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Abstract

Recently, Maccheroni et al. [Ann. Probab. 33, (2005) 1171–1178] provided an extension of the
strong laws of large numbers of iid random variables for capacities. In this paper, we formu-
late new versions of strong laws of large number based on a submodular continuous monotone
measure without the independence condition.

Keywords: Probability theory; The Borel-Cantelli lemma; Strong law of large numbers; Choquet
expectation.

1 Introduction

The importance of the strong laws of large numbers in probability theory is well recognized and
requires no discussion (see Durrett (2004)). Many papers have been published on the topic of the
strong laws of large numbers, in several different research communities; see Chen (2012), Gadidov
(1998), Jajte (2003), Korchevsky (2011), Maccheroni et al. (2005), Lata la et al. (2000), Li et al.
(2011), Rébillé (2009). We focus on capacities, an important class of nonadditive probabilities.
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Recently, Maccheroni et al. (2005) established for capacities a strong law of large numbers for
iid random variables. The main results subsequently proved relative to their strong law are still
based on iid random variables. However, in probability theory many attempts have been made
to weaken the independence condition in the strong law of large numbers; see Korchevsky (2011),
Korchevsky et al. (2010), Luzia (2012). For this reason in this paper we address the question of how
to prove strong laws of large numbers for capacities without the independence condition. Recently,
Luzia (2012) proved an interesting version of the strong law of large numbers without assuming the
random variables are pairwise independent, which is derived from the following theorem.

Theorem 1.1 Let X1, X2, ... be non-negative random variables on a probability space (Ω,F , P ) and
Sn =

∑n
i=1 Xi. If supi E [X2

i ] < ∞, E [Sn] →∞ and there exists γ > 1 such that

var [Sn] = O

(
(E [Sn])2

(log (E [Sn])) (log log (E [Sn]))γ

)
,

then Sn

E[Sn]

a.e.→ 1.

Corollary 1.2 Let X1, X2, ... be identically distributed random variables on a probability space
(Ω,F , P ) with EX2

i < ∞, EXi = m and Sn =
∑n

i=1 Xi. If Xi ≥ −M , for some constant M > 0,
and there exists γ > 1 such that

∑

1≤i<j≤n

(
E (XiXj)−m2

)
= O

(
n2

(log n) (log log n)γ

)
,

then Sn

n

a.e.→ m.

The aim of this paper is to generalize the strong laws of large number for some monotone
measures. In particular, the previous results of Luzia (2012) based on the strong law of large
numbers are extended for Choquet (-like) expectation based on a submodular continuous monotone
measure.

The rest of the paper is organized as follows. Some notions and theorems that are useful in this
paper are given in Section 2, including some generalizations of Borel-Cantelli lemmas. Generaliza-
tions of strong laws of large number are given in Section 3. Finally, some concluding remarks are
added.

2 Preliminaries

In order to derive our main results, we have to recall here the following results and notations.

Let (Ω,F) be a fixed measurable space. An F -measurable function X : Ω → R will be called a
random variable. For the convenience of the reader, we provide in this section a summary of the
mathematical notations and definitions used in this paper (see Agahi et al. (2012)).
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2.1 Definition and Fundamental Properties

A set function µ : F → [0,∞] is called a monotone measure whenever µ (∅) = 0, µ(Ω) > 0 and
µ(A) ≤ µ(B) whenever A ⊆ B. The triple (Ω,F , µ) is also called a monotone measure space.
If µ (Bn) ↓ µ (B) for all sequences of measurable sets such that Bn ↓ B and µ (Bn) ↑ µ (B)
for all sequences of measurable sets such that Bn ↑ B, the monotone set function µ is called
continuous. If, for a set B ⊂ Ω, there exist A ∈ F such that B ⊂ A and µ(A) = 0, then B is called
a µ-nullset. Note that a monotone set function µ is also submodular (2-alternating) whenever
µ (A ∪B) + µ (A ∩B) ≤ µ (A) + µ (B) for all A,B ∈ F . If υ : F → [0,∞] is a submodular
continuous measure, then the triple (Ω,F , υ) is also called a submodular continuous (SC-) measure
space. A monotone set function λ : F → [0, 1] is said to be a capacity, if λ(Ω) = 1 (see Choquet
(1954)). In capacities, most work on upper probabilities has focused on the 2-alternating case;
see Huber et al. (1973), Huber et al. (1974), Shapley (1971). For example, Huber et al. (1973)
obtained that the 2-alternating property is necessary and sufficient for generalizing the Neyman-
Pearson lemma to sets of probabilities.

Definition 2.1 (Maccheroni et al. 2005 ). Let (Ω,F , µ) be a monotone measure space. Random
variables Y1, . . . , Yn : Ω → R are independent if µ {Y1 ∈ B1, . . . , Yn ∈ Bn} =

∏n
i=1 µ {Yi ∈ Bi} for

all Borel sets B1, . . . , Bn. We also say they are identically distributed if, for each n,m ≥ 1 and each
Borel set B, µ {Yn ∈ B} = µ {Ym ∈ B} .

Given a monotone measure space (Ω,F , µ), we shall denote by ω any element of Ω and we put
{X > t} = {ω : X (ω) > t} for any t > 0. The Choquet expectation of X with respect to (w.r.t.)
the finite monotone measure µ is defined by

Eµ
C (X) =

∫

Ω

Xdµ =

∫ ∞

0

µ ({X > t}) dt−
∫ 0

−∞
[µ(Ω)− µ ({X > t})] dt. (2.1)

We also denote Vµ
C (X) = Eµ

C

[
(X − Eµ

C [X])2
]
. Throughout this paper, we always consider the

existence of Eµ
C (X) and of Vµ

C (X). Notice that if µ is probability measure, µ = P , then Eµ
C (X) =

EP
C (X) = E (X) and Vµ

C (X) = VP
C (X) = var (X) .

In order to consider the convergence analysis of random variables defined on a monotone measure
space, we need the following definition, which is mainly due to Agahi et al. (2012). The authors
proved some theorems in the convergence of a sequence of random variables on monotone measure
spaces and also discussed relationships among forms of convergence.

Definition 2.2 Let X be a random variable and let {Xi}∞i=1 be a sequence of random variables
defined on an SC-measure space (Ω,F , υ).
(I) We say that Xn converges in υ to X and write Xn

υ−→ X if

∀ϵ > 0 : υ [|Xn −X| > ϵ] → 0 as n →∞.

(II) We say that Xn is almost everywhere convergent to X and write Xn
a.e.−→ X if there exists a

υ-nullset N ∈ F such that

∀ω ∈ N c : |Xn (ω)−X (ω)| → 0 as n →∞.
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A Choquet-like expectation is based on pseudo-addition ⊕ and pseudo-multiplication ⊗; see
Mesiar (1995). Therefore, at first we state their definitions.

Let [a, b] be a closed subinterval of [−∞,∞]. The full order on [a, b] will be denoted by ⪯. A
binary operation ⊕ : [a, b]2 → [a, b] is pseudo-addition if it is commutative with a zero (neutral)
element denoted by 0, non-decreasing (with respect to ⪯ ), associative and if rn → r and sn → s,
then rn ⊕ sn → r ⊕ s. Let [a, b]+ = {x | x ∈ [a, b] ,0 ⪯ x}. A binary operation ⊗ on [a, b] is said to
be a pseudo-multiplication corresponding to ⊕ if it is commutative with a unit element e ∈ [a, b],
i.e., for each x ∈ [a, b] , e ⊗ x = x, positively non-decreasing, i.e., x ⪯ y implies x ⊗ z ⪯ y ⊗ z
for all z ∈ [a, b]+, associative and if rn → r ∈ (0, b) and xn → x, then (rn ⊗ xn) → (r ⊗ x)
and b ⊗ x = limr→b(r ⊗ x). We assume also 0 ⊗ x = 0 and that ⊗ is distributive over ⊕, i.e.,
x⊗ (y ⊕ z) = (x⊗ y)⊕ (x⊗ z).

Mesiar (1995) showed that if ⊗ is a pseudo-multiplication corresponding to a given pseudo-
addition ⊕ fulfilling the aforesaid axioms (considering a = 0) and if its identity element e is not
an idempotent of ⊕, then there is a continuous strictly increasing function g : [a, b] → [0,∞] with
g(a) = 0 and g(b) = ∞, such that g(e) = 1 and

c⊕ d = g−1(g(c) + g(d)) ⊕ is called a g-addition,

c⊗ d = g−1(g(c) · g(d)) ⊗ is called a g-multiplication.

Clearly,
⊕n

i=1 xi = g−1 (
∑n

i=1 g (xi)) for any xi ∈ [a, b] , i = 1, . . . n. We define the pseudo-power

x
(n)
⊗ as x

(n)
⊗ = x⊗ x⊗ · · · ⊗ x︸ ︷︷ ︸

n−times

, where x ∈ [a, b] and n is a natural number. Evidently, if x ⊗ y =

g−1(g(x) · g(y)), then x
(n)
⊗ = g−1 (gn (x)).

Definition 2.3 (Mesiar 1995 ) Let (Ω,F , µ) be a monotone measure space. Let ⊕ and ⊗ be gener-
ated by a generator g. The Choquet-like expectation of a measurable function X : Ω → [a, b] w.r.t.
the monotone measure µ can be represented as

Eµ
Cl,g [X] = g−1

(
Eg(µ)

C [g (X)]
)

. (2.2)

During the context, the Choquet-like expectation defined on an SC-measure space (Ω,F , υ) is

defined by Eυ
Cl,g [X] = g−1

(
Eg(υ)

C [g (X)]
)

. We also denote Vυ
Cl,g [X] = g−1

(
Vg(υ)

C [g (X)]
)

.

Before stating our main result, we need the following theorems.

Theorem 2.4 (Borel-Cantelli lemma) Let (Ω,F , υ) be an SC-measure space and let {Ai}∞i=1 be a
sequence of sets in F . If

∑∞
n=1 υ (An) < ∞, then υ (

∩∞
m=1

∪∞
n=m An) = 0.

Proof. If
∑∞

n=1 υ (An) < ∞, then the convergence of this sum implies that infm≥1

∑∞
n=m υ (An) = 0.

Since υ is an SC-measure, we have

0 ≤ υ

( ∞∩

m=1

∞∪

n=m

An

)
≤ inf

m≥1
υ

( ∞∪

n=m

An

)
≤ inf

m≥1

∞∑

n=m

υ (An) = 0,

where the last inequality follows from the subadditivity and the continuity of υ. This completes
the proof. 2

The next result extends the Theorem 2.4.
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Theorem 2.5 Let (Ω,F , υ) be an SC-measure space, ⊕,⊗ : [0,∞]2 → [0,∞] be generated by a
generator g : [0,∞] → [0,∞] and {Ai}∞i=1 be a sequence of sets in F . If

⊕∞
n=1 υ (An) < ∞, then

υ (
∩∞

m=1

∪∞
n=m An) = 0.

Proof. If
⊕∞

n=1 υ (An) < ∞, then
∑∞

n=1 g (υ (An)) < g (∞) = ∞. Now, by the Theorem 2.4,
g (υ (

∩∞
m=1

∪∞
n=m An)) = 0. Therefore, υ (

∩∞
m=1

∪∞
n=m An) = g−1 (0) = 0. 2

Now, our results can be stated as follows.

3 The strong law of large numbers

Theorem 3.1 Let X1, X2, ... be non-negative random variables defined on an SC- measure space
(Ω,F , υ) and Sn =

∑n
i=1 Xi. Let supi Eυ

C [X2
i ] < ∞ and Eυ

C [Sn] → ∞. If there exist a > 1 and
k > 0 such that

Vυ
C [Sn] ≤ k (Eυ

C [Sn])2

(log (Eυ
C [Sn])) (log log (Eυ

C [Sn]))a , (3.1)

then Sn

Eυ
C [Sn]

a.e.→ 1.

Proof. Using the Chebyshev type inequality for Choquet expectation (see Sheng et al. (2011)),
then for each ϵ > 0, we have

υ (|Sn − Eυ
C [Sn]| > (ϵEυ

C [Sn])) ≤ Vυ
C [Sn]

ϵ2 (Eυ
C [Sn])2 ≤

k

ϵ2 (log (Eυ
C [Sn])) (log log (Eυ

C [Sn]))a (3.2)

for some constant k > 0. So, Sn

Eυ
C [Sn]

υ→ 1. Let 0 < b < a−1 and nr = inf
{

n : log (Eυ
C [Sn]) ≥ r

(log r)b

}

be subsequences of n. Since Eυ
C [Xi] ≤ C < ∞, then we have exp

(
r

(log r)b

)
≤ Eυ

C [Snr ] ≤ exp
(

r

(log r)b

)
+

C. Thus, Ineq. (3.2) implies that

υ (|Snr − Eυ
C [Snr ]| > ϵEυ

C [Snr ]) ≤ k′

ϵ2r (log (r))a−b
,

for some constant k′ > 0. Therefore,
∑∞

r=1 υ (|Snr − Eυ
C [Snr ]| > ϵEυ

C [Snr ]) < ∞. Then the arbi-

trariness of ϵ and Theorem 2.4 imply that Snr

Eυ
C [Snr ]

a.e.→ 1. Now choose an ω. If nr ≤ n ≤ nr+1,

then
Snr (ω)

Eυ
C

[
Snr+1

] ≤ Sn (ω)

Eυ
C [Sn]

≤ Snr+1 (ω)

Eυ
C [Snr ]

. (3.3)

The relation (3.3) can also be written in the form

Eυ
C [Snr ]

Eυ
C

[
Snr+1

] Snr (ω)

Eυ
C [Snr ]

≤ Sn (ω)

Eυ
C [Sn]

≤ Snr+1 (ω)

Eυ
C

[
Snr+1

]Eυ
C

[
Snr+1

]

Eυ
C [Snr ]

.

So, it is enough to prove that
Eυ

C[Snr+1 ]
Eυ

C [Snr ]
converges to 1. Since

exp

(
r

(log r)b

)
≤ Eυ

C [Snr ] ≤ Eυ
C

[
Snr+1

]
≤ exp

(
r + 1

(log (r + 1))b

)
+ C,
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then
Eυ

C[Snr+1 ]
Eυ

C [Snr ]
converges to 1 because

r+1

(log(r+1))b

r

(log r)b
converges to 1. This completes the proof. 2

Theorem 3.1 plays an important role in obtaining our results.

Corollary 3.2 (Borel-Cantelli lemma II) Let (Ω,F , P ) be a probability space and let {An}∞n=1 be
a sequence of sets in F . If {An}∞n=1 are pairwise independent and

∑∞
n=1 P (An) = ∞, then

∑n
i=1 IAi∑n

i=1 P (Ai)

a.e.→ 1.

Proof. Let Xi = IAi
. Since {Ai}n

i=1 are pairwise independent and EP
C [Sn] →∞, we have

VP
C [Sn] = var [Sn] = var

[
n∑

i=1

IAi

]
=

n∑

i=1

var [IAi
] ≤

n∑

i=1

E [IAi
] = E [Sn] = EP

C [Sn] .

Then (3.1) holds readily for some large constant k > 0. So, by Theorem 3.1, we have

∑n
i=1 IAi

EP
C [
∑n

i=1 IAi
]

=

∑n
i=1 IAi∑n

i=1 E [IAi
]

=

∑n
i=1 IAi∑n

i=1 P (Ai)

a.e.→ 1.

The main results of this paper are the following theorems.

Theorem 3.3 (The strong law of large numbers I) Let X1, X2, ... be identically distributed non-
negative random variables defined on an SC- measure space (Ω,F , υ) with Eυ

C [Xi] = m, Eυ
C [X2

i ] <
∞ and Sn =

∑n
i=1 Xi. If there exist a > 1 and k > 0 such that

Eυ
C

[
(Sn − nm)2] ≤ kn2

(log (n)) (log log (n))a ,

then Sn

n

a.e.→ m.

Proof. This is similar to the proof of Theorem 3.1.

Theorem 3.4 (The strong law of large numbers II) Let X1, X2, ... be identically distributed non-
negative random variables defined on an SC- measure space (Ω,F , υ) with Eυ

C [Xi] = m, Eυ
C [X2

i ] <
∞ and Sn =

∑n
i=1 Xi. If there exist a > 1 and b, k > 0 such that

Vυ
C [Sn] ≤ T 2, (3.4)

where T = k
1
2 n√

(log(n))(log log(n))a
− 2n

√
bυ(Ω), then Sn

n

a.e.→ m.

Proof. Since υ is submodular, there holds (see Denneberg (1994) and Wang et al. (2008))

Eυ
C [Sn] = Eυ

C

[
n∑

i=1

Xi

]
≤

n∑

i=1

Eυ
C [Xi] = nm. (3.5)

6



Eυ
C [X2

i ] < ∞ implies that there exists b > 0 such that Eυ
C [X2

i ] ≤ b. Applying first Hölder’s inequality
and then Minkowski’s inequality for Choquet expectation (see Mesiar et al. (2010)), we obtain

Eυ
C [Xi] + cυ(Ω) = Eυ

C [Xi + c] = Eυ
C [(Xi + c)× 1] ≤

(
Eυ

C

[
(Xi + c)2]) 1

2 υ
1
2 (Ω)

≤
((

Eυ
C

[
X2

i

]) 1
2 + cυ

1
2 (Ω)

)
υ

1
2 (Ω) ≤ b

1
2 υ

1
2 (Ω) + cυ(Ω),

where c > 0. Since Xi are non-negative, then we have

|m| ≤
√

bυ(Ω). (3.6)

So, (3.5) and (3.6) imply that

(
Eυ

C

[
(Eυ

C [Sn]− nm)2]) 1
2 ≤

(
Eυ

C

[
(2nm)2]) 1

2 =
(
(2nm)2 υ(Ω)

) 1
2

= 2n |m|
√

υ(Ω) ≤ 2n
√

bυ(Ω)
√

υ(Ω) ≤ 2n
√

bυ (Ω) . (3.7)

For any ϵ > 0, by Chebyshev’s inequality and then Minkowski’s inequality for Choquet expectation,
we get

υ

(∣∣∣∣
Sn

n
−m

∣∣∣∣ > ϵ

)
= υ (|Sn − nm| > ϵn)

= υ (|(Sn − Eυ
C [Sn]) + (Eυ

C [Sn]− nm)| > ϵn)

≤ Eυ
C

[
((Sn − Eυ

C [Sn]) + (Eυ
C [Sn]− nm))2]

ϵ2n2

≤

((
Eυ

C

[
(Sn − Eυ

C [Sn])2]) 1
2 +

(
Eυ

C

[
(Eυ

C [Sn]− nm)2]) 1
2

)2

ϵ2n2
,

and hence, by (3.7) and assumption (3.4), we have

υ

(∣∣∣∣
Sn

n
−m

∣∣∣∣ > ϵ

)
≤

(
(Vυ

C [Sn])
1
2 + 2n

√
bυ(Ω)

)2

ϵ2n2

≤ k

ϵ2 (log (n)) (log log (n))a

for some constant k > 0. Then the proof is similar to the proof of Theorem 3.1. 2

4 Concluding remarks

We have introduced some generalizations of Borel-Cantelli’s lemmas, as well as of the strong law of
large numbers, considering continuous submodular monotone measures and Choquet expectations.
Up to the result mentioned in Theorem 3.4, we obtain a generalization of this result for Choquet-
like expectation. Let ⊕,⊗ : [0,∞]2 → [0,∞] be generated by a generator g : [0,∞]2 → [0,∞]

7



and X1, X2, ... be identically distributed non-negative random variables defined on an SC- measure

space (Ω,F , υ) with Eg(υ)
Cl,g [Xi] = m, Eg(υ)

Cl,g

[
(Xi)

(2)
⊗

]
< ∞ and Bn =

⊕n
i=1 Xi. If there exist a > 1

and b, k > 0 such that
Vg(υ)

Cl,g [Bn] ≤ g−1
(
T 2
)
,

where T = k
1
2 n√

(log(n))(log log(n))a
− 2n

√
bυ(Ω), then g−1

(
1
n

)
⊗Bn

a.e.→ m.

We believe that versions of these results for some other types of generalized integrals, such as
Sugeno integral (see Sugeno (1974)), Shilkret integral (see Shilkret (1971)) or special kinds of uni-
versal integrals based on copulas (see Klement et al. (2010)) are valid, too. In our future research
we aim to study and investigate this problem.
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1. New versions of strong laws of large number for monotone measures are given.
2. This paper improves the series of papers on the topic.
3. Some generalizations of Borel-Cantelli’s lemmas are given.
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