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Abstract.

This contribution is devoted to risk-sensitive and risk-neutral optimality in
Markov decision chains. Since the traditional optimality criteria (e.g. dis-
counted or average rewards) cannot reflect the variability-risk features of the
problem, and using the mean variance selection rules that stem from the clas-
sical work of Markowitz present some technical difficulties, we are interested
in expectation of the stream of rewards generated by the Markov chain that
is evaluated by an exponential utility function with a given risk sensitivity co-
efficient. Recall that for the risk sensitivity coefficient equal zero we arrive at
traditional optimality criteria. In this note we present necessary and sufficient
risk-sensitivity and risk-neutral optimality conditions; in detail for unichain
models and indicate their generalizations to multichain Markov reward chains.
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1 Notation and Preliminaries

The usual optimization criteria examined in the literature on stochastic dynamic programming, such as
a total discounted or mean (average) reward structures, may be quite insufficient to characterize the
problem from the point of a decision maker. To this end it may be preferable if not necessary to select
more sophisticated criteria that also reflect the variability-risk features of the problem. Perhaps the best
known approaches stem from the classical work of Markowitz on mean variance selection rules. On the
other hand risky decisions can be also eliminated when expectation of the stream of one stage rewards
(or costs) is evaluated by an exponential utility function. Recall that exponential utility functions are
separable and hence suitable for sequential decisions.

In what follows, we consider Markov decision chain X = {Xn, n = 0, 1, . . .} with finite state space
I = {1, 2, . . . , N} and an infinite (compact) set Ai ≡ [0,Ki] ⊂ R of possible decisions (actions) in state
i ∈ I. Supposing that in state i ∈ I action a ∈ Ai is selected, then state j is reached in the next
transition with a given probability pij(a) and one-stage transition reward rij(a) > 0 will be accrued to
such transition. We assume that each pij(a), rij(a) is a continuous function of a ∈ Ai.

A (Markovian) policy controlling the chain, π = (f0, f1, . . .), is identified by a sequence of decision
vectors {fn, n = 0, 1, . . .} where fn ∈ F ≡ A1 × . . . × AN for every n = 0, 1, 2, . . ., and fni ∈ Ai is
the decision (or action) taken at the nth transition if the chain X is in state i. Let πk be a sequence of
decision vectors starting at the k-th transition, hence π = (f0, f1, . . . fk−1, πk). Policy which selects at all
times the same decision rule, i.e. π ∼ (f), is called stationary; P (f) is transition probability matrix with
elements pij(fi). Stationary policy π̃ is randomized if there exist decision vectors f (1), f (2), . . . , f (m) ∈ F
and on following policy π̃ we select in state i action f

(j)
i with a given probability κ

(j)
i (of course, κ

(j)
i ≥ 0

with
∑N

j=1 κ
(j)
i = 1 for all i ∈ I.)
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Let ξn be the cumulative reward obtained in the n first transition of the considered Markov chain
X. Since the process starts in state X0, ξn =

∑n−1
k=0 rXk,Xk+1

. Similarly let ξ(m,n) be reserved for
the cumulative (random) reward, obtained from the mth up to the nth transition (obviously, ξn =
rX0,X1 + ξ(1,n), we tacitly assume that ξ(1,n) starts in state X1).

In this note, we assume that the stream of rewards generated by the Markov processes is evaluated by
an exponential utility function (so-called risk-sensitive models) with a given risk sensitivity coefficient.

To this end, let us consider an exponential utility function, say ūγ(·), i.e. a separable utility function
with constant risk sensitivity γ ∈ R. Then the utility assigned to the (random) outcome ξ is given by

ūγ(ξ) :=

{
(sign γ) exp(γξ), if γ ̸= 0, risk-sensitive case,

ξ for γ = 0 risk-neutral case.
(1)

Obviously ūγ(·) is continuous and strictly increasing. For γ>0 (risk averse case) ūγ(·) is convex, if γ<0
(risk seeking case) ūγ(·) is concave. Finally if γ = 0 (risk neutral case) ūγ(·) is linear. Observe that
exponential utility function ūγ(·) is separable and multiplicative if the risk sensitivity γ ̸= 0 and additive
for γ = 0. In particular, we have uγ(ξ1+ ξ2) = uγ(ξ1) ·uγ(ξ2) if γ ̸= 0 and uγ(ξ1+ ξ2) ≡ ξ1+ ξ2 for γ = 0.

Moreover, recall that the certainty equivalent corresponding to ξ, say Zγ(ξ), is given by

ūγ(Zγ(ξ)) = E [ūγ(ξ)] (the symbol E is reserved for expectation). (2)

From (1), (2) we can immediately conclude that

Zγ(ξ) =

{
γ−1 ln{E uγ(ξ)}, if γ ̸= 0

E [ξ] for γ = 0.
(3)

Considering Markov decision process X, then if the process starts in state i, i.e. X0 = i and policy
π = (fn) is followed, for the expectation of utility assigned to (cumulative) random reward ξn obtained
in the n first transitions we get by (1)

E π
i ū

γ(ξn) :=

{
(sign γ)E π

i exp(γξn), if γ ̸= 0, risk-sensitive case

E π
i ξn for γ = 0 risk-neutral case.

(4)

In what follows let

Ūπ
i (γ, n) := E π

i ū
γ(ξn), Uπ

i (γ, n) := E π
i exp(γξn), V π

i (n) := E π
i ξn. (5)

2 Risk-Neutral Optimality in Markov Processes

In this section we focus attention primarily on so called unichain models, i.e. when the underlying Markov
chain contains a single class of recurrent states. Then on introducing for arbitrary g, wj ∈ R (i, j ∈ I)
the discrepancy function (cf. [8])

φ̃i,j(w, g) := rij − wi + wj − g (6)

we can easily verify the following identity:

ξn = ng + wX0 − wXn +
n−1∑
k=0

φ̃Xk,Xk+1
(w, g). (7)

For the risk-neutral models (i.e. if the risk sensitivity coefficient γ = 0, and uγ(ξ) = ξ) we can conclude:

If the process starts in state i and policy π = (fn) is followed then for the expected (undiscounted)
total reward V π

i (n) := E π
i ξn we immediately get by (7)

V π
i (n) = ng + wi + E π

i {
n−1∑
k=0

φ̃Xk,Xk+1
(w, g)− wXn}, where (8)

E π
i

n−1∑
k=0

φ̃Xk,Xk+1
(w, g) =

∑
j∈I

pij(fi){φ̃i,j(w, g) + E π1

j

n−1∑
k=1

φ̃Xk,Xk+1
(w, g)} (9)



It is well-known from the dynamic programming literature (cf. e.g. [1, 6, 9, 10]) that

If there exists state i0 ∈ I that is accessible from any state i ∈ I for every f ∈ F then (∗)

(i) For every f ∈ F the resulting transition probability matrix P (f) is unichain (i.e. P (f) has no two
disjoint closed sets),

(ii) For every f ∈ F there exist numbers g(f), and wi(f), i ∈ I (unique up to additive constant) such
that

wi(f) + g(f) =
∑
j∈I

pij(fi)[rij + wj(f)], (i ∈ I) (10)

i.e.
∑
j∈I

pij(fi) φ̃i,j(w, g) = 0 if φ̃i,j(w, g) := rij − wi(f) + wj(f)− g(f).

(iii) There exists decision f̂ ∈ F (resp. f∗ ∈ F) along with numbers ĝ, (resp. g∗), ŵi, i ∈ I (resp.
w∗

i , i ∈ I) (unique up to additive constant) such that

ŵi + ĝ = min
a∈Ai

∑
j∈I

pij(a)[rij + ŵj ] =
∑
j∈I

pij(f̂i)[rij + ŵj ], (11)

φi(f, f̂) :=
∑
j∈I

pij(f)[rij + ŵj ]− ŵi − ĝ ≥ 0 with φi(f̂ , f̂) = 0, (12)

resp.

w∗
i + g∗ = max

a∈Ai

∑
j∈I

pij(a)[rij + w∗
j ] =

∑
j∈I

pij(f
∗
i )[rij + w∗

j ], (13)

φi(f, f
∗) :=

∑
j∈I

pij(f)[rij + w∗
j ]− w∗

i − g∗ ≤ 0 with φi(f
∗, f∗) = 0. (14)

From (8),(10),(12),(14) we immediately get that ĝ ≤ g(f) ≤ g∗, and

V π̂
i (n) = nĝ + ŵi − E π̂

i ŵn, V π∗

i (n) = ng∗ + w∗
i − E π∗

i w∗
n. (15)

Hence for stationary policy π ∼ (f̂) and arbitrary policy π = (fn)

lim
n→∞

1

n
V π̂
i (n) = lim

n→∞

1

n
V π
i (n) = ĝ if and only if lim

n→∞

1

n
E π

i

n−1∑
k=0

φXk
(fn, f̂) = 0. (16)

lim
n→∞

1

n
V π∗

i (n) = lim
n→∞

1

n
V π
i (n) = g∗ if and only if lim

n→∞

1

n
E π

i

n−1∑
k=0

φXk
(fn, f∗) = 0. (17)

Remark. For the general multichain models it is necessary to modify φ̃i,j(w, g) such that φ̃i,j(w, g) :=

rij − wi + wj − gi and introduce ψ̃i,j(g) := gj − gi. Then (7) is replaced by

ξn = ngX0 + wX0 − wXn +

n−1∑
k=0

[
(n− 1− k)ψ̃Xk,Xk+1

(g) + φ̃Xk,Xk+1
(w, g)

]
(18)

and (8) reads (see [12], [13])

V π
i (n) = ngi + wi + E π

i {
n−1∑
k=0

[
(n− 1− k) ψ̃Xk,Xk+1

(g) + φ̃Xk,Xk+1
(w, g)

]
− wXn}. (19)

Then (10) should be completed with
∑

j∈I pij(fi)[gj(f)− gi(f)] = 0 and considered in the form wi(f) +

gi(f) =
∑

j∈I pij(fi)[rij + wj(f)]. Similarly optimal policy π̂ ∼ (f̂), π∗ ∼ (f∗) must fulfil

min
a∈Ai

∑
j∈I

pij(a)[ĝj − ĝi] =
∑
j∈I

pij(f̂i)[ĝj − ĝi], max
a∈Ai

∑
j∈I

pij(a)[g
∗
j − g∗i ] =

∑
j∈I

pij(f
∗
i )[g

∗
j − g∗i ] (20)

and in (11) (resp. in (13)) minimization (resp. maximization) of a ∈ Ai should be considered only for
a ∈ Āi ⊂ Ai fulfilling (20). Then, if the action set is finite it is guaranteed that for sufficiently large n
(n− 1− k)ψ̃Xk,Xk+1

(ĝ) + φ̃Xk,Xk+1
(ŵ, ĝ) ≤ 0 (resp. (n− 1− k)ψ̃Xk,Xk+1

(g∗) + φ̃Xk,Xk+1
(w∗, g∗) ≥ 0).



3 Risk-Sensitive Optimality in Unichain Markov Processes

Similarly to risk-neutral models we get by (5), (6), (7) for the risk-sensitive case

Uπ
i (γ, n) = eγ[ng+wi] × E π

i e
γ[

n−1∑
k=0

φ̃Xk,Xk+1
(w,g)−wXn ]

. (21)

Now observe that

E π
i e

γ
n−1∑
k=0

φ̃Xk,Xk+1
(w,g)

=
∑
j∈I

pij(f
0
i ) e

γ[rij−wi+wj−g] × E π1

j e
γ

n−1∑
k=1

φ̃Xk,Xk+1
(w,g)

(22)

E π
j {e

γ
n−1∑
k=m

φ̃Xk,Xk+1
(w,g)

|Xm = j} =
∑
ℓ∈I

pj,ℓ(f
m
j ) eγ[rj,ℓ−wj+wℓ−g] × E πm+1

ℓ e
γ

n−1∑
k=m+1

φ̃Xk,Xk+1
(w,g)

.(23)

In analogy with the risk-neutral case if stationary policy π ∼ (f) is followed, we are looking for numbers
g, wj ’s such that

∑
j∈I pij(fi) e

γφ̃ij(g,w) = 1 and for stationary policy with maximal/minimal value of
g(f). To this end we consider the following sets of linear and nonlinear equations

eγ[g(f)+wi(f)] =
∑
j∈I

pij(fi) e
γ[rij+wj(f)] (i ∈ I) (24)

eγ[g
∗+w∗

i ] = max
f∈F

∑
j∈I

pij(fi) e
γ[rij+w∗

j ], eγ[ĝ+ŵi] = min
f∈F

∑
j∈I

pij(fi) e
γ[rij+ŵj ] (i ∈ I) (25)

for the values g(f), ĝ, g∗, wi(f), w
∗
i , ŵi (i = 1, . . . , N); obviously, these values depend on the selected

risk sensitivity γ. Eqs. (25) can be called the γ-average reward/cost optimality equation. In particular, if
γ ↓ 0 using the Taylor expansion by (24), resp. (25), we have

g(f) + wi(f) =
∑
j∈I

pij(fi) [ci,j + wj(f)], resp. ĝ + ŵi = min
f∈F

∑
j∈I

pij(fi) [ci,j + ŵj ]

that well corresponds to (11).

On introducing the new variables vi(f) := eγwi(f), ρ(f) := eγg(f), and on replacing transition probabil-
ities pij(fi)’s by general nonnegative numbers defined by qij(fi) := pij(fi) · eγrij (24) can be alternatively
written as the following set of equations

ρ(f)vi(f) =
∑
j∈I

qij(fi) vj(f) (i ∈ I) (26)

and (25) can be rewritten as the following sets of nonlinear equations (here v̂i := eγŵi , v∗i := eγw
∗
i ,

ρ̂ := eγĝ, ρ∗ := eγg
∗
)

ρ∗v∗i = max
f∈F

∑
j∈I

qij(fi) v
∗
j , ρ̂ v̂i = min

f∈F

∑
j∈I

qij(fi) v̂j (i ∈ I) (27)

called γ-average reward/cost optimality equation in multiplicative form.

For what follows it is convenient to consider (26), (27) in matrix form. To this end we introduce (cf.
[5]) N × N matrix Q(f) = [qij(fi)] with spectral radius (Perron eigenvalue) ρ(f) along with its right

Perron eigenvector v(f) = [vi(f)], and right Perron eigenvectors v(f∗) = v∗ = [v∗i ], v(f̂) = v̂ = [v̂i]. Then
(26),(27) can be written in matrix form as

ρ(f)v(f) = Q(f)v(f), ρ∗v∗ = max
f∈F

Q(f)v∗, ρ̂ v̂ = min
f∈F

Q(f)v̂. (28)

Recall that vectorial maximum and minimum in (28) should be considered componentwise and v̂, v∗

are unique up to multiplicative constant. Furthermore, if the transition probability matrix P (f) is
irreducible then also Q(f) is irreducible and the right Perron eigenvector v(f) can be selected strictly
positive. Unfortunately, if P (f) is unichain in contrast to condition (∗) to guarantee that v(f) can be
selected strictly positive it is necessary to assume existence of state



i0 ∈ I accessible from any state i ∈ I for every f ∈ F that belongs to the basic class1 of Q(f). (∗∗)

If condition (∗∗) is fulfilled it can be shown (cf. [15], [16]) that

(i) In (28) eigenvectors v(f), v̂, v∗ can be selected strictly positive and ρ∗, resp. ρ̂, is the maximum,
resp. minimum, Perron eigenvalue of the matrix family {Q(f), f ∈ F}.

(ii) From (3), (21), (22), (24) we immediately get for stationary policy π ∼ (f) that

Uπ
i (γ, n) = eγ[ng(f)+wi(f)] × E π

i e
γwXn (f), Zπ

i (γ, n) =
1

γ
lnUπ

i (γ, n).

Similarly, for the mean value of the certainty equivalent for stationary policies π̂ ∼ (f̂), π∗ ∼ (f∗), and
an arbitrary policy π = (fn) we get

lim
n→∞

1

n
Zπ
i (γ, n) = g∗, resp. lim

n→∞

1

n
Zπ
i (γ, n) = ĝ if and only if

lim
n→∞

1

n
ln[E π

i e
γ

n−1∑
k=0

φ̃xk,xk+1
(w∗,g∗)

] = 0, resp. lim
n→∞

1

n
ln[E π

i e
γ

n−1∑
k=0

φ̃xk,xk+1
(ŵ,ĝ)

] = 0. (29)

In particular, for unichain models condition (∗∗) is fulfilled if this risk sensitive coefficient γ is sufficiently
close to zero (cf. [3, 4, 15]). Finding solution of (28) can be performed by policy or value iteration.
Details can be found e.g. in [2, 3, 7, 14, 15, 16].

4 Risk-Sensitive Optimality in Multichain Markov Processes

To begin with, recall that a (reducible) nonnegative matrix Q(f), f ∈ F has only nonnegative (not
necessary positive) right Perron eigenvectors. Then (cf. [11, 14, 15, 17, 18])

i) On suitably permuting rows and corresponding columns each Q(f), f ∈ F can be written in block-
triangular form such that its (possible reducible) diagonal blocks of Q(f), say Qii(f), are the biggest
submatrices of Q(f) with strictly positive right Perron eigenvectors, i.e. for Qii(f), the ith diagonal
block of Q(f) and for the corresponding (strictly positive) right Perron eigenvector v̄i(f) it holds

ρi(f) v̄i(f) = Qii(f) v̄i(f), where v̄i(f) > 0 and ρi−1(f) ≤ ρi(f) ≤ ρi+1(f). (30)

Considering diagonal blocks Qi−1,i−1(f) and Qii(f) where ρi−1(f) = ρi(f) accessibility of basic classes
of Qi−1,i−1(f) and Qii(f) is of great importance.

ii) Considering the set of nonnegative matrices Q(f), f ∈ F (i.e. is a family of nonnegative matri-
ces fulfilling the “product property”) it is possible to construct (using policy iteration algorithms) the

matrix Q(f̂) (resp. Q(f∗) whose diagonal blocks are the biggest submatrices with positive right Perron
eigenvectors and minimum (resp. maximum) possible spectral radii of the set Q(f), f ∈ F . In particular:

There exist f⊙ = f̂ , f∗ ∈ F such that the matrix

Q(f⊙) =


Q11(f

⊙) Q12(f
⊙) . . . Q1s(f

⊙)

0 Q22(f
⊙) . . . Q2s(f

⊙)
...

...
. . .

...

0 0 . . . Qss(f
⊙)

 (31)

induces the basic partition of the state space I, such that for f⊙ = f̂ , f∗ ∈ F

I = I1(f⊙) ∪ I2(f⊙) ∪ . . . ∪ Is(f⊙), where Ii(f⊙) ∩ Ij(f⊙) = ∅ for i ̸= j,

and in (31) elements of the Qii(f
⊙) are labelled from Ii(f⊙).

Furthermore, on keeping the basic partition given by Q(f∗) then Qji(f
∗) ≡ 0 for all j < i and

ρi(f
∗) vi(f

∗) = Qii(f
∗) v̄i(f

∗) ≥ Qii(f) v̄i(f
∗), where v̄i(f

∗) > 0 and ρi−1(f
∗) ≤ ρi(f

∗) ≤ ρi+1(f
∗)i with

ρi(f
∗) = ρi+1(f

∗) if and only if each basic class of Qii(f
∗) has access to some basic class of Qi+1,i+1(f

∗).

On considering submatrices Qii(f) with elements from Ii(f⊙) we can apply results of Section 3 to Qii(f).
1(i.e. irreducible class with spectral radius equal to the Perron eigenvalue of Q(f))



5 Conclusions

In this note necessary and sufficient optimality conditions for discrete time Markov decision chains are
obtained along with equations for average optimal policies both for risk-neutral and risk-sensitive models.
Our analysis is mostly restricted to unichain models, and for the risk-sensitive case some additional
assumptions are made. If no such assumptions are made, it is indicated how to handle this problem by
partition of the state space into suitable classes that inherit from properties of unichain models. Some
further results in this direction can be found in [11, 14, 15, 17, 18].
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