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Abstract.
In this paper, we aim to explore the speed of convergence of the Wasserstein distance
between stable cumulative distribution functions and their empirical counterparts. The
theoretical results are compared with the results provided by simulations. The need to
use simulations is explained by the fact that all the theoretical results which relate to the
speed of convergence of the Wasserstein Metric in the set-up of stable distributions are
asymptotic; therefore, the question of when that theory starts to be valid remains open.
The asymptotic results are true only for relatively large numbers of observations exceeding
hundreds of thousands. In cases dealing with lower numbers of observations, the speed of
convergence turns out to be much slower than we might expect.
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1. Introduction

To define the Wasserstein Metric, let us introduce the following notation:

1. Let P(Rs) denote the set of all Borel probability measures on Rs,

2. Mp
1(R

s) = {ν ∈ P(Rs) :
∫
Rs |z|psν(dz) < ∞},

3. Let D(PF , PG) be the set of such measures in , P(Rs ×Rs) whose marginal
distributions are PF and PG,

4. | · |2s corresponds to the Euclidean norm; | · |1s - to the norm L1 in Rs.

∗This research was supported by the Grant Agency of the Czech Republic under Grant
402/10/0956.
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Definition 1. Let F, G be two s-dimensional distribution functions corresponding to
probability measures PF and PG, respectively. Then the value

dW p
s

:= dW p(PF , PG) =

(
inf

κ∈D(PF ,PG)

{∫

Rs×Rs

|z − ẑ|psκ(dz × dẑ)

})1/p

is called the Wasserstein Metric.

In the univariate case, for any continuous random variable we have the Wasser-
stein Metric equal to

dW 1
1
(PF , PG) =

∫

R

|F (z)−G(z)|dz,

(see [11])

Remark 2. According to [2] and [3], Wasserstein Metric determines the upper bound
of the absolute differences between the optimal value of the real problem of stochastic
programming and its empirical counterpart.

In the current paper, we will explore the rate of convergence of the Wasserstein
Metric for stable distributions based on simulations, taking into account theoretical
results in [1], [2] and [3].

2. Stable Distributions

Stable distributions are a broad family of statistical distributions allowing not only
heavy tails but also skewness. They are called stable because their properties are
preserved under convolution and defined as follows.

Definition 3. A random vector Y = (Y1, Y2, ..., Ys) is said to be a stable random
vector in Rs if for any positive numbers a and b there is a positive number c = c(a, b)
and a vector D ∈ Rs such that

a ·Y(1) + b ·Y(2) =d c ·Y + D

where Y(1) and Y(2) are independent copies of Y.

In the univariate case, stable distributions are characterized by four parameters,
one of which determines how heavy tailed the distribution is; it is called the tail
index and will be denoted by α. The tail index lies in the interval (0, 2] and lower
values of α correspond to heavier tails. Normal distribution is a special case of a
stable distributions; it corresponds to α = 2. If a stable distribution Y has a tail
index α < 2, then for any a ≥ α we have E|Y |a = ∞, if a ∈ (0, α) then E|Y |a < ∞.
The parameter σ is called scale parameter, and σ > 0. The parameter µ is the shift
parameter and µ ∈ R. The last parameter is skewness β and β ∈ [−1, 1]. Stable
distributions have widespread applications in economics and finance (see [5]). They
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are mostly used to describe the behaviour of highly volatile data having a much
higher kurtosis than that allowed by normal models. The assumption that Y is
normal is usually justified by the Central Limit Theorem. The analogous assump-
tion that Y is stable is justified by the Generalized Central Limit Theorem, which
differs from the Central Limit Theorem by dropping the assumption of finiteness
of the mean and variance. If we want to include heavy tails in the model with-
out completely ruling out normality, the best option is to use stable distributions
due to their form of characteristic function, as well as their limit and convolution
properties. The defining characteristics, and the reason for the term stable, is that
they retain their shape under convolution (see [5]): if Y, Y1, Y2, ..., Yn are i.i.d. stable
random variables, then for every n ∈ N

Y1 + Y2 + ... + Yn =d cnY + dn

for certain constants cn > 0 and dn (see [6]). The Generalized Central Limit Theorem
states that the only possible distributions with a domain of attraction are stable
(see [6]). Similar reasons for utilizing the normal distribution hold for the stable
distributions that is why they have a wide range of applications.

Remark 4. The characteristic function of a stable distribution is given explicitly for
the univariate case, but neither the densities nor distribution functions of stable
distributions can be expressed in terms of elementary functions, except for Lévy,
Cauchy and Normal distributions (see [4]).

2.1. Some definitions and basic theorems

Before turning our attention to the main topic, we need to define and recall some
related basic definitions, notations, and theorems.

Definition 5. Functions f, g : R → R are said to be asymptotically equal if limx→∞
f(x)
g(x)

=
1.

Remark 6. We denote asymptotic equality with the symbol ≈.

Theorem 7. [5] For a stable distribution Y ∼ Sα(σ, 0, 0) with α < 2 the density
function f and distribution function F have the form

f(y) ≈ σα sin(πα/2)Γ(α + 1)/π

|y|α+1 as |y| → ∞,

1− F (y) ≈ (α + 1)σα sin(πα/2)Γ(α + 1)/π

yα
as y →∞,

F (−y) ≈ (α + 1)σα sin(πα/2)Γ(α + 1)/π

|y|α as y →∞.

Proof. see [5]. 2

Theorem 8. [4] All stable distributions functions are absolutely continuous and have
densities.
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Proof. (see [4],pp 21-24). 2

Simulation of a symmetric stable random variable can be conducted as follows:

Theorem 9. [9] Suppose that γ has uniform distribution on (−π/2, π/2), and W
is exponentially distributed with unit mean. Let us also suppose that γ and W are
independent, then

Y =
sin αγ

(cos γ)1/α

(
cos((1− α)γ)

W

)(1−α)/α

has a stable distribution given by Y ∼ Sα(1, 0, 0)

Proof. See [9]. 2

Remark 10. Theorem 8 enables us to simulate Y0 ∼ Sα(1, 0, 0) and it may be easily
shown that σ · Y0 + µ ∼ Sα(σ, 0, µ).

3. Features of Wasserstein Metric

In this section, we mention the basic properties of the Wasserstein Metric in the
framework of stable distributions, and heavy tails in general. By the notion heavy
tailed distribution, we will understand the distribution of a random variable X for
which there exists p > 0 such that E|X|p = ∞. Let us introduce a system of
assumptions:

A1. {ξi}∞i=1 is an independent random sequence corresponding to F ,

A2. The marginal distributions PFi
, i = 1, 2, ..., s are absolutely continuous w.r.t

the Lebesgue measure on R1.

Definition 11. The sequence ζn, n ∈ N is said to be stochastically bounded if for an
arbitrary ε > 0 there exists a number c > 0 such that for all n ∈ N

P (|ζn| > c) < ε.

Theorem 12. [1] Let s = 1, {ξi}∞i=1, N = 1, 2, ... be a sequence of independent ran-
dom values corresponding to a heavy tailed distribution F with the shape parameter
α ∈ (1, 2). Then the sequence

N

N1/α

∫ ∞

∞
|FN(z)− F (z)|dz, N = 1, 2, ...

is stochastically bounded if and only if

sup
t>0

tαP {ω : |ξ| > t} < ∞.

Proof. See [1]. 2
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Theorem 13. [3] Let assumptions A1. and A2. be fulfilled, s = 1, PF ∈ M1
1(R

1).
If

∫ ∞

−∞

√
F (z)(1− F (z)) < +∞

then √
N

∫ ∞

−∞
|FN(z)− F (z)|dz −→d

∫ ∞

−∞
|U(F (z))|dz,

where U denotes the Brownian bridge.

Proof. See [3]. 2

Theorem 14. [1]

1. If s = 1, F is a distribution function, f a density function of a stable distribu-
tion with 1 < α < 2, and FN – an empirical distribution function determined
by N i.i.d. random variables ξ1, ξ2, ..., ξN having the distribution function F ,
then

N

N1/α

∫ ∞

−∞
|FN(z)− F (z)|dz −→d

1

α

(c1

α

)1/α
∫ ∞

0

|N1(s)− s|s−1−1/αds+

+
1

α

(c2

α

)1/α
∫ ∞

0

|N2(s)− s|s−1−1/αds

where Ni, i = 1, 2 are independent Poisson processes with an intensity of 1,

c1 = lim
x→∞

f(x)xα+1 , and c2 = lim
x→−∞

f(x)|x|α+1.

2.

E

(
N

N1/α

∫ ∞

−∞
|FN(z)− F (z)|dz

)
−→ E

∫ ∞

−∞
|K(z)− EK(z)|dz

where
K(z)− EK(z) = N1

( c1

αtα

)
− c1

αtα
, t > 0

K(z)− EK(z) = N2

( c2

αtα

)
− c2

αtα
, t < 0

and K(0)− EK(0) = 0.

Proof. See [1] pp 1011-1027. 2

Notation. WM denotes the Wasserstein Metric. Sometimes, it will be necessary
to emphasize the dependence of Wasserstein Metric not only on N but also on α
therefore, in these cases we will denote it by WM(N, α). We will also deal with the
value Np(1−1/α)

∫
R
|FN(z)− F (z)|dz where p ∈ (0, 1] and we shall denote this value

for p ∈ [0, 1] by SWM(p) where SWM means Scaled Wasserstein Metric. In cases
when it is necessary to emphasize the dependence not only on p but also on N , it
will be denoted by SWM(p,N).
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Theorem 15 (Limit Comparison Test).
Let us suppose that:

1. f, g : [A,∞) → R+,

2. f and g are continuous on [A,∞),

3. limz→∞
f(z)
g(z)

= L > 0,

where L and A are finite positive numbers. Then both
∫∞

A
f(z)dz and

∫∞
A

g(z)dz
either converge or diverge.

Proof. See [7]. 2

Theorem 16. [10] Let ζn, n ∈ N and ζ be random variables in R, all of which de-
fined in the probability space (Ω, A, P ). Then p-limn→∞ ζn = ζ implies d-limn→∞ ζn =
ζ where p-lim and d-lim means convergence in probability and distribution, respec-
tively.

Proof. See [8]. 2

Theorem 17. Let s be 1 and assumptions A1. and A2. be fulfilled, γ > 0 a constant,
F a distribution function of a stable distribution with α < 2, FN an empirical
distribution function derived from F , PF ∈ M1

1(R
1) and s = 1. If one of the

equivalent conditions
∫ ∞

−∞
γ
√

F (z)(1− F (z))dz < +∞ or γ < α

holds true then
N

N1/γ

∫ ∞

−∞
|FN(z)− F (z)|dz −→d 0

Proof.

1. Let us prove first that
∫∞
−∞

γ
√

F (z)(1− F (z))dz < +∞ implies that γ < α. By
Theorem 7, we get F (z) ≈ 1− c

zα for a certain constant c > 0. Hence by The
Limit Comparison Test, we have for any positive number A that

∫∞
A

(F (z)(1−
F (z)))1/γdz converges whenever the integral

∫∞
A

(
c

zα

)1/γ (
1− c

zα

)1/γ
dz con-

verges. We have

∫ ∞

A

( c

zα

)1/γ (
1− c

zα

)1/γ

dz = c1/γ

∫ ∞

A

(
zα − c

z2α

)1/γ

dz

Applying The Limit Comparison Test we get that the integral c1/γ
∫∞

A

(
zα−c
z2α

)1/γ
dz

converges whenever the integral c1/γ
∫∞

A

(
zα

z2α

)1/γ
dz is convergent. We have

c1/γ

∫ ∞

A

(
zα

z2α

)1/γ

dz = c1/γ

∫ ∞

A

1

zα/γ
dz
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Analogously, we will have that
∫ −A

−∞(F (z)(1 − F (z)))γdz converges whenever

the integral c1/γ
∫ −A

−∞
1

|z|α/γ dz converges. Both of these integrals will converge

only for α/γ > 1 i.e. γ < α. The integral
∫ A

−A
(F (z)(1−F (z)))1/γdz obviously

converges because F (z) is bounded and absolutely continuous on R.
Hence, the integral

∫∞
−∞(F (z)(1 − F (z)))1/γdz will converge because each of

the three integrals converges. The opposite implication also follows from the
Limit Comparison Test.

2. Due to (1−F (z)) ≈ c 1
zα with c > 0, it is clear that limz→∞ zαP{|ξ| > z} < ∞.

Therefore N/N1/α
∫
R
|Fn(z) − F (z)|dz is stochastically bounded by Theorem

12. Due to the fact that γ < α and the stochastic boundedness of

N

N1/α

∫

R

|FN(z)− F (z)|dz,

we have

N

N1/γ

∫

R

|FN(z)− F (z)|dz =
N1/α

N1/α

N

N1/γ

∫

R

|FN(z)− F (z)|dz =

=
1

N1/γ−1/α

(
N

N1/α

∫

R

|FN(z)− F (z)|dz

)
.

Due to Markov inequality, we have for any ε > 0 and N ∈ N

P

((
N

N1/α

∫
R
|FN(z)− F (z)|dz

)

N1/γ−1/α
> ε

)
≤ 1

N
1
γ
− 1

α

E
(

N
N1/α

∫
R
|FN(z)− F (z)|dz

)

ε

Taking Theorem 14, we can see that the expected value in the right hand
side of the inequality is always finite and 1/N1/γ−1/α converges to zero as N
tends to infinity. This proves convergence in probability and by Theorem 16,
convergence in probability implies convergence in distribution which proves
the statement.

2

Corollary 18. Let us take the assumptions of Theorem 17. Then

d-limN→∞ SWM(p,N) = 0

whenever p < 1.

Proof. We have

N

N1/γ

∫

R

|Fn(z)− F (z)|dz = N1−1/γ

∫

R

|Fn(z)− F (z)|dz =

= N (1−1/α)
1−1/γ
1−1/α

∫

R

|Fn(z)− F (z)|dz = SWM

(
1− 1/γ

1− 1/α
,N

)
.

For γ > 0 and α ∈ (0, 2] the ratio 1−1/γ
1−1/α

is smaller than 1 whenever γ < α, and
hence the statement follows from Theorem 17. 2
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Figure 1: Density functions of SWM(1) for α = 1.1 where N=200 (top left),
N=40000 (top right), N=80000 (bottom left and all the graphs combined - bot-
tom right)
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Figure 2: Density functions of SWM(0.75) for α = 1.5 where N=200 (top left),
N=80000 (top right), N=160000 (bottom left) and all the graphs combines - bottom
right)

4. Simulation

The rate of convergence is explored by simulating random samples from Sα(1, 0, 0) to
construct the empirical distribution function and calculate the Wasserstein Metric.
In the following two subsections, we will perform an analysis of the density function
of the distribution of SWM(1) and apply a regression analysis to the Wasserstein
Metric to study its dependence on N . The reason we explore only the special case
when σ = 1, µ = 0 and β = 0 is the fact that for any σ and µ a proper shifting
and scaling will transform the initial stable distribution into the one with σ equal
to 1 and µ equal to 0, i.e. if Y ∼ Sα(σ, µ, β) then Y−µ

σ
∼ Sα(1, 0, β). It is clear

that shifting does not affect the form of the distributions tail. The scaling also does
not affect the rate of convergence because if we have the distribution function F for
Y0 ∼ Sα(1, 0, 0) then appealing to the basic properties of stable distributions, we
get for Y ∼ Sα(σ, 0, 0) with σ > 0 that Y =d σY0 and the distribution function of
Y will be FY (y) = F (y/σ) , y ∈ R.
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Figure 3: Density functions of SWM(1) for α = 1.5 where N=200, 80000 and 160000

4.1. Density Functions and Sample Characteristics of SWM(1)

To estimate the density function of the Scaled Wasserstein Metric, we used kernel
estimates of the density with the kernel K(·) equal to the density of the normal
distribution, i.e. K(z) = 1√

2π
exp(−z2/2), z ∈ R. For α = 1.1, 1.2, ..., 1.9, 2, we

calculated the sample medians, mean and density functions for samples sizes of
SWM(1) equal to 20 where N ranged to 200, 40000 and 80000 and 160000. For
α = 1.1, the graph of the kernel estimate of the density function for SWM(1) can
be seen in Figure 1. To test equality in the distribution of SWM(1) for different
number of observations N , we will apply the Kolmogorov-Smirnov test [8]. This
procedure is carried out because SWM(1) converges in distribution. It is clear from
Figure 1 that the density functions differ substantially and Kolmogorov Smirnov test
rejects the null hypothesis of equality in distribution for the samples of SWM(1) with
N = 40000 and N = 80000 on 95% confidence level. But for α = 1.1 the higher
the number of observations, the closer to zero the shape of the density function.
Moreover, the median of SWM(1) also decreases for larger numbers of observations
being 7.612 for N = 200, 5.551 - for N = 40000, 5.478 - for N = 80000 and 5.481 -
for N = 160000. For any α > 1.2 the analogous medians of SWM(1) form a slightly
rising sequence so that the higher N , the higher the median.
For each α = 1.1, 1.2, ..., 1.9, 2, the Kolmogorov Smirnov Statistic was calculated
for 2 samples with 20 elements of SWM(1) with N = 160000 and SWM(1) with
N = 80000 reaching its highest value 0.46 at α = 1.5. Because in each case the
value of the Kolmogorov-Smirnov statistic falls below 0.46, we can accept on 0.95%
confidence level the null hypothesis of equality in distribution for these two samples.
In Figure 2, we can observe the kernel estimate of the density of SWM(0.75) for
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Figure 4: Convergence of Wasserstein Metric for α = 1.5 (top left), α = 1.6 (top
right) α = 1.7 (bottom left), α = 1.8 (bottom right) where N ranges from 10 to
5000 with step 10.
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Figure 5: Comparison of the fit by classical and median regression for α = 1.5. The
whole picture (left) and the same zoomed picture (right).

Table 1: Convergence rate following from regression analysis

Percentage Rate of Rate of
α of (1− 1/α) convergence convergence of

lower bound up to 5000 medians

α = 1.10 134% 0.1218 0.1100
α = 1.20 107% 0.1783 0.1819
α = 1.30 90% 0.2076 0.1992
α = 1.40 83% 0.2371 0.2412
α = 1.50 75% 0.2500 0.2679
α = 1.60 78% 0.2925 0.3018
α = 1.70 81% 0.3335 0.3212
α = 1.80 86% 0.3822 0.4013
α = 1.90 90% 0.4263 0.4215
α = 1.95 95% 0.4628 0.4713
α = 2.00 100% 0.4992 0.4912
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α = 1.5 and see that the shape of the empirical density functions accumulates closer
to zero for higher numbers of observations. The analogous picture can be observed
for any other α = 1.1, 1.2, .., 1.9, 2. In Figure 3 we can see that the convergence of
SWM(1) for α = 1.5 obtained from the same data points as SWM(0.75) is much
different: in this case the higher N , the further the shape of the empirical density
is from zero. But when α = 2, i.e., in the case of a normal distribution, we can
observe the stagnation of the SWM(1) for much lower values of N .

4.2. Regression Analysis

To explore the speed of convergence of the Wasserstein Metric, we will fit the series
of the Wasserstein Metric values to the model

WM(N, α) ∼ m

N b

because according to Theorem 17 and Corollary 18, Wasserstein Metric follows the
model with b = (1− 1/α), i.e.

WM(N, α) = OP

(
1

N b

)
with b = 1− 1/α.

We will choose the rate b = b(α) and coefficient m = m(α) for which the median of
the sample |WM(k, α)− m

kb |, |WM(k +1, α)− m
(k+1)b |, ...., |WM(N, α)− m

Nb | is lowest
for k, N ∈ N, N > k. We estimate the rate of convergence using a series with fixed
α and varying N and we choose the value of k which minimizes the overall median
but its value will be restricted by 10%N so that the number of excluded observations
will not be higher than 10%. It yields the following problem:

min
m>0,b>0,k∈N,k≤0.1·N

N∑

i=k

∣∣∣WM(i, α)− m

ib

∣∣∣

with unknown b and m. It is actually L1 regression. The rates will be determined for
10 values of α and the rest can be obtained by linear interpolation. In our settings, N
varies from 10 to 5000 with the step equal to 10, i.e. N ∈ {10n : n = 1, 2, 3, ..., 500}.
In Figure 4, we can observe the Wasserstein Metric values for α = 1.5, α = 1.6,
α = 1.7 and α = 1.7. For α = 1.5 and α = 1.6, the sequence of Wasserstein Metric
values was fitted to functions f1.5(t) = 1.66982

t0.25 and f1.6(t) = 1.7983
t0.2825 , respectively.

According to the calculations of regression analysis, a higher rate of convergence
can be obtained than the upper bound given by 1 − 1/α only for α = 1.1 or 1.2
N < 100000. For α = 1.5, the convergence rate is about 0.75 · (1 − 1/α). For
α = 1.9, it is about 0.95 · (1 − 1/α) and it is again (1 − 1/α) for α = 2. Table
1. summarizes the results of the regression analysis. When α > 1.2, the speed of
convergence is lower than it should be according to the theory. When α > 1.7,
the results provided by classical linear regression are almost the same and yield r-
squared larger than 85%. Otherwise the difference will be substantial. In Figure 5,
the difference in fitting the Wasserstein Metric by classical and median regression
can be observed. But the estimate of the speed by the classical regression is 0.268
and by the median regression - 0.25. Analogous regression analysis was applied on
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medians of the Wasserstein Metric values for α ranging from 1.1 to 2 with a step
of 0.1 and the number of observations taking the following values: 200, 400, 600,
800, 1200, 1400, 1800, 2200, 2600, 3000, 5000, 40000. For each pair of α and N
the median was calculated from 20 simulated Wasserstein Metric values and the
same regression analysis was applied on those values. The results of this analysis
are summarized in the fourth column of Table 1.

Remark 19. In addition to calculating the Wasserstein Metric for stable distribu-
tions, we were making analogous calculations for Pareto distributions and we ob-
tained that the rate of their convergence was in accordance with Theorem 10 without
substantial deviations from it for relatively low values of N . Table 2 presents the cal-
culations of the convergence rates of of the Wasserstein Metric values of Pareto dis-
tributions with the distribution function F (z) = 1−1/zα in the same set-up as in the
case of stable distributions referring to Table 1, i.e., N ∈ {10 ·n : n = 1, 2, 3, .., 500}
where b̂(α) is the estimate of the rate of convergence from the data.

Table 2: Convergence rate of Pareto distribution

α 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

(1− 1/α) 0.09 0.16 0.23 0.28 0.33 0.37 0.41 0.44 0.47

b̂(α) 0.011 0.143 0.258 0.275 0.326 0.363 0.402 0.461 0.474

Conclusions

The present paper deals with the investigation of convergence rates of the Wasser-
stein Metric values in the framework of stable distributions by running simulations
and checking convergence rates based on two analyses: that of analysis of density
functions and regression analysis. In spite of the fact that the stable distributions
have Paretian tails, the convergence of their Wasserstein Metric values differs from
the convergence of the Pareto distribution. For the numbers of observations N below
100000 and α > 1.2, the speed of convergence for the Wasserestein metric is lower
than the one given by the theoretical results; in the case of α = 1.5, it is only 75%
of the theoretical rate. The speed of convergence given by the theoretical results is
attained for the number of observations N larger than 100000.
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