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1. Introduction Definition 1.1.
The theory of non-additive measures was first developed by Su-
geno [42] as a tool for modeling nondeterministic problems. There
are considered several important kinds of non-additive integrals.
One of them is Sugeno integral which has been generalized by
using some other operators to replace the special operator(s) ^
and/or _ (see, e.g., [29,31,41,43]).

Choquet integral is another important kind of non-additive
integrals which was first introduced by Choquet [9] and has been
studied by many other researchers [12,34].

The Choquet and the Sugeno integral provide a useful tool in
many problems in engineering, non-linear systems and fuzzy infer-
ence systems where the aggregation of data is required [44]. How-
ever, their applicability is restricted because of the special
operations used in the construction of these integrals. Therefore,
Klement et al. [24,21,22] provided a universal integral generalizing
both the Choquet and the Sugeno case.

The integral inequalities are useful tools in several theoretical
and applied fields. They are a part of the classical mathematical
analysis [17,26]. For the case of the classical Riemann integral,
we recall some well-known integral inequalities and we aim to
generalize these inequalities for the universal integrals.
(i) Let f : [0,1) ? [0,1) be an integrable function (f – 0) and
FðxÞ ¼

R x
0 f ðtÞdt. Then the classical Hardy type inequality

holds:
Z 1

0

F
x

� �p

dx <
p

p� 1

� �p Z 1

0
f pðxÞdx;
where p > 1.
(ii) Let f be a nonnegative concave function on [a,b]. Then the

classical Berwald type inequality holds [36]:
ð1þ sÞ
1
s

ð1þ rÞ
1
r

R b
a f sðxÞdx

b� a

 !1
s

6

R b
a f rðxÞdx

b� a

 !1
r

;

for 0 < r < s <1
(iii) The following is the classical Barnes–Godunova–Levin

inequality [36]:
Z b

a
f pðxÞdx

 !1
p Z b

a
gqðxÞdx

 !1
q

6 Bðp; qÞ
Z b

a
f ðxÞgðxÞdx;
where p; q > 1;Bðp; qÞ ¼ 6ðb�aÞ
1
pþ

1
q�1

ð1þpÞ
1
pð1þqÞ

1
q

and f, g are nonnegative concave
functions on [a,b].

(iv) Let f be a nonnegative function. Then the classical Markov
type inequality holds:
1
c

Z
A

fdl P lfx 2 Ajf ðxÞP cg;
for c > 0.
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The study of inequalities for Sugeno integral was initiated by
Romá n-Flores et al. [14,37], and then followed by many authors
[1–5,8,14,30,33,37]. Recently, Román-Flores et al. [37] proved a
Hardy type inequality for a measurable function and Lebesgue
measure-based Sugeno integral, and then Agahi and Yaghoobi [5]
further generalized it to comonotone functions. In [14], Markov
type inequalities for Sugeno integral were obtained which has been
generalized by Caballero and Sadarangani [8]. Furthermore, the
classical Berwald inequality for monotone functions and Lebesgue
measure-based Sugeno integral was proposed in a special form by
Agahi et al. [2]. Also, Agahi et al. [1] proved a strengthened version
of Barnes–Godunova–Levin type inequality for Sugeno integrals on
a real interval based on a binary operation.

The aim of this contribution is to generalize their works to the
frame of the universal integral on abstract spaces. In fact, this pa-
per generalizes most of previous results [1,2,5,14,30,33,37].

To stress the applicability of non-linear integrals in the area of
knowledge-based systems, we recall few references: in [32] such
integrals were added to fuzzy control systems; description of some
non-linear integrals and their use in information theory can be
found in the monograph [25]; for applications of the Choquet inte-
gral in tactical knowledge representation see [38]; typicality anal-
ysis and feature selection based on Choquet integral is the topic of
[28]; overtimes strategies based on non-linear integrals are dis-
cussed in [11].

The paper is organized as follows. In the next section, we briefly
recall some preliminaries and summarization of some previous
known results. In Section 3, we focus on several inequalities
including Hardy, Berwald, Markov and Chebyshev for universal
integral. In Section 4, we provide some applications of our results
in intelligent decision support systems, estimations and informa-
tion fusion. Finally, a conclusion is given.

2. Universal integral

In this section, we are going to review some well known results
from universal integral (see [24]).

Definition 2.1 [24]. A monotone measure m on a measurable
space ðX;AÞ is a function m : A ! ½0;1� satisfying
(i) m(/) = 0,
(ii) m(X) > 0,

(iii) m(A) 6m(B) whenever A # B.

Normed monotone measures on ðX;AÞ, i.e., monotone measures
satisfying m(X) = 1, are also called capacities [15,42,45], depending
on the context.

For a measurable space ðX;AÞ, i.e., a non-empty set X equipped
with a r-algebra A, recall that a function f:X ? [0,1] is called A-
measurable if, for each B 2 Bð½0;1�Þ, the r-algebra of Borel subsets
of [0,1], the preimage f�1(B) is an element of A.

Definition 2.2 [24]. Let ðX;AÞ be a measurable space.
(i) FðX;AÞ denotes the set of all A-measurable functions
f:X ? [0,1);

(ii) For each number a 2 ð0;1�;MðX;AÞ
a denotes the set of all

monotone measures (in the sense of Definition 2.1) satisfy-
ing m(X) = a; and we take
MðX;AÞ ¼
[

a2ð0;1�
MðX;AÞ

a :
Let S be the class of all measurable spaces, and take
D½0;1� ¼
[

ðX;AÞ2S
MðX;AÞ � FðX;AÞ:
Definition 2.3. The Choquet [9], Sugeno [42] and Shilkret [40]
integrals (see also [7,29,34,35]), respectively, are given, for any
measurable space ðX;AÞ, for any measurable function f 2 FðX;AÞ
and for any monotone measure m 2 MðX;AÞ, i.e., for any
ðm; f Þ 2 D½0;1�, by

Chðm; f Þ ¼
Z 1

0
mðff P tgÞdt;

Suðm; f Þ ¼ supfminðt;mðff P tgÞÞjt 2 ð0;1�Þg;
Shðm; f Þ ¼ supft:mðff P tgÞjt 2 ð0;1�Þg;

where the convention 0.1 = 0 is used. All these integrals map
MðX;AÞ � FðX;AÞ into [0,1] independently of ðX;AÞ. We remark that
fixing an arbitrary m 2MðX;AÞ, they are non-decreasing functions
from FðX;AÞ into [0,1], and fixing an arbitrary f 2 FðX;AÞ, they are
non-decreasing functions from MðX;AÞ into [0,1].
Definition 2.4 [24]. Two pairs ðm1; f1Þ 2 MðX1 ;A1Þ � FðX1 ;A1Þ and
ðm2; f2Þ 2 MðX2 ;A2Þ � FðX2 ;A2Þ satisfying

m1ðff1 P tgÞ ¼ m2ðff2 P tgÞ for all t 2 ð0;1�;

will be called integral equivalent, in symbols

ðm1; f1Þ � ðm2; f2Þ:
Definition 2.5. [34,43]. A function �:[0,1]2 ? [0,1] is called a
pseudo-multiplication if it satisfies the following properties:

(i) it is non-decreasing in each component, i.e., for all a1, a2, b1,
b2 2 [0,1] with a1 6 a2 and b1 6 b2 we have
a1 � b1 6 a2 � b2;

(ii) 0 is an annihilator of �, i.e., for all a 2 [0,1] we have
a � 0 = 0 � a = 0;

(iii) � has a neutral element different from 0, i.e., there exists an
element e 2 (0,1] such that, for all a 2 [0,1], we have
a � e = e � a = a.
Definition 2.6. For a given pseudo-multiplication on [0,1], we
suppose the existence of a pseudo-addition �: [0,1]2 ? [0,1]
which is continuous, associative, non-decreasing and has 0 as neu-
tral element (then the commutativity of �follows, see [23]), and
which is left-distributive with respect to �i.e., for all a, b,
c 2 [0,1] we have (a � b) � c = (a � c) � (b � c). The pair (�,�) is
then called an integral operation pair, see [7,24].
Definition 2.7 [24]. A function I : D½0;1� ! ½0;1� is called a univer-
sal integral if the following axioms hold:

(I1) For any measurable space ðX;AÞ, the restriction of the func-
tion I toMðX;AÞ � FðX;AÞ is non-decreasing in each coordinate;

(I2) there exists a pseudo-multiplication �: [0,1]2 ? [0,1] such
that for all pairs ðm; c:1AÞ 2 D½0;1�

Iðm; c:1AÞ ¼ c �mðAÞ;
(I3) for all integral equivalent pairs ðm1; f1Þ; ðm2; f2Þ 2 D½0;1� we
have I (m1, f1) = I(m2, f2).
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Theorem 2.8 [24]. Let �:[0,1]2 ? [0,1] be a pseudo-multiplication
on [0,1]. Then the smallest universal integral I and the greatest uni-
versal integral I based on � are given by

I�ðm; f Þ ¼ supft �mðX \ ff P tgÞjt 2 ð0;1�Þg;
I�ðm; f Þ ¼ essupmf � supfmðX \ ff P tgÞjt 2 ð0;1�Þg;

where essupmf = sup{t 2 [0,1]jm(X \ {f P t}) > 0}.
Remark 2.9. Clearly, Su = IMin and Sh = IProd, where the pseudo-
multiplications Min and Prod are given (as usual) by Min(a,b) = mi-
n(a,b) and Prod(a,b) = a � b.
Remark 2.10 [24]. There is neither a smallest nor a greatest
pseudo-multiplication on [0,1]. But, if we fix the neutral element
e 2 (0,1], then the smallest pseudo-multiplication �e and the
greatest pseudo-multiplication �e with neutral element eare given
by

a�eb ¼
0 if ða; bÞ 2 ½0; eÞ2;
maxða; bÞ if ða; bÞ 2 ½e;1�2;
minða; bÞ otherwise;

8><
>:

and

a�eb ¼
minða; bÞ if minða; bÞ ¼ 0 or ða; bÞ 2 ð0; e�2;
1 if ða; bÞ 2 ðe;1�2;
maxða; bÞ otherwise:

8><
>:
Proposition 2.11 [24]. There exists the smallest universal integral
I�e among all universal integrals satisfying the conditions

(i) for each m 2MðX;AÞ
e and each c 2 [0,1] we have I(m,c.1X) = c,

(ii) for each m 2 MðX;AÞ and each A 2 A we have I(m,e.1X) = m(A),
given by
I�e ðm; f Þ ¼maxfmðff P egÞ; essinfmfg
where essinfmf = sup{t 2 [0,1]jm({f P t}) = m(X)}.
Remark 2.12 [24]. Restricting now to the unit interval [0,1] we
shall consider functions f 2 FðX;AÞ satisfying Ran(f) # [0,1] (in
which case we shall write shortly f 2 FðX;AÞ½0;1� ). Observe that, in this
case, universal integrals are restricted to the class
D½0;1� ¼

S
ðX;AÞ2SM

ðX;AÞ
1 �FðX;AÞ½0;1� .
Definition 2.13 [24]. Assume that ~:[0,1]2 ? [0,1] is a semicopu-
la or a conjunctor (i.e., a binary operation ~ which is non-decreas-
ing in both components, has 1 as neutral element and satisfies
a~b 6min{a,b} for all (a,b) 2 [0,1]2, see [6,13]). The smallest uni-
versal integral I~ on the [0,1] scale related to the semicopula ~
is given by

I~ðm; f Þ ¼ supft~mðff P tgÞjt 2 ½0;1�Þg:

This type of integral was called seminormed integral in [41].
Also, for a fixed strict t-norm T, the corresponding universal inte-
gral IT is the so-called Sugeno–Weber integral [46].

Before starting our main results, we need the following
definition:

Definition 2.14. Functions f ; g : X ! R are said to be comonotone
if for all x, y 2 X,

ðf ðxÞ � f ðyÞÞðgðxÞ � gðyÞÞP 0;
and f and g are said to be countermonotone if for all x, y 2 X,

ðf ðxÞ � f ðyÞÞðgðxÞ � gðyÞÞ 6 0:

The comonotonicity of functions f and g is equivalent to the
nonexistence of points x, y 2 X such that f(x) < f(y) and g(x) > g(y),
or f(x) > f(y) and g(x) < g(y). Similarly, if f and g are countermono-
tone then f(x) < f(y) and g(x) < g(y) (f(x) > f(y) and g(x) > g(y)) cannot
happen. Observe that the concept of comonotonicity was first
introduced in [10].

Now, our results can be stated as follows.

3. Main results

This section provides several type inequalities for universal
integral.

3.1. Hardy’s inequality

Before stating Hardy’s inequality for universal integral, we need
a lemma.

Lemma 3.1. Let H: [0,1)n ? [0,1) be a continuous and non-
decreasing n-place function, and let �: [0,1]2 ? [0,1] be a pseudo-
multiplication on [0,1] with neutral element e 2 (0,1]. Fix a
s 2 (0,1) and suppose that H satisfies

H ps
1; p

s
2; . . . ;ps

n

� �
� c

� �
P

H½ðp1 � cÞs;ps
2;p

s
3; . . . ;ps

n�
_H ps

1; ðp2 � cÞs;ps
3; . . . ; ps

n

� �
_ . . . _ H ps

1;p
s
2;p

s
3; . . . ; ðpn � cÞs

� �
0
B@

1
CA

for all p1, p2, . . . , pn, c 2 [0,1). Then for any comonotone system
f1; f2; . . . ; fn 2 FðX;AÞ and a monotone measure m 2MðX;AÞ such that
a �m(X) 6 a for all a and I� (m, fi) <1 for all i = 1, 2, . . . , n, it holds

I� m;H f s
1 ; f

s
2 ; . . . ; f s

n

� �� �
P H Is

�ðm; f1Þ; Is
�ðm; f2Þ; . . . ; Is

�ðm; fnÞ
� �

:

Proof. Let e 2 (0,1] be the neutral element of �. If I�(m, fi) = pi <1
for all i = 1, 2, . . . , n, then for any e > 0, there exist pi(e) such that

m fi P piðeÞ

n o� 	
¼ m f s

i P ps
iðeÞ

n o� 	
¼ Mi;

where (pi(e) �Mi)s P (pi � e)s for all 0 < s <1. Since H is a non-
decreasing function, the monotonicity of m and the comonotonicity
of f1, f2, . . . , fn imply that

m H f s
1 ; f

s
2 . . . ; f s

n

� �
P H½ðp1ðeÞÞ

s
; ðp2ðeÞÞ

s . . . ; ðpnðeÞÞ
s�

n o� 	
P M1 ^M2 ^ . . . ^Mn:

Hence

I� m;H f s
1 ; f

s
2 ; . . . ; f s

n

� �� �
¼ sup t �m H f s

1 ; f
s
2 ; . . . ; f s

n

� �
P t


 �� �
jt 2 ð0;1�Þ


 �
P ðHððp1ðeÞÞ

s
; . . . ; ðpnðeÞÞ

sÞ � ðM1 ^M2 ^ . . . ^MnÞ

¼
½Hððp1ðeÞÞ

s
; . . . ; ðpnðeÞÞ

sÞ �M1�
^½Hððp1ðeÞÞ

s
; . . . ; ðpnðeÞÞ

sÞ �M2�
^ . . . ^ ½Hððp1ðeÞÞ

s
; . . . ; ðpnðeÞÞ

sÞ �Mn�

0
BB@

1
CCA

P

H ðp1ðeÞ �M1Þs; ðp2ðeÞÞ
s
; . . . ; ðpnðeÞÞ

s
h i

^H½ðp1ðeÞÞ
s
; ðp2ðeÞ �M2Þs; ðp3ðeÞÞ

s
; . . . ; ðpnðeÞÞ

s�
^ . . . ^ H½ðp1ðeÞÞ

s
; ðp2ðeÞÞ

s
; . . . ; ðpnðeÞ �MnÞs�

0
BB@

1
CCA

P

H½ðp1 � eÞs; ðp2ðeÞÞ
s
; ðp3ðeÞÞ

s
; . . . ; ðpnðeÞÞ

s�
^H½ðp1ðeÞÞ

s
; ðp2 � eÞs; ðp3ðeÞÞ

s
; . . . ; ðpnðeÞÞ

s�
^ . . . ^ H½ðp1ðeÞÞ

s
; ðp2ðeÞÞ

s
; ðp3ðeÞÞ

s
; . . . ; ðpn � eÞs�

0
BB@

1
CCA

P H½ðp1 � eÞs; ðp2 � eÞs; ðp3 � eÞs; . . . ; ðpn � eÞs�;
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whence I� m;H f s
1 ; f

s
2 ; . . . ; f s

n

� �� �
¼ sup t �m H f s

1 ; f
s
2 ; . . . ; f s

n

� �
P


�

tgÞjt 2 ð0;1�ÞgP H ps

1; p
s
2 . . . ;ps

n

� �
follows from the continuity of H

and the arbitrariness of e. And the theorem is proved. h

Lemma 3.1 helps us to reach the following result.

Theorem 3.2 (Hardy type inequality for universal integral). Let
H:[0,1)n ? [0,1) be a continuous and non-decreasing n-place func-
tion, and let �:[0,1] 2 ? [0,1] be a pseudo-multiplication on [0,1]
with neutral element e 2 (0,1]. Fix a s 2 (0,1) and suppose that H
satisfies

H ps
1; p

s
2; . . . ;ps

n

� �
� c

� �
P

H ðp1 � cÞs;ps
2;p

s
3; . . . ;ps

n

� �
_H ps

1; ðp2 � cÞs;ps
3; . . . ; ps

n

� �
_ . . . _ H ps

1;p
s
2;p

s
3; . . . ; ðpn � cÞs

� �
0
B@

1
CA

for all p1, p2, . . . , pn,c 2 [0,1). Then for any comonotone system
f1; f2; . . . ; fn 2 FðX;AÞ and a monotone measure m 2MðX;AÞ such that
a �m(X) 6 a for all a, I�(m, fi) <1 and Fi(t) = sup{t �m([0,x] \ {fi

P t}) jt 2 (0,1])},i = 1, 2, . . . , n, x > 0, it holds

I� m;
I� m;H f s

1 ; f
s
2 ; . . . ; f s

n

� �� �
xs

� �
P I� m;

H Fs
1ðxÞ; F

s
2ðxÞ; . . . ; Fs

nðxÞ
� �

xs

� �
:

Proof. By Lemma 3.1, we have

K ¼ I� m;H f s
1 ; f

s
2 ; . . . ; f s

n

� �� �
P H Is

� m; f1ð Þ; Is
� m; f2ð Þ; . . . ; Is

� m; fnð Þ
� �

:

Then

K P H Is
�ðm; f1Þ; Is

�ðm; f2Þ; . . . ; Is
�ðm; fnÞ

� �
P H Fs

1ðxÞ; F
s
2ðxÞ; . . . ; Fs

nðxÞ
� �

:

Thus

I� m;
K
xs

� �
P I� m;

H Fs
1ðxÞ; F

s
2ðxÞ; . . . ; Fs

nðxÞ
� �

xs

� �
;

and the proof is completed. h
Corollary 3.3. Let f ; g 2 FðX;AÞ be two comonotone measurable func-
tions and�:[0,1]2 ? [0,1] be a pseudo-multiplication on [0,1] with
neutral element e 2 (0,1] and m 2MðX;AÞ be a monotone measure
such that a �m(X) 6 a for all a, I� (m, fi) <1 and Fi(t) = supt2(0,1]

{t �m ([0,x] \ {fi P t})}, i = 1, 2 and x > 0. Let w: [0,1)2 ? [0,1)
be continuous and non-decreasing in both argument. If

ps
1Hps

2

� �
� c

� �
P ðp1 � cÞsHps

2

� �
_ ps

1Hðp2 � cÞs
� �

;

then the inequality

I� m;
I� m; f s

1Hf s
2

� �� �
xs

� �
P I� m;

Fs
1ðxÞHFs

2ðxÞ
� �

xs

� �

holds for all 0 < s <1.

Notice that when working on [0,1] in Lemma 3.1 and Theo-
rem 3.2, we mostly deal with e = 1, then � = ~is semicopula (t-
seminorm) and the following results hold:

Corollary 3.4 [5]. Let H:[0,1]n ? [0,1] be a continuous and non-
decreasing n-place function. Fix a s 2 (0,1) and suppose that
semicopula ~ satisfies

H ps
1; p

s
2 . . . ;ps

n

� �
~c

� �
P

H ðp1~cÞs; ps
2; p

s
3; . . . ;ps

n

� �
_H ps

1; ðp2~cÞs; ps
3; . . . ;ps

n

� �
_ . . . _ H ps

1; p
s
2; p

s
3; . . . ; ðpn~cÞs

� �
0
B@

1
CA ð1Þ

for all p1, p2, . . . , pn,c 2 [0,1]. Then for any comonotone system
f1; f2; . . . ; fn 2 FðX;AÞ½0;1� and a monotone measure m 2MðX;AÞ

1 , it holds
I~ m;H f s
1 ; f

s
2 ; . . . ; f s

n

� �� �
P H Is

~
m; f1ð Þ; Is

~
m; f2ð Þ; . . . ; Is

~
m; fnð Þ

� �
:

Remark 3.5.

(I) Let s = 1, n = 2 in Corollary 3.4, then we get the Chebyshev
type inequality for seminormed integral which obtained by
Ouyang and Mesiar [33].

(II) For s = 1, n = 2, we can use an example in [33] to show that
the condition (1) in Corollary 3.4 (and thus in Lemma 3.1
and Theorem 3.2) cannot be abandoned, and so we omit it
here.
Corollary 3.6. Let H:[0,1]n ? [0,1] be a continuous and non-decreas-
ing n-place function. Fix a s 2 (0,1) and suppose that the semicopula
~ satisfies

H ps
1;p

s
2 . . . ;ps

n

� �
~c

� �
P

H½ðp1~cÞs;ps
2;p

s
3; . . . ; ps

n�
_H ps

1; ðp2~cÞs; ps
3; . . . ;ps

n

� �
_ . . . _ H ps

1;p
s
2;p

s
3; . . . ; ðpn~cÞs

� �
0
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1
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for all p1, p2, . . . , pn,c 2 [0,1]. Then for any comonotone system
f1; f2; . . . ; fn 2 FðX;AÞ½0;1� and a monotone measure m 2MðX;AÞ

1 and
Fi(t) = sup{t ~m([0,x] \ {fi P t})jt 2 (0,1])}, i = 1, 2, . . . n, 0 < x 6 1, it
holds

I~ m;
I~ m;H f s

1 ; f
s
2 ; . . . ; f s

n

� �� �
xs

� �
P I~ m;

H Fs
1ðxÞ; F

s
2ðxÞ; . . . ; Fs

nðxÞ
� �

xs

� �
:

Remark 3.7. If m is the Lebesgue measure on R in Corollary 3.6,
then we have the Hardy type inequality for seminormed integral
which obtained by Agahi and Yaghoobi [5].
3.2. Berwald’s inequality

Theorem 3.8 (Berwald type inequality for universal integral). Let r,
s 2 (0,1) and f 2 Fð½a;b�;AÞ be a concave function. If �:[0,1]2 ? [0,1]
is a pseudo-multiplication on [0,1] with neutral element e 2 (0,1],
then for any monotone measure m 2MðX;AÞ, we have
(a) if f(a) < f(b), then
I
1
r
�ðm; f rÞP

ð1þsÞ
1
s ðb�aÞ

1
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1
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1
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(b) If f(a) = f(b), then
I
1
r
�ðm; f rÞP I

1
r
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(c) If f(a) > f(b), then
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Proof. Let r, s 2 (0,1) and I�(m, fs) = t. Since f:[a,b] ? [0,1) is a
concave function, for x 2 [a,b] we have

f ðxÞ ¼ f 1� x� a
b� a

� 	
aþ x� a

b� a

� 	
b

� 	
P 1� x� a

b� a

� 	
f ðaÞ þ x� a

b� a

� 	
f ðbÞ ¼ hðxÞ:

(a) If f(a) < f(b), then
I
1
r
�ðm; f rÞP I

1
r
�ðm; h

rÞ

¼
_
a>0

a�m ½a; b� \ 1� x�a
b�a

� �
f ðaÞ þ x�a

b�a

� �
f ðbÞ

� �
P a1

r

n o� 	� 	" #1
r

¼
_
a>0

a�m ½a; b� \ xjx P a
1
r ðb�aÞþaf ðbÞ�bf ðaÞ

f ðbÞ�f ðaÞ

� � �� �" #1
r

P

ðb�aÞ
1
r ð1þsÞ

1
s

ð1þrÞ
1
r

t
b�a

� �1
s

� �r

�

m ½a; b� \ xjx P

ðb�aÞ
rþ1

r ð1þsÞ
1
s

ð1þrÞ
1
r

t
b�að Þ

1
sþaf ðbÞ�bf ðaÞ

� �
f ðbÞ�f ðaÞ

8>><
>>:

9>>=
>>;

0
BB@

1
CCA

2
66666664

3
77777775

1
r

:

(b) If f(a) = f(b), then h(x) = f(a). Thus
I
1
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1
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(c) If f(a) > f(b), then
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and the proof is completed. h
Remark 3.9.

(I) If � is minimum in Theorem 3.8, then we obtain the Berwald
type for Sugeno integral. Specially, when m is the Lebesgue
measure on R, then we have the results of [2].

(II) If � is the standard product in Theorem 3.8, then we have
the Berwald type inequality for Shilkret integral.

(III) When working on [0,1] in Theorem 3.8, then we mostly
deal with e = 1, then � = ~ is semicopula (t-seminorm).
Then we have a Berwald type inequality for seminormed
integral.

3.3. Barnes–Godunova–Levin’s inequality

Theorem 3.10 (Barnes–Godunova–Levin type inequality for univer-
sal integral). Let p, q 2 (0,1) and f ; g 2 Fð½a;b�;AÞ be two concave
functions. Let �:[0,1]2 ? [0,1] be a pseudo-multiplication on [0,1]
with neutral element e 2 (0,1] and m 2 MðX;AÞ be a monotone
measure. If the binary operation w: [0,1)2 ? [0,1) is continuous and
non-decreasing in both arguments, then
(a) if f(a) < f(b) and g(a) < g(b), then
I
1
p
�ðm; f pÞHI

1
q
�ðm;gqÞ
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6 I�ðm; f HgÞ:
(b) If f(a) = f(b) and g(a) = g(b), then
I�ðm; f ðaÞHgðaÞÞ 6 I�ðm; f HgÞ:
(c) If f(a) > f(b) and g(a) > g(b), then
I
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Proof. Let p; q 2 ð0;1Þ; I
1
p
�ðm; f pÞ ¼ t1 and I

1
q
�ðm; gqÞ ¼ t2. Since f,

g:[a,b] ? [0,1) are two concave functions, for x 2 [a,b] we have

f ðxÞ¼ f 1� x�a
b�a

� 	
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b�a

� 	
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� 	
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b�a
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� 	
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We will prove (a) and (b), the other case is similar.

(a) If f(a) < f(b) and g(a) < g(b), then by the comonotonicity of h1

and h2, we have
I�ðm; f HgÞP I�ðm;h1Hh2Þ¼
_
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(b) If f(a) = f(b) and g(a) = g(b), then h1(x) = f(a) and h2(x) = g(a).
Thus, we have
I�ðm; f HgÞP I�ðm;h1Hh2Þ ¼ I�ðm; f ðaÞHgðaÞÞ;
and the proof is completed. h
Remark 3.11.

(I) If � = ^ and w is the standard product in Theorem 3.10, then
we obtain an inequality related to Barnes–Godunova–Levin
type for Sugeno integral which obtained by Agahi et al. [1].

(II) If � is the standard product in Theorem 3.10, then we have
the Barnes–Godunova–Levin type inequality for Shilkret
integral.

(III) When working on [0,1] in Theorem 3.10, then we mostly
deal with e = 1, then � = ~ is semicopula (t-seminorm). Then
we have a Barnes–Godunova–Levin type inequality for semi-
normed integral.
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3.4. Markov’s inequality

Theorem 3.12 (Markov type inequality for universal integral). Let
H:[0,1)n ? [0,1) be a continuous and non-decreasing n-place
function. Let u:[0,1) ? (0,1) be a non-decreasing function.
If �: [0,1]2 ? [0,1] is a pseudo-multiplication on [0,1] with neutral
element e 2 (0,1], then for any comonotone system
f1; f2; . . . ; fn 2 FðX;AÞ and a monotone measure m 2MðX;AÞ, it holds
I�ðm;Hðuðf1Þ;uðf2Þ; . . . ;uðfnÞÞÞP ½Hðuðc1Þ;uðc2Þ . . . ;uðcnÞÞ�
� ðM1 ^M2 ^ . . . ^MnÞ;

where m({fi P ci}) = Mi, i = 1, 2, . . . , n.
Proof. Let m({fi P ci}) = Mi for i = 1, 2, . . . , n. Then the fact of

ðfuðf1ÞP uðc1Þg \ fuðf2ÞP uðc2Þg \ . . . \ ffuðfnÞP uðcnÞggÞ
	 fHðuðf1Þ;uðf2Þ; . . . ;uðfnÞÞP Hðuðc1Þ;uðc2Þ . . . ;uðcnÞÞg;

and the comonotonicity of f1, f2, . . . , fn imply that

mðfHðuðf1Þ;uðf2Þ; . . . ;uðfnÞÞP Hðuðc1Þ;uðc2Þ . . . ;uðcnÞÞgÞ
P M1 ^M2 ^ � � � ^Mn:

Hence
I�ðm;Hðuðf1Þ;uðf2Þ; . . . ;uðfnÞÞÞ ¼ supft �mðfHðuðf1Þ;
uðf2Þ; . . . ;uðfnÞÞP tgÞjt 2 ð0;1�Þg
P ½Hðuðc1Þ;uðc2Þ . . . ;uðcnÞÞ� � ðM1 ^M2 ^ . . . ^MnÞ;

and the theorem is proved. h
Remark 3.13.

(I) If � = ^ in Theorem 3.12, we obtain Markov type for Sugeno
integral [37,39].

(II) If � is the standard product in Theorem 3.12, then we have
Markov type inequality for Shilkret integral.

(III) When working on [0,1] in Theorem 3.12, then we mostly
deal with e = 1, then � = ~ is semicopula (t-seminorm). Then
we have Markov type inequality for seminormed integral.
4. Applications

Note that similarly as in the case of Lebesgue integral inequal-
ities, also in non-additive integral case the inequalities are a the-
oretical tool for proving the existence, the uniqueness or some
kind of optimality of the considered knowledge-based systems.
In this section, we show some applications of our results in intel-
ligent decision support systems, estimation and information fu-
sion. In Fig. 1, we have depicted relationships between data
processing tools, including non-additive measures, non-linear
integrals and related inequalities, and knowledge-based systems,
including data mining, intelligent decision support systems and
information fusion. Some more details are given in subsequent
subsections.

4.1. Intelligent decision support systems

Classical inequalities are based on the standard r-additive
Lebesgue measure (or probability measure) and they are at the
heart of the mathematical analysis of many problems in the area
of knowledge-based systems. However, additivity assumption
seems to be illogical in many uncertain phenomena. In fact, many
knowledge-based systems are built by means of non-classical
techniques. In modeling human decision problems, additivity is
rarely considered, as it excludes the possible interaction between
single criteria. Thus, for human knowledge based systems such as
intelligent decision support systems [48], we expect applications
of non-additive integrals inequalities. Due to applications in mul-
ticriteria decision support, we focus on special non-additive inte-
grals covered by the framework of universal integrals recently
introduced in [24] and further discussed in [22]. Introduced
non-additive integral inequalities generalize some recent results
known from the literature and they promise to be useful in the
comparison of effectiveness of single intelligent decision support
systems.

4.2. Estimation

Note that classical integral inequalities mentioned above are
frequently applied in estimation, approximation and convergence
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problems. As they are based on a classical Lebesgue measure, they
fit to problems in areas where the additivity is a genuine property,
such as engineering or natural sciences [27]. In fact, the applica-
tions of inequalities mentioned above are useful in practical prob-
lems by providing lower and upper bounds on the machine
learning. For example, the need and importance of consideration
of this kind of Markov inequality stemmed from several problems
in engineering and informational sciences [18,19]. In fact, we use
Markov’s inequality to derive an upper bound on the difference be-
tween our estimated coefficients and the actual values in engineer-
ing and non-linear systems.
4.3. Information fusion

Information fusion is an especially difficult problem for non-lin-
ear systems. The integral inequalities are useful tools in informa-
tion fusion and sensor networks. For example, Yang et al. [47]
conducted comprehensive analytical and simulation studies on
collaborative information coverage and object detection in wire-
less sensor networks by using Markov’s inequality. Notice that
the traditional tool of aggregation for information fusion is the
weighted average method that is fundamentally a Lebesgue inte-
gral. It is considered that all attributes are non-interactive and,
hence, their weighted effects are observed as additive ones. This
assumption is often unrealistic in many applications [45]. Univer-
sal integrals can be used to solve these problems in information fu-
sion. There are many successful works in this area. One of them is
given by Keller et al. [20] which presents the application of Sugeno
integral in image processing. So, our results are necessary when we
use non-linear integrals.
5. Conclusion

We have introduced several inequalities including Hardy, Ber-
wald, Barnes–Godunova–Levin, Markov and Chebyshev for univer-
sal integral on abstract spaces. We have also provided a
comprehensive study of our results in intelligent systems. We
would like to attract the readers’ attention to a software R package
called kappalab [16], which is available on the Comprehensive R
Archive Network (http://cran.r-project.org/web/packages/kappa-
lab/index.html). It allows the user to compute several non-additive
integrals. In the future research, we will continue to explore other
integral inequalities for non-additive measures and integrals.
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