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Integration of simple functions is a corner stone of general integration theory and it covers

integration over finite spaces discussed in this paper. Different kinds of decomposition and

subdecomposition of simple functions into basic functions sums, as well as different kinds

of pseudo-operations exploited for integration and summation result into several types of

integrals, including among others, Lebesgue, Choquet, Sugeno, pseudo-additive, Shilkret,

PAN, Benvenuti and concave integrals. Some basic properties of introduced discrete pseudo-

concave integrals are discussed, and several examples of new integrals are given.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Discrete integrals are extensively used in decision theory based on a fixed number n of criteria and in game theory with

n players. For a deeper discussion and references we recommend [3,5,7,15,22]. In the additive approach, Lebesgue integral

is applied and the resulting integral (understood as an expected utility) is a weighted sum, i.e., an additive functional.

Non-additive approaches were based mostly on Choquet integral [1] and on Sugeno integral [19].

Considering in this paper N = {1, . . . , n} as a fixed finite space, a basic function b(c, E) : N → [0, ∞] is given by

b(c, E)(i) =
⎧⎨⎩ c if i ∈ E,

0 else,

where E ⊆ N and c ∈ [0, ∞]. All above mentioned integrals assign to a basic function b(c, E) a value dependent on c and

measure valuem(E) only. This approach was recently exploited as a basic axiom for the universal integrals [5], generalizing

all above mentioned integrals. However, there are integrals violating this rule, namely PAN-integrals [22,23] and recently

introduced concave integral of Lehrer [7]. For these approaches, the integral of a basic function b(c, E) depends on c and

measurem(F) of all non-empty subsets F ⊆ E. Moreover, here we can get the same integral for different measures and thus

it is suitable to find a distinguished representative among all such measures.

The aim of this paper is to find a common framework for all abovementioned integrals. The paper is organized as follows.

In the next section, pseudo-operations ⊕ and � are introduced, possessing some possible relations. Section 3 is focused on

monotonemeasures and some relations between them. In Section 4, vertical, horizontal and general pseudo-integrals are in-

troduced and their relationship to the abovementioned integrals is clarified. Section 5 is devoted to discrete pseudo-concave

integrals. Finally, some concluding remarks are added.
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2. Pseudo-operations

Several generalizations of the standard addition + and multiplication · on [0, ∞] have been considered in generalized

integration theory, so far. Pseudo-addition⊕ : [0, ∞]2 → [0, ∞] generalizing + is standardly assumed to be characterized

by the next axioms [2,4,14,16,20].

Definition 1. A binary operation ⊕ : [0, ∞]2 → [0, ∞] is called a pseudo-addition whenever it is

(i) increasing in both coordinates, i.e., x ⊕ y � x′ ⊕ y′ for all x, y, x′, y′ ∈ [0, ∞] , x � x′, y � y′;
(ii) 0 is its neutral element, 0 ⊕ x = x ⊕ 0 = x for all x ∈ [0, ∞];
(iii) associative, i.e., (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z) for all x, y, z ∈ [0, ∞];

(iv) it is continuous, i.e.,

lim
m→∞ (xm ⊕ ym) = x ⊕ y

whenever limm→∞ xm = x and limm→∞ ym = y, x, y, xm, ym ∈ [0, ∞] ,
m = 1, 2, . . . .

Note that due to [13] each pseudo-addition⊕ is also commutative, x⊕y = y⊕ x for all x, y ∈ [0, ∞]. Moreover, for each

x, y ∈ [0, ∞] it holds x⊕ y ≥ x∨ y (i.e.,∨ is the smallest pseudo-addition, x∨ y = max {x, y}). Formally, pseudo-additions

are special I-semigroups and their structure is completely described in [13], see also [4].

Concerning the pseudo-multiplication � : [0, ∞]2 → [0, ∞] generalizing ·, there are several different approaches,

depending on the discussed approach to the integration.

Definition 2. An operation � : [0, ∞]2 → [0, ∞] is called a pseudo-multiplication whenever it is

(i) increasing in both coordinates, i.e., x � y � x′ � y′ for all x, y, x′, y′ ∈ [0, ∞] , x � x′, y � y′;
(ii) 0 is its annihilator, 0 � x = x � 0 = 0 for all x ∈ [0, ∞];

(iii) for each x ∈ ]0, ∞[ there are y, z ∈ ]0, ∞[ so that 0 < x � y < ∞ and 0 < z � x < ∞.

Let ⊕ : [0, ∞]2 → [0, ∞] be a given fixed pseudo-addition. Recall that then a pseudo-multiplication � : [0, ∞]2 →
[0, ∞] is left-⊕-distributive if

(x ⊕ y) � z = (x � z) ⊕ (y � z)

for all x, y, z ∈ [0, ∞]. Similarly, it is right-⊕-distributive if

x � (y ⊕ z) = (x � y) ⊕ (x � z)

for all x, y, z ∈ [0, ∞], and ⊕-distributive if it is both right-⊕-distributive and left-⊕-distributive.

Example 1

(i) Each pseudo-multiplication � is ∨-distributive.

(ii) The only +-distributive pseudo-multiplications belong to the family

(�(α)

)
α∈]0,∞[

, x �(α) y = α · x · y.

Define a pseudo-multiplications �1, �2 : [0, ∞]2 → [0, ∞] by

x �1 y = x · y2, x �2 y = x2 · y.
Then �1 is left-+-distributive and �2 is right-+-distributive.
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3. Monotone measures

Monotone measure μ : 2N → [0, ∞] can be seen as a source of weights of criteria groups.

Definition 3. A set function μ : 2N → [0, ∞] is called
(i) a monotone measure if μ(∅) = 0 and μ(E) � μ(F) whenever E ⊆ F ⊆ N.

(ii) A monotone measure μ such that μ(N) = 1 is called a capacity.

(iii) If a monotone measure μ satisfies μ(E ∪ F) = μ(E) ⊕ μ(F) for all pairs E, F ⊆ N, E ∩ F = ∅, then μ is called a

⊕-additive measure.

(iv) If μ(E ∪ F) ⊕ μ(E ∩ F) � μ(E) ⊕ μ(F) for all pairs E, F ⊆ N, then μ is called ⊕-supermodular measure.

Recall that a +-additive capacity μ is a classical discrete probability measure on N. A ∨-additive (i.e., maxitive) capacity

μ is a possibility measure, see [25]. For more details on monotone measures we recommend monograph [22].

For any monotone measure μ and pseudo-addition ⊕, we can assign a monotone measure μ⊕ introduced in [9] and

called ⊕-optimal measure there.

Definition 4. Let a monotone measure μ : 2N → [0, ∞] and a pseudo-addition ⊕ : [0, ∞]2 → [0, ∞] be given. Then

the set function μ⊕ : 2N → [0, ∞] given by

μ⊕(E) = sup

⎧⎨⎩⊕
i∈I

μ(Ei) | ⋃
i∈I

Ei = E, Ei ∩ Ej = ∅ whenever i 
= j

⎫⎬⎭
is called a ⊕-optimal measure assigned to μ.

Observe that ⊕-optimal measures are exactly super-⊕-additive measures, i.e., μ⊕(E ∪ F) ≥ μ(E) ⊕ μ(F) whenever

E, F ⊆ N, E ∩ F = ∅.

These measures play a key role by PAN-integrals [22,23]. In fact, for a given monotone measure μ, μ⊕ is the smallest

super-⊕-additive measure bounded by μ from below.

For a given pseudo-addition⊕ and a left-⊕-distributive pseudo-multiplication�with a neutral element e ∈ ]0, ∞] (we

suppose further on that ⊕ and � satisfy these properties), we introduce for each monotone measure μ a set function μ�⊕.

Definition 5. Let⊕ : [0, ∞]2 → [0, ∞] and� : [0, ∞]2 → [0, ∞] be a given pseudo-addition and a left-⊕-distributive

pseudo-multiplication with neutral element e ∈ ]0, ∞], respectively. For a monotone measure μ : 2N → [0, ∞], define a

set function μ�⊕ : 2N → [0, ∞] by

μ�⊕(E) = sup

⎧⎨⎩⊕
i∈I

(ai � μ(Ei)) | ⊕
i∈I

b (ai, Ei) = b(e, E)

⎫⎬⎭ .

Then μ�⊕ is called ⊕-�-totally balanced measure assigned to μ.

Observe that left-distributivity of � over ⊕ allows to consider Ei 
= Ej for i 
= j in the above definition. Note that for

standard arithmetical operations + and ·, μ·+ is a totally balanced measure as considered in [6]. These measures play a key

role by the concave integrals.

Example 2

(i) Each monotone measure is ∨-optimal, i.e., m = m∨, and ∨-�-totally balanced, i.e., m = m�∨ independently of

pseudo-multiplication �.

(ii) Consider the standard arithmetic operations + and · and N = {1, 2, 3}. Let a set function μ : 2N → [0, ∞] be given

by μ(∅) = 0, μ(E) = 0.1 if |E| = 1, μ(E) = 1 if |E| = 2 and μ(N) = a. Then:

(a) μ is a monotone measure if a � 1;

(b) μ is a capacity if a = 1;

(c) μ is +-supermodular if a � 1.9;
(d) μ+ = μ (i.e., μ is superadditive) if a ≥ 1.1 (if a ∈ [1, 1.1[, then μ+(N) = 1.1 and μ+(E) = μ(E) for E 
= N);

(e) μ·+ = μ (i.e.,μ is totally balanced) if a � 1.5 (if a ∈ [1, 1.5[, thenμ·+(N) = 1.5 andμ·+(E) = μ(E) for E 
= N).
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4. New integrals

Each function f : N → [0, ∞] can be decomposed (subdecomposed) in different manners into basic functions.

Definition 6. Let ⊕ : [0, ∞]2 → [0, ∞] be a fixed pseudo-addition. Let f : N → [0, ∞] be given. A system (b (ai, Ei))i∈I

of basic functions is called

(i) a ⊕-vertical subdecomposition of f if f � ⊕
i∈I b (ai, Ei) and Ei ∩ Ej = ∅ for all i, j ∈ I, i 
= j;

(ii) a ⊕-horizontal decomposition of f if f = ⊕
i∈I b (ai, Ei) and (Ei)i∈I is a chain;

(iii) a ⊕-decomposition of f if f = ⊕
i∈I b (ai, Ei).

Example 3. Let f : {1, 2, 3} → [0, ∞] be given by f (1) = 1, f (2) = f (3) = 2. Then (b(1, {1}), b(2, {2, 3}))
and (b(1, {1}), b(2, {2}), b(2, {3})) are ⊕-vertical decompositions of f , independently of ⊕. Further, (b(1, {1, 2, 3}), b(1,
{2, 3})) is a +-horizontal decomposition of f . Moreover, (b(0.5, {1, 2}), b(0.5, {1, 3}), b(1.5, {2, 3})) is a +-decomposition

of f which is neither +-vertical nor +-horizontal.

The three introduced (sub-)decompositions allow us to introduce three different types of pseudo-integrals.

Definition 7. Let ⊕, � : [0, ∞]2 → [0, ∞] be a fixed pseudo-addition and pseudo-multiplication, respectively. For any

function f : N → [0, ∞] and monotone measure μ : 2N → [0, ∞] denote

I⊕,�(f , μ) = sup

⎧⎨⎩⊕
i∈I

(ai � μ(Ei)) | (b (ai, Ei))i∈I is a ⊕-vertical subdecomposition of f

⎫⎬⎭ ,

I⊕,�(f , μ) = sup

⎧⎨⎩⊕
i∈I

(ai � μ(Ei)) | (b (ai, Ei))i∈I is a ⊕-horizontal decomposition of f

⎫⎬⎭ ,

I�⊕(f , μ) = sup

⎧⎨⎩⊕
i∈I

(ai � μ(Ei)) | (b (ai, Ei))i∈I is a ⊕-decomposition of f

⎫⎬⎭ .

Then I⊕,�(f , μ) is called a vertical (⊕, �)-integral, I⊕,�(f , μ) is called a horizontal (⊕, �)-integral and I
�⊕(f , μ) is

called a (⊕, �)-integral of f with respect to μ.

Note that all introduced integrals are monotone both in functions and in measures. Observe that we cannot replace the

⊕-vertical subdecompositions in the definition of the vertical (⊕, �)-integral I⊕,� by ⊕-vertical decompositions if we

want to keep the monotonicity of this integral with respect to the integrated functions. For example, consider N = {1, 2}
and a capacity μ : 2N → [0, ∞] given by μ(N) = 1 and μ(E) = 0 for E 
= N. Let f ({1}) = 1, f ({2}) = 2 and g({1}) =
g({2}) = 1. Then the only⊕-vertical decomposition of f is (b(1, {1}), b(2, {2})), and1�μ({1})⊕2�μ({2}) = 0.However,

(b(1,N)) is ⊕-vertical decomposition of g and 1 � μ(N) = 1 � 1. On the other side, using ⊕-vertical subdecompositions,

I⊕,�(f , μ) = I⊕,�(g, μ) = 1 � 1.

In general, ⊕ and � used in Definition 6 may be unrelated. However, then the resulting integrals may be rather peculiar.

For example, consider f : N → [0, ∞], f = 1{1}. Then (b(α, {1}))α∈[0,1] are the unique ⊕-vertical subdecompositions of

f (neglecting trivial basic functions b(0, E) and b(a, ∅)) which all equals to zero functions. Thus for any monotone measure

μ we have I⊕,�(1{1}, μ) = 1 � μ ({1}). However, each system (b (ai, {1}))i∈I such that
⊕

i∈I ai = 1 is ⊕-horizontal

decomposition of f and

I⊕,�(1{1}, μ) = sup

⎧⎨⎩⊕
i∈I

(ai � μ({1})) | ⊕
i∈I

ai = 1

⎫⎬⎭ .

Obviously, if the pseudo-multiplication � is left-continuous in the first coordinate and left ⊕-distributive, then also I⊕,�
(1{1}, μ) = 1 � μ ({1}). Consider a pseudo-multiplication � : [0, ∞]2 → [0, ∞] given by x � y = √

x · y. Then
I+,�(1{1}, μ) = ∞ whenever μ({1}) > 0. On the other hand, I∨,�(1{1}, μ) = 1 � μ({1}), independently of �.

Integrals introduced in Definition 7 include as special cases many of integrals known from the literature.
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Example 4. Vertical integrals cover:

(i) Lebesgue integral, (⊕, �) = (+, ·) and μ is additive;

(ii) PAN integral, ⊕ and � is PAN-addition and PAN-multiplication, respectively, see [22,23], μ is arbitrary;

(iii) pseudo-additive integral of Sugeno and Murofushi [20], ⊕ is pseudo-addition, � is a right-⊕-fitting pseudo-

multiplication and μ is ⊕-additive;

(iv) generalized Lebesgue integral introduced in [24].

Example 5. Horizontal integrals cover:

(i) Choquet integral [1], (⊕, �) = (+, ·) and μ is arbitrary (if μ is additive, then the Lebesgue integral is recovered);

(ii) Sugeno integral [19] and its extended form introduced in [17], (⊕, �) = (∨, ∧) and μ is arbitrary;

(iii) Shilkret integral [18], (⊕, �) = (∨, ·) and μ is arbitrary (in its original version, μ was supposed to be ∨-additive);

(iv) N-integral (introduced in [26]), ⊕ = ∨) and μ is arbitrary.

(⊕, �)-integral can be seen as a generalization of Lehrer concave integral introduced in [7], which is, indeed, exactly

(+, ·)-integral.
It is not difficult to check that, supposing the left-continuity of the pseudo-multiplication� and its left-⊕-distributivity,

the⊕-horizontal integral I⊕,�(·, μ1) differ from I⊕,�(·, μ2)wheneverμ1 
= μ2. This is nomore true for the integrals I⊕,�
and I

�⊕ .

Proposition 1. Let⊕ : [0, ∞]2 → [0, ∞] be a fixed pseudo-addition and let� : [0, ∞]2 → [0, ∞] be right-⊕-distributive

pseudo-multiplication. Let μ be a fixed monotone measure. Then I⊕,�(·, μ) = I⊕,�(·, η) for each monotone measure η such

that μ ≤ η ≤ μ⊕.

Proof. Due to the monotonicity of vertical (⊕, �)-integrals in measures it is enough to show that for each f ∈ F it holds

I⊕,�(f , μ) � I⊕,�(f , μ⊕) (recall that μ ≤ μ⊕). To see this inequality, consider ⊕-vertical subdecomposition (b(ai, Ei))i∈I

of f . Each subset Ei, i ∈ I, is finite and thus there is a partition (Ei,j)j∈Ji of Ei such that μ⊕(Ei) = ⊕
j∈Ji

μ(Ei,j).
Due to the right-distributivity of � over ⊕ it holds

⊕
i∈I

(ai � μ⊕(Ei)) = ⊕
i∈I

⎛⎝⊕
j∈Ji

(ai � μ(Ei,j))

⎞⎠ .

As far as
(
b(ai, Ei,j)

)
i∈I,j∈Ji

is a ⊕-vertical subdecomposition of f , it follows that
⊕

i∈I (ai � μ⊕(Ei)) ≤ I⊕,�(f , μ), and the

result follows. �

Similarly, the next result can be shown.

Proposition 2. Let ⊕ : [0, ∞]2 → [0, ∞] be a fixed pseudo-addition and let � : [0, ∞]2 → [0, ∞] be ⊕-distributive

pseudo-multiplication with neutral element e which is left-continuous. Let μ be a fixed monotone measure. Then

I�⊕(·, μ) = I�⊕(·, η)

for any monotone measure η such that μ � η � μ�⊕.

Corollary 1. Under conditions of Proposition 1 (Proposition 2),

I⊕,�(·, μ) = I⊕,�(·, η)

if and only if μ⊕ = η⊕ (I
�⊕(·, μ) = I

�⊕(·, η) if and only if μ�⊕ = η�⊕).

5. Pseudo-concave integrals

Recall that Lehrer has introduced his concave integral in [7] as minimum over all concave and positively homogeneous

functionals H : F → [0, ∞] satisfying H(1E) � μ(E) for all E ⊆ N, where F is the set of all N → [0, ∞] functions,

I ·+(f , μ) = min {H(f )}, see Lemma 1 in [7] .

The concavity of H, i.e.,

H (λ f + (1 − λ) g) ≥ λH(f ) + (1 − λ)H(g)



Author's personal copy

362 R. Mesiar et al. / International Journal of Approximate Reasoning 54 (2013) 357–364

for all λ ∈ [0, 1] and f , g ∈ F , together with the positive homogeneity of H, i.e., H(α f ) = α H(f ) for all α > 0 and f ∈ F is

equivalent to the superadditivity, i.e.,

H(f + g) � H(f ) + H(g)

for all f , g ∈ F , and positive homogeneity of H. This observation allows us to introduce an integral I
⊕� linked to special

functionals over F .

Definition 8. Let ⊕, � : [0, ∞]2 → [0, ∞] be a fixed pseudo-addition and pseudo-multiplication, respectively, such that

e is unique left-neutral element of �. For any monotone measure μ : 2N → [0, ∞], the integral I
⊕� : F → [0, ∞] is given

by

I⊕�(f , μ) = inf

{
H(f ) | H : F → [0, ∞] is ⊕-superadditive and �-homogeneous,H(e, E) � μ(E) for all E ⊆ N

}
where the ⊕-superadditivity of H means H(f ⊕ g) � H(f ) ⊕ H(g) for all f , g ∈ F , and �-homogeneity of H means

H(α � f ) = α � H(f ) for all α > 0 and f ∈ F .

Remark 2. In general the integral I
⊕� can differ from I

�⊕ . Consider ⊕ = ∨ and let � : [0, ∞]2 → [0, ∞] be given

by x � y = x2 · y, i.e., left-neutral element e = 1. For constant functions on N the �-homogeneity of a functional

H : F → [0, ∞] means

H (b(c,N)) = H
(√

c � b(1,N)
)

= √
c � H (b(1,N)) = c · H (b(1,N)) .

Moreover, H (b(1,N)) � μ(N) should hold. Evidently the ∨-superadditivity of H is exactly the monotonicity of H (increas-

ingness). Thus

I∨� (b(c,N), μ) = c · μ(N).

On the other hand I�∨ (b(c,N), μ) = c � μ(N) = c2 · μ(N).

As a proper generalization of Lehrer’s concave integral we will consider those (⊕, �)-integrals for which I
⊕� = I

�⊕ holds,

independently of N, i.e., when both approaches based on integral sums (and supremum) and on special functionals (and

infimum) coincide.

Theorem 1. Let ([0, ∞], ⊕, �) be a semiring, i.e., ⊕ : [0, ∞]2 → [0, ∞] is a given pseudo-addition, and � : [0, ∞]2 →
[0, ∞] is an associative commutative⊕-distributive pseudo-multiplicationwith neutral element e ∈ ]0, ∞]which is continuous

on [0, ∞]2 \ {(0, ∞), (∞, 0)}. Then I
⊕� = I

�⊕ and this integral will be called pseudo-concave integral.

Proof. Recall thatdue to [12]: (i) either⊕ = ∨and� is either isomorphic to thestandardproduct,x� y = g−1 (g(x) · g(y))
for an automorphism g : [0, ∞] → [0, ∞], or � is an I-semigroup operation on [0, ∞] with neutral element e = +∞. In

both cases

I�∨ (f , μ) = I∨�(f , μ)

= sup
{
ai � μ(Ei) | b(ai, Ei) � f

}
= sup

{
t � μ(f � t) | t ∈ [0, ∞]

}
.

(ii) or both ⊕ and � are generated by an automorphism g : [0, ∞] → [0, ∞], x � y = g−1 (g(x) · g(y)) (observe that

neutral element e of � is given by e = g−1(1) ), see [14,16]. Then

I�⊕(f , μ) = sup

⎧⎨⎩⊕
i∈I

(ai � μ(Ei)) | ⊕
i∈I

b(ai, Ei) = f

⎫⎬⎭
= sup

⎧⎨⎩g−1

⎛⎝∑
i∈I

(g(ai) · g(μ(Ei))

⎞⎠ ∣∣∣∣∣∣
∑
i∈I

b(g(ai), Ei) = g ◦ f

⎫⎬⎭
= g−1

(
I·+(g ◦ f , g ◦ μ)

)
.



Author's personal copy

R. Mesiar et al. / International Journal of Approximate Reasoning 54 (2013) 357–364 363

On the other hand, H : F → [0, ∞] is a ⊕-superadditive and �-homogeneous functional satisfying H (b(e, E)) � μ(E) if
and only if the functional g ◦H ◦ g−1 : F → [0, ∞] satisfies the requirements of Lehrer’s functional in definition of I+· , and

thus

I⊕�(f , μ) = inf

{
H(f ) | H : F → [0, ∞] is ⊕-superadditive,

positively homogeneous and H(b(e, E)) � μ(E) for all E ⊆ N

}
= g−1

(
inf

{
G(g(f )) | G : F → [0, ∞] is superadditive,

positively homogeneous and G(b(1, E)) � g(μ(E))

} )
= g−1

(
I+· (g ◦ f , g ◦ μ)

)
.

The result follows. �

Lehrer in [7] has shown also that his concave integral I·+ is bounded from below by Choquet integral and that these two

integrals coincide if and only if μ is supermodular (and, obviously, they coincide with Lebesgue integral if and only if μ is

additive). Based on Theorem 1, it is not difficult to check the following result.

Corollary 3. Denote by Ch
�⊕ the Choquet-like integral introduced by Mesiar [10]. Let ([0, ∞], ⊕, �) be a semiring. Then the

pseudo-integral I
�⊕ has the following properties

(i) I
�⊕ ≥ Ch

�⊕;

(ii) I
�⊕(·, μ) = Ch

�⊕(·, μ) if and only if μ is ⊕-supermodular;

(iii) I
�⊕(·, μ) = Ch

�⊕(·, μ) = SM
�⊕(·, μ) if and only if μ is ⊕-additive, where SM

�⊕ is the pseudo-additive integral introduced

by Sugeno and Murofushi in [20].

Example 6. LetN andμ : 2N → [0, ∞] be considered as in Example 2 (ii). Let f : N → [0, ∞] be given by f (1) = f (3) = 1

and f (2) = 2. Then

I+,·(f , μ) = a ∨ 1.2,

(considering the systems (b (1, {1, 3}) , b (2, {2})) and (b (1, {1, 2, 3})), respectively),
I+,·(f , μ) = a + 0.1,

(attained for the system (b (1, {1, 2, 3}) , b (1, {2}))),
I ·+(f , μ) = I+· (f , μ) = (a + 0.1) ∨ 2,

(considering the systems (b (1, {1, 2, 3}) , b (1, {2})) and (b (1, {1, 2}) , b (1, {2, 3}))), i.e., the Choquet integral I+,·(f , μ)
coincides with Lehrer integral I ·+(f , μ) only a ≥ 1.9 (hence if μ is supermodular).

Considering ⊕, � : [0, ∞]2 → [0, ∞] given by

u ⊕ v = (up + vp)1/p and u ⊕ v = uv

for some p ∈ ]0, ∞[, ([0, ∞], ⊕, �) form a semiring and we have

I⊕,�(f , μ) = a ∨ (1 + 0.2p)1/p,

I⊕,�(f , μ) = (ap + 0.1p)1/p,

I�⊕(f , μ) = I⊕�(f , μ) = (ap + 1 + 0.1p)1/p ∨ 21/p,
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and then Choquet-like integral I⊕,�(f , μ) coincideswith the pseudo-concave integral I
�⊕(f , μ)whenever a ≥ (2−0.1p)1/p

(and only thenμ is super-⊕-modular). PAN-integral I⊕,�(f , μ) is always smaller than the pseudo-concave integral I
�⊕(f , μ).

6. Concluding remarks

We have introduced four approaches how to define an integral on a finite space by means of basic functions, a pseudo-

addition and a pseudo-multiplication. We have discussed some properties of these new integrals and we have shownmany

integrals known from the literature to be a special case of our integrals. As an example of an integral not covered by our

approach recall special universal integrals based on copulas recently introduced in [5].

For the future research, our integrals over general abstract measurable spaces could be defined and studied, thus gen-

eralizing our results in similar manner as the works [6,21] did with the original concave integral defined on finite spaces

in [7].

Note that during the finalisation of this paper, a closely related approach to integration (based on + and · and dealingwith

subdecomposition additivity) appeared in [8]. Finally, recall that the proposal of (⊕, �)-integrals generalizing the Lehrer

integral appeared for the first time in [11] and it was presented at NLMUA’2011 conference. We expect applications of our

results in several domains, especially in decision making and game theory.
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