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Abstract

In this work we study the relation between re-
stricted dissimilarity functions-and, more generally,
dissimilarity-like functions- and penalty functions
and the possibility of building the latter using the
former. Several results on convexity and quasi-
convexity are also considered.

Keywords: Restricted dissimilarity functions,
penalty functions, aggregation functions, convexity,
maxitivity.

1. Introduction

Penalty functions provide a very useful tool to ob-
tain an output which is the most similar one to a
given set of inputs ([6, 7, 11]). In this sense, they
are very useful in any application in which several
inputs have to be merged into a single output con-
taining the relevant information provided by the in-
puts. This usefulness has been made clear in many
different applications, such as image processing (for
the fusion of different images) [1] or decision mak-
ing (to evaluate each of the alternatives taking into
account the different criteria)[3]. Please note that
the notion of penalty function here is not the same
as the commonly used in optimization.
A key question is how these penalty functions can

be built. In [4] it was established that a possible
manner is to consider a weighted mean of the so-
called faithful dissimilarity functions, which can be
built from some continuous strictly monotone func-
tion (scaling function) and a convex function (shape
function) which has a unique minimum at the ori-
gin.

But, since a weighted mean is a particular in-
stance of aggregation function, this approach raises
the question of whether this construction can be
generalized by using other aggregation functions or
even other kinds of dissimilarity-like functions.

In this work we carry on a study on restricted
dissimilarity functions, their relation with convexity
and quasi-convexity and their use to build penalty
functions. Finally we also consider the relaxation

of the conditions required to restricted dissimilarity
functions.

The structure of the contribution is as follows.
We start with some preliminaries including some
properties of penalty functions and penalty-based
aggregation functions. In Section3 we deal with re-
stricted dissimilarity functions and we analyze their
relation with metrics and convexity. Section 4 and 5
are devoted to the construction of penalty functions
by means of aggregation functions and dissimilarity-
like functions. We finish with some conclusions.

2. Preliminaries

Definition 1 [2, 9] An aggregation function is a
mapping M : [0, 1]n → [0, 1] which is monotone in-
creasing and such that

M(0, . . . , 0) = 0 and M(1, . . . , 1) = 1

Well-known examples of aggregation functions
are t-norms or t-conorms. For us, the following def-
inition is of particular interest.

Definition 2 A mean or averaging aggregation
function is an aggregation function M : [0, 1]n →
[0, 1] such that

min(x1, . . . , xn) ≤M(x1, . . . , xn) ≤ max(x1, . . . , xn)

for every (x1, . . . , xn) ∈ [0, 1]n.

Note that means and idempotent aggregation
functions (i.e., M(x, . . . , x) = x for every x ∈ [0, 1])
are the same. As examples of averaging aggregation
functions we have the arithmetic mean:

M(x1, . . . , xn) = x1 + · · ·+ xn
n

or, more generally, the so-called Kolmogorov means
[10, 12]

M(x1, . . . , xn) = f−1(w1f(x1) + · · ·+ wnf(xn))

where (w1, . . . , wn) ∈ [0, 1]n is a weighting vector
(i.e, w1+· · ·+wn = 1) and f : [0, 1]→ [−∞,∞] is an
strictly monotone mapping. We will also deal with
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fuzzy negations, which are non-increasing functions
N : [0, 1]→ [0, 1] such that N(0) = 1 and N(1) = 0
that are said to be strict negations when they are
strictly decreasing.
We recall now the concepts of convexity and

quasi-convexity, which are crucial for the present
work. Let D denote an interval.

Definition 3 Let g : D ⊆ (−∞,∞)→ [−∞,∞] be
a mapping.

1. g is convex if the inequality

g(λx+ (1− λ)y) ≤ λg(x) + (1− λ)g(y)

holds for every x, y ∈ D and λ ∈ [0, 1].
2. g is quasi-convex if the inequality

g(λx+ (1− λ)y) ≤ max(g(x), g(y))

holds for every x, y ∈ D and λ ∈ [0, 1].

Note that every convex function is in particular
quasi-convex, whereas the reciprocal is not true. On
the other hand, regarding quasi-convex functions,
we have the following important result.

Theorem 1 Let g : D ⊆ (−∞,∞) → [−∞,∞] be
a quasi-convex function. Then, the set of minimiz-
ers of g is a non-empty subinterval of D.

A penalty based function provides a way for ob-
taining an output which is as similar as possible to
the considered inputs (in the sense of the penalty
function that is chosen). We start recalling the con-
cept of penalty function.

Definition 4 [6, 7, 11]
A penalty function is a mapping P : [0, 1]n+1 →

[0,∞] such that:

1. P (x1, . . . , xn, y) = 0 if xi = y for every i =
1, . . . , n;

2. P (·, y) is a quasi-convex function in y. That is,
for any fixed (x1, . . . , xn) ∈ [0, 1]n the function
p(y) = P (x1, . . . , xn, y) is quasi-convex.

Definition 5 Let P be a penalty function. The
penalty based function (or function based on the
penalty function P ) is the mapping f : [0, 1]n →
[0, 1] defined by

f(x1, . . . , xn) = arg min
y
P (x1, . . . , xn, y)

if P attains its minimum at a single point, or
f(x1, . . . , xn) = a+b

2 if a and b are the boundary
points of the set of minimizers of P .

Note that in general penalty based functions need
not be aggregation functions since monotonicity can
not be assured. However, the following result holds.

Theorem 2 [6] Any averaging aggregation func-
tion can be represented as a penalty based aggre-
gation function.

3. Restricted dissimilarity functions,
convexity and metrics

The concept of restricted dissimilarity function was
introduced in [4]

Definition 6 A restricted dissimilarity function is
a mapping dR : [0, 1]2 → [0, 1] such that

1. dR(x, y) = dR(y, x) for every x, y ∈ [0, 1];
2. dR(x, y) = 1 if and only if {x, y} = {0, 1};
3. dR(x, y) = 0 if and only if x = y;
4. for any x, y, z ∈ [0, 1] such that x ≤ y ≤ z it

holds that dR(x, y) ≤ dR(x, z) and dR(y, z) ≤
dR(x, z).

Example 1 [3]

1. Let c ∈]0, 1[. Then the mapping dR : [0, 1]2 →
[0, 1] defined by:

dR(x, y) =


1 if {x, y} = {0, 1} ;
0 if x = y ;
c in other case,

is an example of restricted dissimilarity func-
tion which is not even continuous.

2. The mapping dR(x, y) = ϕ1(|ϕ2(x) − ϕ2(y)|),
where ϕ1, ϕ2 are two automorphisms of the
unit interval (i.e., two increasing bijections on
[0, 1]) is a restricted dissimilarity function.

Restricted dissimlarity function can be related to
well-known functions. For instance:

Theorem 3 Let d : [0, 1]2 → [0, 1] be a function.
The following statements are equivalent.

(i) N : [0, 1] → [0, 1] is strict negation and
d(x, y) = |N(x)−N(y)|;

(ii) d is a restricted dissimilarity function and
d(x, y) = |d(x, 1)− d(y, 1)|;

(iii) d is a restricted dissimilarity function and for
all x, y, z ∈ [0, 1] with x ≥ y ≥ z, it holds
d(x, y) + d(y, z) = d(x, z) and d(1, x) is strictly
monotone.

Proof. (i) ⇒ (ii): Suppose that d(x, y) = |N(x) −
N(y)|. Then, symmetry of d is obvious. More-
over, d(x, y) = 0 if and only if N(x) = N(y), and
since N is strict, this can happen if and only if
x = y. On the other hand, d(x, y) = 1 if and only
if {N(x), N(y)} = {0, 1}, and once again from the
strictness of N , this is equivalent to {x, y} = {0, 1}.
Finally, if x ≤ y ≤ z, then d(x, y) = |N(x)−N(y)| =
N(x) − N(y) ≤ N(x) − N(z) = |N(x) − N(z)|.
The case d(y, z) ≤ d(x, z) is analogous. Observe
that if x < y < z, then d(x, y) < d(x, z) and
d(y, z) < d(x, z), due again to the strictness of
N . Finally, N(x) = |N(x) − N(1)| = d(x, 1), so
d(x, y) = |d(x, 1)− d(y, 1)|, as stated.
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(ii)⇒ (iii) Take x ≥ y ≥ z and letN(x) = d(x, 1).
Then

d(x, y) + d(y, z) = |N(x)−N(y)|+ |N(y)−N(z)|
= N(y)−N(x) +N(z)−N(y) = N(z)−N(x)

= |N(x)−N(z)| = d(x, z) .

The strict monotonicity of d(1, x) follows from the
symmetry of d and the fact that d(x, y) = |d(1, x)−
d(1, y)| = 0 if and only if x = y.
(iii) ⇒ (i) Define N(x) = d(1, x). First of all,

since d(1, x) is strictly monotone, d(1, 1) = 0 and
d(1, 0) = 1, it follows that N is a strict negation.
Moreover, if 1 ≥ y ≥ z, it follows that

d(1, y) + d(y, z) = d(1, z)

so d(y, z) = d(1, z) − d(1, y), and since y > z,
d(y, z) = |d(1, y)− d(1, z)| = |N(y)−N(z)| �
On the other hand, we can also state the following

result.

Theorem 4 Let dR : [0, 1]2 → [0, 1] be a restricted
dissimilarity function. Then dR is quasi-convex in
one variable; that is, for all x, y1, y2, λ ∈ [0, 1]

dR(x, λy1 + (1− λ)y2) ≤ max(dR(x, y1), dR(x, y2))
(1)

Proof. Take x, λ ∈ [0, 1]. We know that, for all
y1, y2 ∈ [0, 1]

min(y1, y2) ≤ λy1 + (1− λ)y2 ≤ max(y1, y2) (2)

There are three possibilities.
i) x ≤ min(y1, y2). Then

dR(x, λy1 + (1− λ)y2)
≤ dR(x,max(y1, y2))

≤ max(dR(x, y1), dR(x, y2))

ii) min(y1, y2) ≤ x ≤ max(y1, y2) In this situation
two things can happen:
a) min(y1, y2) ≤ x ≤ λy1 + (1−λ)y2 ≤ max(y1, y2),
so dR(x, λy1 + (1 − λ)y2) ≤ dR(x,max(y1, y2)) ≤
max(dR(x, y1), dR(x, y2)), or
b) λy1 + (1 − λ)y2 ≤ x ≤ max(y1, y2), so
dR(x, λy1 + (1 − λ)y2) ≤ dR(x,min(y1, y2)) ≤
max(dR(x, y1), dR(x, y2)) iii) max(y1, y2) ≤ x, can
be treated as item i) �

Corollary 1 Let dR : [0, 1]2 → [0, 1] be a restricted
dissimilarity function. If λ0, λ1 ∈ [0, 1], then

dR(λ0x1 + (1− λ0)x2, λ1y1 + (1− λ1)y2) ≤
max(dR(x1, y1), dR(x1, y2), dR(x2, y1), dR(x2, y2))

for all x1, x2, y1, y2 ∈ [0, 1].

Proof. From the symmetry of dR we have that

dR(λ0x1 + (1− λ0)x2, λ1y1 + (1− λ1)y2)

is smaller than or equal to

max(dR(λ0x1 + (1− λ0)x2, y1),
dR(λ0x1 + (1− λ0)x2, y2))

which is also less than or equal to

max( max(dR(x1, y1), dR(x2, y1)),
max(dR(x1, y2), dR(x2, y2))).

The following example shows that a restricted
dissimilarity function needs not be quasi-convex in
both of its arguments.

Example 2 Take dR(x, y) = (|x2 − y2|) 1
2 , λ = 1

2 ,
x2

1 = 1
4 , x

2
2 = 0, y2

1 = 3
4 and y2

2 = 1
2 . Then cal-

culation shows that dR(λx1 + (1− λ)y1, λx2 + (1−
λ)y2) = 1

2 |
1
2 +

√
3

2 |
1
2 > 1

2 whereas dR(x1, x2) = 1
2 =

dR(y1, y2).

Restricted dissimilarity functions which are con-
cave can be related to metrics as follows.

Theorem 5 Let dR[0, 1]2 → [0, 1] be a restricted
dissimilarity function which is concave in each co-
ordinate. Then dR is a metric on [0, 1].

Proof. We have to check the triangle inequality of
dR only, as the other properties of metrics are triv-
ially fulfilled by dR. The only non-trivial case to be
checked is when 0 ≤ x < z < y ≤ 1. Then the con-
cavity in one coordinate ensures for each λ ∈ [0, 1]
that

dR(x, λx+ (1− λ)y) ≥ λdR(x, x) + (1− λ)dR(x, y)
= (1− λ)dR(x, y) .

Similarly,

dR(λx+ (1− λ)y, y) ≥ λdR(x, y) .

Thus, taking λ = y−z
y−x

dR(x, y) = y − z
y − x

dR(x, y) + z − x
y − x

dR(x, y)

≤ dR(x, z) + dR(y, z) ,

proving that dR is a metric
Remark

(i) dR satisfying Theorem 5 is necessarily strict.
(ii) dR(x, y) = (x − y)2 is a strict dissimilarity re-

stricted function which is not a metric (note
that it is not concave in each coordinate).

Analogously to the case of penalty functions we
can introduce the concept of faithful restricted dis-
similarity function as follows.

Definition 7 [3] A faithful restricted dissimilarity
function is a restricted dissimilarity function dR
such that there exist a strictly increasing and con-
tinuous function h : [0, 1] → [0, 1] and a convex
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function K : [−1, 1]2 → [0, 1] with a unique mini-
mum at K(0) = 0 such that

dR(x, y) = K(h(x)− h(y))

for every x, y ∈ [0, 1].

We can provide a characterization of restricted
dissimilarity functions in terms of automorphisms
and bijections, as follows.

Proposition 1 [3] For any mapping dR : [0, 1]2 →
[0, 1] the following statements are equivalent:

1. dR is a faithful restricted dissimilarity function.
2. There exist a convex automorphism ϕ : [0, 1]→

[0, 1] and a continuous bijection h : [0, 1] →
[0, 1] such that

dR(x, y) = ϕ(|h(x)− h(y)|)

for every x, y ∈ [0, 1].

Example 3 Take α ∈]0,∞]. If we consider ϕ(x) =
x2 and h(x) = xα we see that the mapping

dR(x, y) = |xα − yα|2

is a faithful restricted dissimilarity function.

4. Construction of penalty functions by
means of convex functions

Faithful restricted dissimilarity functions can be
used to build penalty functions as the following re-
sult shows.

Theorem 6 [3] Let dR : [0, 1]2 → [0, 1] be a faithful
restricted dissimilarity function and (w1, . . . , wn) ∈
[0, 1]n such that

∑n
i=1 wi = 1. Then the function

P (x1, . . . , xn, y) =
n∑
i=1

widR(xi, y)

is a penalty function.

Note that if we define the aggregation function:

M(x1, . . . , xn) =
n∑
i=1

wixi

which is a weighted mean, the previous penalty
function can be written as:

P (x1, . . . , xn, y) = M(dR(x1, y), . . . , dR(xn, y)) .

This expression raises the question of whether other
types of aggregation functions and/or other kinds
of dissimilarity-like functions can be used to obtain
penalty functions. In this sense, a first result is
the following, which shows how convex aggregation
functions and convex dissimilarity-like functions can
be used for such construction.

Proposition 2 Let di : [0, 1]2 → [0, 1], i =
1, 2, . . . , n be a family of functions which are convex
in their second variable and such that di(x, y) = 0
if x = y. Let M : [0, 1]n → [0, 1] be a convex aggre-
gation function. Then the function P : [0, 1]n+1 →
[0, 1] defined by:

P (x1, . . . , xn, y) = M(d1(x1, y), . . . , dn(xn, y))

is a penalty function.

Proof.

1. If xi = y for every i = 1, . . . , n, then from the
properties demanded to di and the fact that
M(0, . . . , 0) = 0 it follows that P (x, . . . , x, x) =
0.

2. Quasi-convexity of P follows from a straight
calculation, since the composition of a convex
non-decreasing function with convex functions
is also convex.

In particular, this result implies that we need
to deal with convex aggregation functions. In this
sense, note that for instance the maximum and the
weighted mean are convex. However, the study of
convexity for general aggregation functions is not
easy, so it would be desirable to find an alternative
approach.

5. Construction of penalty functions by
means of maxitive and quasi-convex
functions

Notice that, in fact, we do not need to make use of
full convexity. Quasi-convex dissimilarity-like func-
tions and maxitive aggregation functions are suffi-
cient for building penalty functions.

The concept of maxitivity was introduced by
Dubois and Prade [8] in order to aggregate possi-
bility measures. It reads as follows.

Definition 8 A function M : [0, 1]n → [0, 1] is
maxitive if:

M(max(x1, y1), . . . ,max(xn, yn))
= max(M(x1, . . . , xn),M(y1, . . . , yn))

for every (x1, . . . , xn), (y1, . . . , yn) ∈ [0, 1]n.
M is submaxitive if

M(max(x1, y1), . . . ,max(xn, yn))
≤ max(M(x1, . . . , xn),M(y1, . . . , yn))

for every (x1, . . . , xn), (y1, . . . , yn) ∈ [0, 1]n.

Example 4 The function

M(x1, . . . , xn) = nmax
i=1

xwi
i with wi > 0

is an example of maxitive aggregation function.
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The following result completely characterizes
maxitive and submaxitive aggregation functions.

Proposition 3 Let M : [0, 1]n → [0, 1] be an ag-
gregation function. Then

1. M is maxitive if and only if there exist non-
decreasing functions fi : [0, 1] → [0, 1], i =
1 . . . , n with fi(0) = 0 for any i = 1 . . . , n and
maxni=1 fi(1) = 1 such that:

M(x1, . . . , xn) = nmax
i=1

fi(xi)

for every (x1, . . . , xn) ∈ [0, 1]n.
2. M is sub-maxitive if and only if it is maxitive.

Proof.

1. See [8] (or [9] p. 53).
2. It is straight since from the monotonicity of

aggregation functions it always holds that:

M(max(x1, y1), . . . ,max(xn, yn))
≥ max(M(x1, . . . , xn),M(y1, . . . , yn))

for every (x1, . . . , xn), (y1, . . . , yn) ∈ [0, 1]n.

Now we can state our main result.

Theorem 7 Let di : [0, 1]2 → [0, 1], i = 1, . . . , n
be functions which are quasi-convex in their second
variable and such that di(x, y) = 0 whenever x = y.
Let M : [0, 1]n → [0, 1] be a submaxitive (and hence
maxitive) aggregation function. Then, the function
P : [0, 1]n+1 → [0, 1], defined for any x1, . . . , xn, y ∈
[0, 1] as:

P (x1, . . . , xn, y) = M(d1(x1, y), . . . , dn(xn, y))

is a penalty function.

Proof. Only quasi-convexity in y requires some con-
sideration. For the sake of simplicity we consider
the case n = 2, the general case being analogous.
So take x1, x2, y1, y2, λ ∈ [0, 1]. We have that

M(d1(x1, λy1 + (1 − λ)y2), d2(x2, λy1 + (1 − λ)y2))

is less than or equal to

M(max(d1(x1, y1), d1(x1, y2)),max(d2(x2, y1), d1(x2, y2)))

due to the quasi-convexity of di. But, since M is
submaxitive, this expression is smaller than or equal
to

max(M(d1(x1, y1), d2(x2, y1)),M(d1(x1, y2), . . . , d2(x2, y2)))

as we wanted to see.
Regarding dissimilarity-like functions which are

quasi-convex in their second variable, observe that
a particular instance is that of restricted dissimi-
larity functions. More generally, we can state the
following.

Proposition 4 Let d : [0, 1]2 → [0, 1] be a com-
mutative function such that d(x, y) ≤ d(x, z) and
d(y, z) ≤ d(x, z) whenever x ≤ y ≤ z. Then d is
quasi-convex in its second variable.

Proof. Given x, y1, y2, λ ∈ [0, 1], we have to prove
that d(x, λy1 + (1− λ)y2) ≤ max(d(x, y1), d(x, y2)).
There are two possible cases:

1. x ≤ λy1 + (1 − λ)y2. Since λy1 + (1 − λ)y2 ≤
max(y1, y2), we get

d(x, λy1 + (1− λ)y2) ≤ d(x,max(y1, y2))

But it always holds that d(x,max(y1, y2)) ≤
max(d(x, y1), d(x, y2)). So from both inequali-
ties we arrive at:

d(x, λy1 + (1− λ)y2) ≤ max(d(x, y1), d(x, y2))

2. x ≥ λy1 +(1−λ)y2. It is analogous, just taking
into account that min(y1, y2) ≤ λy1 +(1−λ)y2.

6. Conclusions and future research

In this work we have presented a method that allows
to build penalty functions by means of appropriate
aggregation and restricted dissimilarity functions.
Analyzing the properties that are necessary for such
construction, we have also been able to provide a
method for constructing penalty functions in a sim-
ilar way but with functions that are only requested
to be quasi-convex in their second variable.

At the same time, we have studied some proper-
ties of restricted dissimilarity functions. We have
related them to metrics. In future works we intend
to extend this analysis to the dissimilarity like func-
tions.
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