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Abstract. In this contribution we consider a first approach to the notion of internal
operator as a mapping which gives back as output one of the inputs. We present the
definition of such operators and their first properties.
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1 Introduction

In recent years aggregation operators have attracted a growing interest both from theoretical
and applied researchers due to their huge applicability in many different fields [6]. In particular,
such operators are a crucial tool for any procedure in which the fusion of information coming
from either homogeneous or heterogeneous sources is required [4]

For some applications, however, it is important that the resulting output does not incorporate
any new information from that already contained in the inputs. In image fusion algorithms
([1], but see also [5]), for instance, it is natural that the value of the intensity of a given pixel
corresponds to the value of the same pixel for some of the considered images. In this sense,
it is natural to require that the operator which is chosen for the fusion displays some kind of
internality, in the sense of providing an output which is equal to one of the inputs.

These considerations have led us to consider in the present contribution the notion of internal
operator. In particular, we present its definition (which is very close to that of locally internal
operator, [7]) and we make a first analysis of its first properties.

The structure of this contribution is as follows. We first present the notion of internal operator.
Then, in Section 3, we analyze a construction method for internal operators, and in Section 4

we consider those internal operators which are also aggregation functions. We finish with some
conclusions and references.

2 Internal operators

As we have stated in the introduction, we are interested in those operators whose output is
exactly equal to one if its inputs. It is important to recall that such notion, in the case of

43




aggregation functions, was already considered by G. Mayor and J. Martin in [7], where they
introduced the concept of locally internal operator as follows.

Definition 1 f:[0,1]" — [0,1] is a locally internal aggregation function if:

1. f is continuous.
2. f is non-decreasing.
3. f(z,...,x) =z for every z € [0, 1].

4. f is locally internal; that is, f(x1,...,Tn) € {x1,..., 20} for every (z1,...,xyn) € [0,1]™.

In the same work, the authors provide a complete characterization of such locally internal
aggregation operators in terms of the min, the max and the projection operators.

However, the requirements of continuity and monotonicity may be too demanding for some
specific applications [1]. For this reason, we propose the following definition of internal operator.

Definition 2 An internal operator is a mapping F : [0,1]™ — [0,1] such that
F(z1,...,x,) € {z1,..., 20}
for every (z1,...,xy,) € [0,1]™.
Note that only local internality is demanded in our definition.
Example 1 1. Let m; denote the j-th projection given by
wj(€1,. .., Tn) = T

Then, for every j € {1,...,n}, the operator wj is an internal operator. This operator is
also a locally internal operator in the sense of Mayor and Martin.

2. Both the minimum and the mazimum are internal operators.

3. Fiz a € [0,1]. Consider the operator F such that F(z1,...,z,) = a if a € {z1,...,2,} or
1 in other case. This is an operator which is not continuous and not even monotone, so
it is not a locally internal operator.

)

On the other hand, the averaging character of the internal operators is straight.

Proposition 1 Let F' be an internal operator. The following items hold:

i) F(z,...,x) =z for alz € [0,1];

it) min(x,...,x,) < F(x1,...,2,) < maz(xy,...,z,) for all (z1,...,z,) € [0,1]™.

Proof: Direct since we always recover one of the inputs. QED

Notice that, on the other hand, not every averaging aggregation function is an internal operator,
as the case of the arithmetic mean, for instance, shows.

In the following example we show that internal operators need not to satisfy well known prop-
erties as monotonocity, homogeneity, invariance under translation and others.

44

Ex

Next
oper:

The:
defin

for e
Proo
minr
{1’1, B

Prop

Then .

Proof
Regarc

Propo
[0’ l]n N

is also

Proof:




where they

) € [0,1]".

ally internal

ng for some
nal operator.

s operator s

1y T} OT
monotone, S0

1],

rnal operator,

| known prop-

Example 2 1. An internal operator needs not to be monotone non-decreasing. Consider the
mode, which recovers the most frequent value. The mode is an internal operator but needs
not to be monotone non-decreasing.

2. An internal operator needs not to be homogeneous. Consider the F operator defined as:
F(z1,...,2,) = min(xy,...,T,)
if max(z1,...,2,) < % and
F(i; . «5n) = Ti

i other case. Then, if we take n = 3 and A\ = 0.5, we have that F(%,%,%) = % and
F(A3:23,27) = § #AF (3.3.1) = 1-

3. An internal operator needs not to be shift-invariant. Consider the same example as below.
Then{oqn: 3andr = % we have thatF(i,%,%) = % andF(%—f—r,%—i—r,%—kr) =1:#
F(3.5.7) +r

4. An internal operator needs not to be migrative [2]. Any projection provides an ezample of
wnternal operator which is not migrative.

Next, we study the structure of internal operators. Let’s denote by F(n) the class of all internal
operators defined over [0,1]™.

Theorem 1 (F(n), mazr, ming) is a bounded lattice, with the operations mazr and minr
defined as

marg(F,G)(x1,...,2n) = max(F(z1,...,2,),G(21,...,75))
ming(F,G)(z1,...,2,) = min(F(z1,...,7,),G(21,...,2,))

for every F,G € F(n) and every (z1,...,x,) € [0,1].

Proof: It’s  enough to notice that mazr(F(zy,...,2,),G(z1,...,2,)) and
ming(F(z1,...,20),G(21,...,2n)) € {x1,...,2n} since F(z1,...,2,), G(x1,...,Zn) €
{xl,...,zn}. QED

Proposition 2 Let’s denote by

Fy = inf{F:[0,1]" = [0,1]|F € F(n)}
Foo = sup{F:[0,1]" = [0,1]|F € F(n)}
Then Fo(z1,...,2n) = min(x1,...,z,) and Fy(z1,...,T,) = max(zq,. .. i)

Proof: It’s straight forward from Theorem 1. QED

Regarding composition, we can also say the following.

Proposition 3 Let Fy,F1,...,F, : [0,1]" — [0,1] be n + 1 internal operators. Then, F :
[0,1]™ — [0,1] given by:

F(@15 ¢ n5%n) = Fo(Fulmi, 5 55%n)s: o o FalZt, + « vu )
s also an internal operator.

Proof: It is just a straight comprobation. QED
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(@1, ..., 2Zy) = T4
for some k # j. Since by hypothesis z; # j, we arrive at a contradiction and the result follows.
QED

4 Internal aggregation functions

In this section we study internal operators that are monotone non-decreasing. This property
allows us to relate internal operators with aggregation functions.

Theorem 3 Let F : [0,1]" — [0,1] be an internal operator. If F is monotone non-decreasing
in each variable, then F is an averaging aggregation function.

Proof: Direct since F is idempotent and then F(0,...,0)=0and F(1,...,1) = 1. QED
Corollary 2 Under conditions of Theorem 3, F' is jointly strict monotone, that is

x; <y foralli € {1,...,n} implies F(zy,...,2,) < F(y1,...,yn).
Proof: Direct. QED

Proposition 4 Let F : [0,1]* — [0,1] be an aggregation functions with absorbing element
a €(0,1]. Then, ifa € {z1,...,2,} F is internal.

5 Conclusions

In this work we have presented the idea of internal operator. Apart from considering a con-
struction method, we have considered in particular the case of those internal operators which
are also aggregation functions.

In the future we intend to go deeper into the analysis of such operators. In particular, we would
like to consider those internal operators which could be of interest for specific applications.
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