈
X = E∪Ec, e.g. for five inputs we can take the conjunctions
of the means of all combinations of 2 and 3 arguments.

This construction further generalizes that originally pro-
posed, however we can now enforce mandatory requirements
relating to coalitions of inputs. For instance, consider the
following table showing job applicants with their scores for
5 criteria.

TABLE I
JOB APPLICANT EVALUATIONS AGAINST MULTIPLE CRITERIA

Logan Betsy Remy Erik
Presentation 0 1 0.8 0.5
Communication 0 0.6 0.9 0.8
Leadership 0.9 0 0.5 1
Qualifications 1 0.3 0.7 0
Experience 1 1 0 0.5

Company X may decide that whilst presentation, commu-
nication and leadership are essential characteristics, formal
qualifications and experience are desirable but not mandatory.

If they were to average the scores using a weighted arith-
metic mean, Logan’s scores of zero for presentation and com-
munication (mandatory requirements) would be compensated
for by his experience and qualifications. On the other hand,
if they were to use a geometric mean (which will give an
output of zero if any inputs are zero), Remy’s score of zero
for experience would make him unemployable, even though
he scores quite well for the mandatory categories.

With the proposed operator, we can enforce that all scores
for presentation, communication and leadership should be
above zero for a non-zero output, however still take into
consideration the scores for experience and qualifications.



On the other hand, if Company X decided that they just
wanted at least 2 of the 3 essential characteristics to be
satisfied, this can also be modeled with the proposed approach.

The paper will be structured as follows. In Section II,
we will give an overview of aggregation functions and the
generalized Bonferroni mean. In Section III we define our
proposed operator which we will refer to as the Bonferroni
partition mean (BPM ). In Section IV we will outline some
of the important properties of this operator and then we
will provide some numerical examples in Section V before
concluding.

II. PRELIMINARIES

This section will give an overview of aggregation functions.
In particular, we will focus on averaging aggregation functions
and the generalized Bonferroni mean.

A. Aggregation Functions

Aggregation functions provide a single value that is usually
intended to give an overall representation of the input set.
Aggregation functions have become of increasing interest
with a number of monographs appearing in recent years
that detail their properties and how to construct them for
particular situations [4]–[6]. Although aggregation functions
can be defined over arbitrary real intervals, lattices and other
spaces, we will consider the following definitions over the
unit interval.

Definition 1: An aggregation function f : [0, 1]n → [0, 1]
is a function non-decreasing in each argument and satisfying
f(0, . . . , 0) = 0 and f(1, . . . , 1) = 1.

Aggregation functions can be classed according to their
behavior with respect to the minimum and maximum inputs.

Definition 2: An aggregation function is considered to be:
averaging when min(x) ≤ f(x) ≤ max(x), conjunctive
when f(x) ≤ min(x), disjunctive when f(x) ≥ max(x), and
mixed otherwise.

Due to the monotonicity of aggregation functions, averaging
behavior is equivalent to idempotency, i.e. f(t, t, ..., t) = t.

An important generalized family of averaging functions are
the weighted quasi-arithmetic means. We will refer to some
of their special cases throughout.

Definition 3: For a strictly monotone continuous generating
function φ : [0, 1] → [−∞,∞] and weighting vector w, the
weighted quasi-arithmetic mean is given by,

QAMw(x) = φ−1

(
n∑
i=1

wiφ(xi)

)
. (1)

Special cases include weighted arithmetic means,
WAM(x) =

∑n
i=1 wixi where φ(t) = t, weighted

power means PMq(x) =
(∑n

i=1 wix
q
i

)1/q
where φ(t) = tq

and weighted geometric means G(x) =
∏n
i=1 x

wi
i if

φ(t) = − ln t. The weights wi are usually non-negative and
sum to one.

This paper considers functions based on the Bonferroni
mean. The Bonferroni mean was defined in 1950 [1] and
generalizations have appeared since in [2], [3], [7], [8]. In its
original form, it is defined as follows.

Definition 4: Let p, q ≥ 0 and xi ≥ 0, i = 1, . . . , n. The
Bonferroni mean is the function

Bp,q(x) =

 1

n(n− 1)

n∑
i,j=1,i6=j

xpi x
q
j

 1
p+q

. (2)

The parameters p, q can take on any value and hence q = 0
(or p = 0) reduces the Bonferroni mean to a power mean (and
therefore any of the special cases). Adjusting the ratio p

q allows
the Bonferroni mean to graduate between the geometric mean
and the maximum operator. One can observe that there must
exist at least one pair (i, j) such that xi, xj > 0, to obtain a
non-zero output Bp,q(x) > 0.

In [3], the Bonferroni mean was expressed as
a composed aggregation function. We denote the
vector in [0, 1]n−1 that includes the arguments from
x ∈ [0, 1]n in each dimension except the i-th by
{xj : j 6= i} = (x1, . . . , xi−1, xi+1, . . . , xn).

Definition 5: [3]. Let M denote a 3-tuple of aggregation
functions < M1,M2, C >, with M1 : [0, 1]n → [0, 1], M2 :
[0, 1]n−1 → [0, 1] both averaging and C : [0, 1]2 → [0, 1] con-
junctive, with the diagonal of C denoted by dC(t) = C(t, t)
and its inverse diagonal d−1C . The generalized Bonferroni mean
is given by,

BM(x) = d−1C

(
M1

(
C
(
x1,M2({xj : j 6= 1})

)
, . . .

. . . , C
(
xn,M2({xj : j 6= n})

)))
. (3)

The original Bonferroni mean is returned where M1 =
WAM(x), M2 = PMq(x) and C = xpyq (with all weights
equal).

Although we usually choose C to be conjunctive (as it
generalizes the product operation), in principle it can be
any 2-variate function with an invertible diagonal. In [3] it
was shown that changing C from conjunctive to disjunctive
inversely affects the overall function behavior, i.e. if C is
conjunctive then BM tends toward the higher inputs while if
it is disjunctive then it will tend toward lower inputs.

If M1,M2 are weighted aggregation functions, they will
have weighting vectors of different dimension. Care should be
taken so that the weights are consistent with the application
and inputs. One option is to use stable weighting functions
[9], obtained in the following way.



Given a weighting vector u ∈ [0, 1]n, the vectors ui ∈
[0, 1]n−1, i = 1, . . . , n are defined by

uij =
uj∑
k 6=i uk

=
uj

1− ui
, ui 6= 1. (4)

Note that for every i, ui sums to one if and only if u sums
to one.

This allows one to either use the same weighting vector or
differing vectors if each stage of aggregation requires it. We
can now look at adapting this construction so that partitions
other than xi/{xj : j 6= i} can be used.

III. THE BONFERRONI PARTITION MEAN

With the formula given in Eq. (3), each component takes a
single input with the average of those remaining. This enables
us to use projections (i.e. weighting vectors with wi = 1
for some i and 0 otherwise) on M1 to enforce mandatory
requirements. We now propose a function that allows us to
pay attention to subsets based on all possible partitions of
k-ary and (n− k)-ary subsets.

Definition 6: Fix n ∈ N/{1} and k ∈ {1, . . . , n− 1}. Let
Mµ,Mk,Mn/k, C denote a 4-tuple of aggregation functions,

Mµ : [0, 1]p → [0, 1], where p =
(
n
k

)
,

Mk : [0, 1]k → [0, 1],
Mn/k : [0, 1]n−k → [0, 1], and
C : [0, 1]2 → [0, 1].

The Bonferroni partition mean is the function,

BPM(x) = d−1C
(
Mµ({C(Mk(xEi),Mn/k(xEci ))}i=1,...,p)

)
(5)

where Ei denotes the i-th subset of {1, . . . , n} when all k-
sized subsets are arranged in lexicographical ordering, C is a
function with a continuous strictly increasing (and invertible)
diagonal dC and inverse diagonal d−1C , and Mµ,Mk,Mn/k

are averaging.

We can recover the previous generalization of the Bonferroni
mean (Eq. (3)) with k = 1 and Mk(x) = x, and hence also
the original Bonferroni mean.

In this case we have three averaging functions. Consider
we use weighted functions such as quasi-arithmetic means,
It is straightforward enough to determine weighting vectors
for Mk and Mn/k from an initial weighting vector u for
consistency (i.e. analogously to the generalized Bonferroni
mean defined in the previous section), however how to weight
the resulting products aggregated by C requires a weight
to be associated with each set E. We hence consider a
framework for specifying all weights of the associated means
from a single set function µ, where a weight is allocated to

all subsets of the input vector {1, . . . , n}, normalized for a
given k. The following example helps illustrate this weighting
convention.

Example 1: Consider a Bonferroni partition mean defined
for n = 4 inputs. We denote the individual weights by

µ(1) = 0.4, µ(2) = 0.3, µ(3) = 0.2, µ(4) = 0.1.

For pairs we allocate the weights

µ(1, 2) = 0.5, µ(1, 3) = 0.2, µ(1, 4) = 0.1,

µ(2, 3) = 0, µ(2, 4) = 0.1, µ(3, 4) = 0.1,

and finally for 3-tuples we specify the weights

µ(1, 2, 3) = 0.4, µ(1, 2, 4) = 0, µ(1, 3, 4) = 0.5

and µ(2, 3, 4) = 0.1.

Note that for a given set size k, the weights add to 1.
If we set k = 2, then we can define the weighting vector for

Mµ directly from the p = 6 pairs, (0.5, 0.2, 0.1, 0, 0.1, 0.1).
We then obtain each weighting vector for Mk and Mn/k using
the individual weights, so for Ei = {1, 3}, Mk would use the
weighting vector ( µ(1)

µ(1)+µ(3) ,
µ(3)

µ(1)+µ(3) ) = (0.67, 0.33), while

Mn/k has the weights ( µ(2)
µ(2)+µ(4) ,

µ(4)
µ(2)+µ(4) ) = (0.75, 0.25)

and so on for other Ei.
Each µ then determines a family of BPM functions, k =

1, . . . , n− 1.
If Mµ,Mk and Mn/k are weighted arithmetic means and C

is the product operation, the weighting measure can be chosen
such that any choice of k will yield the same output for any
set of inputs.

Firstly, we can express the function as

BPM =

√√√√√√ ∑
E⊂N,|E|=k

µ(E)

∑
i∈E

µ(i)xi∑
i∈E

µ(i)
·

∑
j∈Ec

µ(j)xj∑
j∈Ec

µ(j)
.

As the two sets, E and Ec are complementary, it will be
the case that ∑

j∈Ec
µ(j) = 1−

∑
i∈E

µ(i)

and therefore if we choose each µ(E) such that it is equal
to

µ(E) =

(∑
i∈E

µ(i)

)(
1−

∑
i∈E

µ(i)

)
∑

F⊂N,|F |=k
µ(F )

, (6)

then the normalizing denominator sums from Mk and Mn/k

will cancel out. Since we take the products∑
i∈E

µ(i)xi ·
∑
j∈Ec

µ(j)xj

for all combinations of E,Ec, there will then be an equal
number of the µ(i)xi · µ(j)xj terms being added together,
regardless of the choice of k. For other averaging functions,



however, this will not be the case and so it will not generally
be possible to choose the weights in this way.

As we will see in Section V, The value of k (along with
the choice of means) can be used to control the number of
mandatory requirements.

For interpreting the weights of Mµ, it should be noted
that a high weight to µ(E) will be associated with the
conjunction of Mk(xE) and Mn/k(xEc), thus simultaneously
giving importance to E and Ec. Furthermore, in the previous
example where k = n− k = 2, the pair {x1, x2} is allocated
a weight of µ(1, 2) = 0.5 when aggregated by Mk but a
weight of µ(3, 4) = 0.1 when aggregated by Mn/k. The
weight combination and behavior of each of the averaging
operators hence will influence the overall function. We could,
for instance, choose Mk and Mn/k so that they favor higher
or lower inputs respectively, after which the weights in
Mµ would indicate which sets of inputs should given more
importance when they are high or when they are low.

IV. PROPERTIES

There are a number of properties that can be established for
the proposed operator which can help to guide its application.
After first showing that the function is an aggregation operator,
we will turn to results based on absorbing elements which
can help us define functions to model mandatory requirements.

Theorem 1: The Bonferroni partition mean defined in Eq.
(5) is an aggregation function.

Proof: The boundary conditions, BPM(0, . . . , 0) =
0, BPM(1, . . . , 1) = 1 and monotonicity follow from the
properties of the aggregation functions, Mµ,Mk,Mn/k, C.

For the following theorem and propositions we use the
notation Ci, Ci(Mk,Mn/k) and so on to denote the i-th
argument of Mµ corresponding with the set Ei.

Theorem 2: For Mµ,Mk,Mn/k averaging aggregation
functions, the BPM is an averaging aggregation function,
independently of C.

Proof: Since the BPM is an aggregation function, it is
sufficient to show that idempotency holds. We can denote the
vectors of length k and n − k such that all the elements are
the same by tk and tn−k respectively. We then have

BPM(t, . . . , t) =

d−1C
(
Mµ({Ci(Mk(tk),Mn/k(tn−k))}i=1,...,p)

)
= d−1C (Mµ(C1(t, t), . . . , Cp(t, t)))

= d−1C (C(t, t))

= t.

The following proposition establishes sufficient conditions
for symmetry of the BPM .

Proposition 1: If the aggregation functions Mµ,Mk,Mn/k

are symmetric, then the BPM is also symmetric,
independently of C.

Proof: Consider the input vector x = (x1, . . . , xn) and
a permutation xα = (xα(1), . . . , xα(n)). It is clear that for
each Ei there exists a corresponding set Eα(j) compris-
ing the same elements so that Ci(Mk(xEi),Mn/k(xEci )) =
Cα(j)(Mk(xEα(j)

),Mn/k(xEcα(j)
)). From the symmetry of

Mµ it follows that Mµ(C1, . . . , Cp) =Mµ(Cα(1), . . . , Cα(p))
and hence that BPM(x) = BPM(xα).

In some cases, it may be useful to be able to define the
dual of the Bonferroni partition mean from its components.
For instance, aggregation functions over Atanassov orthopairs
(or intuitionistic fuzzy sets) can be defined in this way. The
next proposition shows that this can be done by using the
dual of each component in its construction.

Proposition 2: The dual of a Bonferroni partition mean is
given by the Bonferroni partition mean defined with respect
to the dual functions Md

µ ,M
d
k ,M

d
n/k, C

d.

Proof: Using the standard negation, N(t) = 1 − t and
omitting the i = 1, . . . , p from the argument notation of the
mean Mµ, i.e. assume {Ci(.)} = (C1(.), . . . , Cp(.)) , we have,

BPMd(x) = 1−BPM(1− x)

= 1− d−1C
(
Mµ({Ci(Mk(1− xEi),Mn/k(1− xEci ))})

)
= 1− d−1C

(
Mµ({Ci(1−Md

k (xEi), 1−Md
n/k(xEci ))})

)
= 1− d−1C

(
Mµ({1− Cdi (Md

k (xEi),M
d
n/k(xEci ))})

)
= 1− d−1C

(
1−Md

µ({Cdi (Md
k (xEi),M

d
n/k(xEci ))})

)
.

It follows from fd(t) = 1 − f(1 − t) that fd
−1

(t) =
1 − f−1(1 − t), i.e. the inverse of the dual will be related
to the inverse of the function in the same way (since over the
unit interval the operations are equivalent to reflections and
rotations respectively), and so finally we have

BPMd(x) = d−1
Cd

(
Md
µ({Cdi (Md

k (xEi),M
d
n/k(xEci ))})

)
.

We now turn to aggregation behavior associated with
absorbing elements.

Definition 7: An element a ∈ [0, 1] is an absorbing element
(or annihilator) of an aggregation function f if it follows that
f(x) = a whenever xi = a for some i.



A typical example of an aggregation function with an
absorbing element is the geometric mean with a = 0.
Whenever any of the arguments of the geometric mean
are zero, the output will be zero regardless. We have the
following propositions for the BPM .

Proposition 3: If Mµ,Mk,Mn/k are averaging aggregation
functions, if C and any two of Mµ,Mk,Mn/k have an
absorbing element a, then a is an absorbing element of the
resulting BPM .

Proof: We look at the two possible cases.
Case I: Mk,Mn/k, C have an absorbing element a.

For each argument of Mµ, i.e. Ci(Mk(xEi),Mn/k(xEci )), if
a ∈ Ei or a ∈ Eci then we have Ci(a,Mn/k(xEci )) = a or
Ci(Mk(xEi), a) = a. Then it follows from the idempotency of
Mµ that BPM(x) = d−1C (Mµ(a, a, . . . , a)) = d−1C (a). Since
d−1C is defined such that d−1C (C(t, t)) = t, if C(a, a) = a,
then we also have d−1C (a) = a and hence a is an absorbing
element of BPM .

Case II: Mµ, C and one of Mk,Mn/k have an absorbing
element a.
If Mk (or alternatively Mn/k) has an absorbing element a,
then there exists an Ei such that Ci(Mk(xEi),Mn/k(xEci )) =
Ci(a,Mn/k(xEci )) = a. As Mµ has the same absorbing
element, we again have BPM(x) = d−1C (a) = a.

The following situation will be particularly useful in
specifying a minimum number of mandatory requirements.

Proposition 4: For Mµ averaging, if Mk and C have an
absorbing element a, unless there are more than k values in
the input vector such that xj 6= a, then BPM(x) = a.

Proof: For each Ci(Mk(xEi),Mn/k(xEci )) we require
a set of k values xj 6= a so that Mk(xEi) 6= a and at
least one additional value so that Mn/k(xEc) 6= a (from
idempotency). If this requirement is not fulfilled for at least
one Ei, then all Ci components will be a and BPM(x) =
d−1C (Mµ(a, . . . , a) = a.

The upshot of this proposition is that we can use absorbing
properties of Mk, C and adjust the size of k to enforce the
desired number of mandatory requirements. The following
example helps illustrate this.

Example 2: Let Mk be the geometric mean with absorbing
element a = 0 and C the product operation which also has
absorbing element 0. For n = 7 and k = 4, the resulting
Bonferroni partition mean will require at least 5 non-zero
values to give an output greater than 0.

We can also then use projections for the weighting vector
in Mµ, allocating all the weight to a single subset E to
ensure that all its elements are required to be non-zero for a

zero output. Consider the following example.

Example 3: For n = 6, k = 3 We choose Mk as a weighted
geometric mean G and C as the product, both with absorbing
element a = 0. We assign the weights µ(1, 4, 5) = 1 and
µ(Ei) = 0 otherwise. The resulting BPM can be expressed,

BPM(x) =
√
G(x1, x4, x5) ·M6/3(x2, x3, x6),

which will give an output of zero unless x1, x4 and x5 are
all greater than zero.

In the following section, we provide some numerical
examples to help illustrate the behavior of the BPM based
on different weights and components.

V. NUMERICAL EXAMPLES

We now present some numerical examples to help illustrate
the behavior of the Bonferroni partition mean. We imple-
mented the composed function using the R programming
language and the code is available from our website 1.

For the following examples, we first specify the means to be
used for Mk,Mn/k. For calculating the output of a given input
vector x, it is supplied to the function environment as well as
the weighting vector u (used for Mk,Mn/k), the value of k
and optionally the position of the input set that is to be made
mandatory (if a geometric mean is used for Mk). An array
is then built of all possible subsets of size k in lexicographic
order and this is then used to calculate the output.

We set Mk as the geometric mean, C as the standard product
operation and Mµ,Mn/k as unweighted arithmetic means.

Table II shows some example input vectors and the output
of this function as k is incremented. As soon as k is equal to
the number of 0 values, the output will be zero.

TABLE II
EFFECT OF k IN ENFORCING A MINIMUM NUMBER OF MANDATORY

REQUIREMENTS.

x k=1 k=2 k=3 k=4 k=5
(1,1,1,0,0,0) 0.4472136 0.2236068 0 0 0
(1,1,1,1,0,0) 0.6324555 0.4472136 0.2581989 0 0
(1,1,1,1,1,0) 0.8164966 0.7071068 0.5773503 0.4082483 0

We can also introduce a weighting vector in order to
determine Mk and Mn/k while using equal weights for Mµ.
We note that the minimum number of mandatory requirements
is still controlled by k, however a much higher weight is
allocated to x1 and x2. Table III shows output values where the
weighting vector u = (0.4, 0.4, 0.05, 0.05, 0.05, 0.05) is used
for Mk,Mn/k. At least k values must be non-zero, however
the weights are also taken into account in the calculation.

Lastly, we can consider applying unequal weights for Mµ.
In particular, we look at the specific case of k = 3 and use a
projection for the subset {1, 2, 3}. Table IV shows the outputs

1http://aggregationfunctions.wordpress.com



TABLE III
WEIGHTING VECTOR u = (0.4, 0.4, 0.05, 0.05, 0.05, 0.05) USED FOR

Mk,Mn/k . SHOWING EFFECT OF k FOR DIFFERENT INPUTS.

x k=1 k=2 k=3 k=4 k=5
(1,1,0,0,0,0) 0.4714045 0 0 0 0
(0,0,1,1,1,1) 0.3244428 0.2108185 0.1084652 0 0
(1,1,1,1,0,0) 0.758962 0.5574714 0.3366502 0 0

for the BPM with Mk an unweighted geometric mean and
Mn/k an unweighted arithmetic mean. If any of x1, x2, x3
are zero, the output will be zero. If all three are above zero,
we still require at least one of the other inputs to be greater
than zero in order to avoid a zero output. Good scores for
non-mandatory requirements still are able to compensate for
lower scores in the mandatory subset.

TABLE IV
WITH k = 3 AND A PROJECTION USED FOR THE SUBSET {1, 2, 3} IN THE

WEIGHTING VECTOR OF Mµ .

x k = 3
(1,1,0,1,1,1) 0
(1,0,1,1,1,1) 0
(0,1,1,1,1,1) 0
(1,1,1,0,0,0) 0
(1,1,1,1,0,0) 0.5773503
(0.5,0.3,0.7,0.5,0.7,1) 0.5881872

VI. CONCLUSION

We have proposed a composed function which we refer
to as the Bonferroni partition mean. This mean further
generalizes the composed aggregation operator from our
previous research, and is able to more intuitively handle
multiple mandatory requirements or mandatory input sets.
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