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Abstract. In this note we focus attention on stochastic versions of the Ramsey growth
model if either for a given time horizon expected value of the considered utility function
should be maximized or if for infinite time horizon maximal average utility should be
obtained. In contrast to the standard Ramsey economy growth model we assume that
the production function considered in the economy model is influenced by some random
factor with some specific properties. The aim is to discuss various approaches suitable for
finding optimal policy of the “stochasticized” Ramsey model. To this end, we summarize
basic features of multistage stochastic programming and stochastic dynamic programming
– the two main methodologies that can be used to handle the above problem. Finally, we
show how these approaches can be employed for finding optimal control policies for the
“stochasticized” versions of the Ramsey problem if full or only partial information on the
development of the economy over time is available.
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1. Ramsey growth model

The heart of the seminal paper of F. Ramsey [15] on mathematical theory of saving
is an economy producing output from labour and capital and the task is to decide
how to divide production between consumption and capital accumulation to maxi-
mize the global utility of the consumption. Ramsey’s model is purely deterministic
originally considered in continuous-time setting; Ramsey suggested some variational
methods for finding an optimal policy how to divide the production between con-
sumption and capital accumulation.

In the present section we formulate the Ramsey model in the discrete-time setting
similarly as in the recent literature on economic growth models (see e.g. LeVan
and Dana [4], Heer and Maußer [6], Majumdar, Mitra, and Nishimura [12], and
Sladký [21, 22]). Moreover, in contrast to the standard Ramsey’s model we assume
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that the production function considered in the model is influenced by some random
disturbances with specific properties. Finding optimal policy of the model can be
formulated as finding optimal policy of a highly structured Markov decision process
with complete or only partial information on the state of the economy over time, or as
a specific multistage stochastic programming problem. We summarize basic features
and similarities of the above two approaches and show how they can be employed
for finding optimal control for the “stochasticized” versions of the Ramsey model
if full or only partial information on the development of the economy over time is
available.

1.1. Classical Ramsey growth model

We consider at discrete time points t = 0, 1, . . ., an economy in which at each time t
there are Lt (merely identical) consumers with consumption ct per individual. The
number of consumers grow very slowly in time, i.e. Lt = L0(1 + n)t for t with
α := (1 + n) ≈ 1. The economy produces at time t gross output Yt using only two
inputs: capital Kt and labour Lt = L0(1 + n)t. A production function F (Kt, Lt)
relates input to output, i.e.

Yt = F (Kt, Lt) with K0 > 0, L0 > 0 given. (1)

We assume that F (·, ·) is a strictly increasing concave twice differentiable homoge-
neous function of degree one, i.e. F (θK, θL) = θF (K,L) for any θ ∈ R.

The output must be split between consumption Ct = ctLt and gross investment
It, i.e.

Ct + It ≤ Yt = F (Kt, Lt). (2)

Investment It is used in whole (along with the depreciated capital Kt) for the capital
Kt+1 at the next time point t+1. In addition, capital is assumed to depreciate at a
constant rate δ ∈ (0, 1), so capital related to gross investment at time t+ 1 is equal
to

Kt+1 = (1− δ)Kt + It. (3)

In what follows let kt := Kt/Lt be the capital per consumer at time t, and
similarly let yt := Yt/Lt (resp. ct := Ct/Lt) be the per capita output (resp. con-
sumption) at time t. Recalling that the production function F (·, ·) is assumed to be
homogeneous of degree one, then f(kt) := F (kt, 1) denotes the per capita production
at time t. In virtue of (2), (3) we get

ct + (1 + n)kt+1 − (1− δ)kt ≤ yt = f(kt), (4)

and if we set for simplicity α ≡ (1 + n) = 1 then (4) can be written as

ct + kt+1 − (1− δ)kt ≤ yt = f(kt). (5)

The aim is to find an optimal control policy, i.e. a rule how to split at each time
point production between consumption and capital accumulation, such that either
(i) for the given time horizon T maximizes the utility function

Uk0(c0, . . . , cT−1) of a single consumer, or (6)
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(ii) maximizes the mean utility of a single consumer for the infinite time horizon,
i.e. the values

lim
T→∞

1

T
Uk0(c0, . . . , cT−1) (7)

Recall that the utility function Uk0(c0, . . . , cT ) is real, strictly increasing and con-
cave function in all its arguments c0, . . . , cT and if all ci ≡ 0 then also Uk0(c0, . . . , cT ) =
0. As we shall see later, if the finite time horizon is considered optimal policy heavily
depends on initial capital k0; to this end this value appears in (6), (7) as a subscript.

As we shall see later since the development of the economy over time is governed
by the recursive formulas (4), (5), the problem is much easier to solve if the utility
function is additive, i.e. if for the considered time horizon T preferences for con-
sumption of a single consumer are taken in the form (resp. in discounted form for
discount factor β ∈ (0, 1))

Uk0(c0, . . . , cT ) =
T∑
t=0

u(ct) (resp. Uβ
k0
(c0, . . . , cT ) =

T∑
t=0

βtu(ct)). (8)

Observe that for T → ∞ the value Uk0(c0, . . . , cT ) is typically infinite. To this
end we introduce mean global utility as

g := lim inf
T→∞

(T )−1
T−1∑
t=0

u(ct) = lim inf
T→∞

(T )−1U(c0, . . . , cT−1) (9)

and show that under some reasonable and realistic assumptions also

lim
T→∞

(T )−1U(c0, . . . , cT−1) (10)

exists and is independent of the initial capital k0.

In the above formulation we assume that the per capita production function f(k)
and the utility function of the consumption u(c) fulfil some standard assumptions
on production and utility functions, in particular, that:

AS 1. The function u(c) : R+ → R+ is twice continuously differentiable and satisfies
u(0) = 0.Moreover, u(c) is strictly increasing and concave (i.e., its derivatives satisfy
u′(·) > 0 and u′′(·) < 0) with u′(0) = +∞ (so-called Inada Condition).

AS 2. The function f(k) : R+ → R+ is twice continuously differentiable and satisfies
f(0) = 0. Moreover, f(k) is strictly increasing and concave (i.e., its derivatives
satisfy f ′(·) > 0 and f ′′(·) < 0) with f ′(0) = M < +∞, limk→∞ f ′(k) < 1. Hence, if
f ′(0) > 1 there exists k∗ such that f(k∗) = k∗.

Since u(·) is increasing (cf. assumption AS 1) in order to maximize global utility
of the consumers is possible to replace (5) by the (nonlinear) difference equation

kt+1 − (1− δ)kt − f(kt) = −ct with k0 > 0 given (11)

or equivalently for f̃(k) := f(k) + (1− δ)k by

kt+1 − f̃(kt) = −ct with k0 given, (12)
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where ct (t = 0, 1, . . .) with ct ∈ [0, f̃(kt)] = [0, f(kt) + (1 − δ)kt] is selected by the
decision maker.

Up to now the system described above is purely deterministic; hence the ini-
tial capital k0 along with the control policy ct fully determines development of
(kt, ct) over time. Recalling that in our model the utility functions Uk0(c0, . . . , cT ),
Uβ
k0
(c0, . . . , cT ) are additive and the development over time is given by a recursive

relation depending only on the current state of the system and the decision taken,
optimal policy can be calculated using standard methods of dynamic programming.

1.2. Random shocks and imprecisions in the growth model

Unfortunately, in the real-life situations also some random shocks or imprecisions
should be considered. For this reason, we shall assume that for a given value of kt
we obtain the output value yt with some uncertainty; in particular we assume that
yt ∈ [fmin(kt), fmax(kt)] (i.e. fmin(·) ≤ f(·) ≤ fmax(·); AS 2 also hold for fmax(k),
fmin(k)). Using this approach we can generate upper and lower bounds on optimal
values on replacing in (11) f(kt) by fmax(kt) and fmin(kt) respectively.

Obviously, better results can be obtained if we replace the rough estimates of yt
generated by means of fmax(kt) and fmin(kt) by a more detailed information on the
(random) output yt generated by the capital kt. To this end it is possible to assume
that in (5) yt = f(kt) is contaminated by adding random shocks εt, i.e.

f̄(kt) := f(kt) + εt, where (13)

(i) either εt are i.i.d. random variables taking values in [e, e] ∈ R with known
distribution, or

(ii) the sequence {εt, t = 0, 1, . . .} is a Markov sequence, i.e. distribution of εt
depends on the value taken by εt−1.

Then by (12),(13) we can conclude that

kt+1 − f̄(kt) = −ct with k0 given (14)

and ȳt := f̄(kt) is he real output at time t (i.e. ȳt is a random variable).
Such extensions well correspond to the models introduced and studied in [23]

and also in [6, 12].
In [11] it was assumed that (13),(14) are fulfilled only with a given probability

1− γ, i.e. if Probab{εt ̸= [e, e]} = γ. Then it is possible to verify (cf. [11], Prop. 1)
that

Probab{εt ∈ [e, e], t = 0, 1, 2, . . . , T − 1} = (1− γ)T .

In contrast to the deterministic model where the initial capital k0 along with
selected consumptions (i.e. the control policy) ct (t = 0, 1, . . .) fully determines the
development (kt, ct) over time, in the considered stochastic case (kt, ct) as well as
the values of the considered utility functions Uk0(c0, . . . , ct) resp. U

β
k0
(c0, . . . , ct) are

random variables. To this end, quality of the considered control policy is evaluated
according to the expected values of Uk0(c0, . . . , cT ) resp. U

β
k0
(c0, . . . , cT ), say

E Uk0(c0, . . . , cT ), resp. E Uβ
k0
(c0, . . . , cT ).
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Moreover, in the stochastic case we may assume that either the current values of the
total output yt, ct, kt are known to the decision maker, or except of the knowledge
of initial capital k0 no information on the current values of capital, output and
consumption is available.

To analyze the stochasticized version at first we shall assume that the random
disturbances εt take on only a finite number of values say e = e1 < e2 < . . . < eN = e.
In particular,
if εt are i.i.d. random variables, we shall assume that Probab {εt = ei} = pi,
if {εt, t = 0, 1, . . .} is a Markov sequence then

Probab {εt = ej} =
∑N

j=1 pijProbab {εt−1 = ei} where
P = [pij] is a given transition probability matrix.

Recalling that in our model the utility functions Uk0(c0, . . . , cT ), U
β
k0
(c0, . . . , cT )

are additive, also EUk0(c0, . . . , cT ), and EUβ
k0
(c0, . . . , cT ) must be additive. Since the

development of the economy over time is given by a recursive relation depending
only on the current state of the system and the decision taken, optimal policy can be
calculated using standard methods of stochastic dynamic programming or multistage
programming.

In the next section we present and compare basic properties of these two methods.

2. Multistage stochastic programs and stochastic dynamic
programming

Multistage stochastic programs and dynamic programming problems with discrete
time parameter deal essentially with the same types of problems – the dynamic and
stochastic decision processes. They were initiated approximately in the mid fifties,
but they did follow an independent development and recognition of similarities and
complementary features has been rare.

In this section we shall discuss similarities and differences of multistage stochas-
tic programs with recourse and stochastic dynamic programs with discrete time
parameter and for a fixed finite horizon T. The main distinction is in the decision
concept, in different structures used in their formulation and, consequently, also in
different solution methods. The material is adapted from [5, 17, 18, 24].

Multistage stochastic programming extends the two-stage stochastic program-
ming problems to more steps. The problem originally stems from standard math-
ematical programs where the decision maker takes some action in the first stage,
after which a random effect occurs affecting the outcome of the first stage decision.
A recourse decision can then be made in the second stage that compensate for any
bad effect that might have been experience as a result of the first stage decision.
Multistage programs compensate bad effects of decision taken successively in a finite
number of stages.

On the contrary to the multistage stochastic programs, most of the motivation
for the research on dynamic programming models come from a class of operations
research and engineering applications where dynamical properties of the considered
system are mostly known. Here it is the decision rule that is primarily of interest
and the horizon is very long, hence the insistence on finding a rule that depends on
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the observed state and not on the information we may infer about the underlying
stochastic phenomena. An appropriate definition of state is then the central point of
dynamic programming formulations whereas in the context of multistage stochastic
programs states usually do not appear.

2.1. Multistage stochastic programs

In a generic form the general T -stage stochastic program can be written as

maximize E {G(x0, x1(x[1], ω1), x2(x[2], ω2), . . . , xT−1(x[T−1], ωT−1), ω[T ])} (15)

subject to x0 ∈ X0, xt ∈ Xt(xt−1(ω[t−1]), ω[t]) t = 1, . . . , T − 1. (16)

Here G(·) is a measurable real function of its arguments, ω[T ] = (ω0, ω1, . . . , ωT−1)
with ωt ∈ Rrt is a random data process considered at time points t = 0, 1, ..., T−1; in
what follows we assume that the probability distribution of ω[T ] is known. Similarly,

x[T ] = (x0, . . . , xt, . . . xT−1) with xt ∈ Xt ⊂ Rrt for t = 0, 1, . . . , T − 1 (17)

are the decision variables at time t. Observe that x[1] = x0, ω[1] = ω0, where
the initial decision x0 is independent of ω0. Furthermore, the decision process is
nonanticipative, i.e. decisions taken at any stage of the process do not depend
on future realization of the data process or on future decisions and only the past
information and process probabilistic specification is exploited.

Policy is a sequence of functions x0 ∈ X0, along with xt ∈ Xt(xt−1(ω[t−1]), ω[t])
for t = 1, . . . , T − 1, and is feasible if and only if it satisfies the feasibility condition
(16) for almost every realization of the random data process. If the data process
ω[T ] has a finite number of realization (called scenarios) the problem leads to a finite
dimensional optimization.

Calculating maximum in (15) subject to (16) is a very difficult problem. To this
end, we make

Assumption 1. The objective function G(·) occurring in (15) is separable with
respect to the stage index t. In particular, we assume that G(·) is additive, i.e. in
(15) we try to find maximum of

E {G0(x0)+G1(x1(ω[1]), ω1)+G2(x2(ω[2]), ω2) . . .+GT−1(xT−1(ω[T−1]), ωT−1)} (18)

where Gt : Rnt ×Rrt → R are measurable functions and Xt : Rnt−1 ×Rrt → Rnt are
measurable multifunctions (cf. e.g. [17] for precise definition). In the first stage the
function G0 : Rn0 → R and the set X0 are deterministic.

Remark. In particular, the multistage program is linear if in (15)–(16) the objective
function and the constraints are linear, that is if

Gt(xt, ωt) = cTt xt, X0 = {x0 : Ax0 = b0, x0 ≥ 0}

Xt(xt−1, ωt) = {xt : Btxt−1 + Atxt = bt, xt ≥ 0} for t = 1, 2, . . . , T − 1

where ω0 = (c0, A0, b0) and for t = 1, 2, . . . , T − 1

ωt = (ct, Bt, At, bt) ∈ Rrt are data vectors with possibly random elements.
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Here in Xt(xt−1, ωt) only one step dependence on xt−1 is considered; in general we
might extend the linear dependence on all x0, x1, . . . xt−1.

On introducing conditional expectation, say E|ξ1 [g(ξ1, ξ2)] := E[g(ξ1, ξ2)|ξ1] for the
real function g(·), we can conclude that by (18)

E {G0(x0) +G1(x1(ω[1]), ω1) +G2(x2(ω[2]), ω2) . . .+GT−1(xT−1(ω[T−1]), ωT−1)} (19)

= G0(x0) + E|ω0

[
G1(x1(ω[1]), ω1) + E|ω1

[
G2(x2(ω[2]), ω2)

+E|ω3

[
. . .+ E|ωT−2

[GT−1(xT−1(ω[T−1]), ωT−1)]
]]]

. (20)

This, together with an interchangeability property of the expectation a maximization
operators (trivially fulfilled for a finite number of realizations), leads to the following
nested formulation of the multistage problem (18)

max
x0∈X0

{G(x0) + E|ω0

[
sup

x1∈X1(x0,ω1)

G1(x1, ω1) + E|ω[1]

[
. . .+ E|ω[T−2]

sup
xT−1∈XT−1(xT−2,ωT−1)

GT−1(xT−1, ωT−1)
]]
}. (21)

This decomposition property of the expectation operator is a basis for deriving
the dynamic programming equations, i.e. finding maximum of the objective function
sequentially by going backward in time. To this end, it is necessary to assume
stagewise independence of elements ωt’s of the random data process ω[T ], in the
multistage stochastic programs given by (15)–(16).

Assumption 2. (Interstage independence assumption.) The random process
ω1, . . . , ωT is stagewise independent if random variable ωt+1 is independent of ω[t]

for t = 0, 1, . . . , T − 1.

Under Assumptions 1 and 2, going backward in time the so-called reward-to-go
(also called value) functions are defined recursively for t = T − 1, . . . , 1, o as follows

Vt(xt−1, ω[t]) = sup
xt∈Xt(xt−1,ωt)

{Gt(xt, ωt) + Vt+1(xt, ω[t])} (22)

where
Vt+1(xt, ω[t]) = E{Vt+1(xt, ω[t+1])|ω[t]} (23)

with VT (·, ·) = 0 by definition. At the first stage the following problem should be
solved

max
x0∈X0

{G0(x0) + E[V1(x0, ω1]}. (24)

A policy x̂t(ω[t]) t = 0, 1, . . . , T − 1 is called optimal if x̂0 is an optimal solution
of the first stage problem (24) and for t = 1, . . . , T − 1

x̂t(ω[t]) ∈ arg max
xt∈Xt(x̂t−1(ω[t−1]),ωt)

{Gt(xt, ωt) + Vt+1(xt, ω[t])}, w.p.1. (25)

In the dynamic programming formulation the problem is reduced to solving a family
of finite dimensional problems (22)–(23). In particular, under Assumptions 1 and 2
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for the expected value of the value function, say Vt(xt−1, ω[t−1]) := E{Vt(xt−1, ωt|ω[t−1])},
we have

VT−1(xT−2, ω[T−2]) = E{VT−1(xT−2, ωT−1)|ω[T−2]} (26)

does not depend on ω[T−2]. By induction on t going backward in time, it can be
shown that:

Under Assumptions 1 and 2 the (expected) value of Vt(xt, ω[t]), say Vt(xt) for
t = 1, . . . , T −1 do not depend on the data process and equations (22) take the form

Vt(xt−1, ωt) = sup
xt∈Xt(xt−1,ωt)

{Gt(xt, ωt) + Vt+1(xt)} (27)

Using the above method under Assumptions 1 and 2 the general T -stage stochas-
tic programming problem (15)–(16) reduces to an optimization problem of a finite
system of parametric (one-stage) optimization problems with an inner type of de-
pendence. This can be useful for many problem arising in multistage programming,
see e.g. [9], [10]. However, even this approach is based on backward recursive for-
mulas of dynamic programming, it is limited only to finite horizon models and does
not employ explicitly the dynamical properties of the considered model. Having
reasonable information concerning the behaviour of the considered model over time,
it is possible to introduce the state space characterization of the model and extend
the analysis also to infinite time horizon.

2.2. Connections with stochastic dynamic programming

To show the connections between multistage stochastic programs and stochastic
dynamic programs, let us consider again the sequence (17) assuming that the next
stage of the considered process is entirely determined by the state, decision and
random data occurring at the current stage. In particular, we make the following
assumptions concerning the dynamics of the system:

Assumption 3. For every stage t = 0, 1, . . . , T − 1

xt = (st, dt) with st+1 = Ft(st, dt, ωt), and x0 = (s0, d0) with s0 given,
(28)

where
st ∈ S ⊂ R, dt ∈ D(st) ⊂ R, ωt ∈ Ωt ⊂ R, and
Ft(·, ·, ·) is a mapping from S × D(st)× Ωt onto S.

The variable st is called the state of the considered random process at stage
t and D(s) is the decision or action) taken at stage t if the process is in state
s ∈ S. Similarly, S (resp. D(s)) is the state space (resp. action set) at stage t.
Let dt := (d0, d1, . . . , dt) be a sequence of decisions (called also policy) controlling
the considered process. Observe that in virtue of (28) the sequence of the states
s0, s1, . . . , ...st, . . . is a Markov process, and that (28) in fact replaces the more general
conditions (16) by describing the development of the system over time.
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The “Markovian” property for generating the sequences of states by (28) of
Assumption 3 along with mutual independence of ωt (interstage independence by
Assumption 2) yields the following important implication:

Prob [st+1 = s|s1, . . . , st; d1, . . . , dt] = Prob [st+1 = s|st, dt] := pt(st, s; dt) (29)

and the form of objective function (18) follows from Assumption 3:

E {G0(s0) +
T−1∑
t=1

Gt(st; dt)} (30)

with Gt(st; dt) = Gt(st) + Ḡt(st; dt) for t = 1, . . . , T − 1.

In the literature (cf. [6, 12] or the monograph [23]) it is usually assumed that the
sequence of states {s0, s1, . . . st, . . .} is a Markov process in general with state space
R. Moreover, usually we assume that the decision maker can observe the current
values of the total output yt and then select the value of kt+1. Unfortunately,
assuming that the state space of the considered Markov process is an compact set of
R then a rigorous treatment of the model requires a very sophisticated mathematics
(see e.g. [7] or [23]) and is not suitable for numerical computation.

3. Approximations of the stochasticized growth model

To make the model computationally tractable we shall approximate our model by a
discretized model with finite state space (see [20]).

To this end, we shall assume that the values of ct, kt, and yt take on only a finite
number of discrete values. In particular, we assume that for sufficiently small ∆ > 0
there exists nonnegative integers c̄t, k̄t, and ȳt such that for every t = 0, 1, . . . it
holds:

c̄t∆ = ct, k̄t∆ = kt, and ȳt∆ = yt with k̄t ≤ K := kmax/∆
and similarly ȳt ≤ Y := ymax/∆.

Let elements of k̄t be labelled by integers from IK = {0, 1, . . . , K} and elements of ȳt
by integers from IY = {0, 1, . . . , Y }. Hence for the total output yt generated by the
“randomized” production function we get for ℓ = 0, 1, 2, . . . , L and k̄t = 0, 1, . . . , K

ȳt = f(k̄t∆)/∆− ℓ with probability p(k̄t; ℓ) such that (31)

p(k̄t; 0) ≫ p(k̄t; ℓ) for any ℓ ̸= 0; obviously,
L∑

ℓ=0

p(k̄t; ℓ) = 1.

If the (random) total output at time t ȳt = ȳ then the decision maker have
option to invest for the next time point the capital kt+1 = k̄t+1∆ where k̄t+1 =
0, 1, . . . , fmax(k̄t), and hence u((ȳt − k̄t+1)∆) is the instantaneous utility accrued at
time t to the global utility.

Using the above discretization and taking decisions with respect to the cur-
rent states, the development of the economy over time can be well described by
a (structured) Markov reward chain X = {Xτ , τ = 0, 1, . . .} with finite state
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space I = IK ∪ IY (with IK ∩ IY = ∅), transition probabilities p(k̄t; ȳt) = pij,
for i = k̄t ∈ IK , j = ȳt ∈ IY , and a “non-random” transition from state j = ȳt ∈ IY

to state ℓ = k̄t ∈ IK associated with one-stage reward rjℓ = u((ȳt − k̄t+1)∆). Ob-
serve that actually “two transitions” of the Markov chain X = {Xτ , τ = 0, 1, . . .}
occur within one-time period of the considered economy model and the one-stage
reward is accrued only in even transitions. Hence the global utility (i.e. the
total reward of the Markov chain) Uk0(T ) = E{

∑T
t=1 rX2t−1,X2t|X0 = k̄0}, resp.

Uβ
k0
(T ) = E{

∑T
t=1 β

k−1rX2t−1,X2t|X0 = k̄0} if discounted reward is considered

4. Formulation in terms of dynamic programming

The above model can be treated as a highly structured Markov decision chain with
finite state space I = I1 ∪ I2 (with I1 ∩ I2 = ∅), finite set Di = {0, 1, . . . , d(i)} of
possible decisions (actions) in state i ∈ I and the following transition and reward
structure:

pij(a) : transition probability from i → j (i, j ∈ I) if action a ∈ Di is selected,

rij : one-stage reward for a transition from i → j, with

rij = u((i− j)∆) if i ∈ I2 and j ∈ I1,

ri(a) : expected value of the one-stage rewards incurred in state i if decision

a ∈ Di is selected in state i; in particular ri(a) =
∑
j∈I

pij(a) · rij.

Policy controlling the chain, say π, is a rule how to select actions in each state.
Policy π is then fully identified by a sequence {dτ , τ = 0, 1, . . .} of decision vectors
(of dimension K and Y in odd and even steps respectively) whose ith element
dτ (i) ∈ Di identifies the action taken if Xτ = i.

Let the vector Uπ(τ) (with elements Uπ
i (τ)) denote expectation of the (random)

global utility ξτ received in the τ next transitions of the considered Markov chain X
if policy π = (dτ ) is followed, given the initial state X0 = i, i.e., for the elements of
Uπ(τ) we have Uπ

i (τ) = Eπ
i [ξτ ] where ξτ =

∑τ−1
k=0 rXk,Xk+1

and Eπ
i is the expectation

if X0 = i and policy π = (dτ ) is followed. Then obviously

Uπ
i (τ + 1) = ri(dτ (i)) +

∑
j∈I

pij(dτ (i)) · Uπ
j (τ), i ∈ I (32)

and in the case with discounting we have

Uβ,π
i (τ + 1) = ri(dτ (i)) + β

∑
j∈I

pij(dτ (i)) · Uβ,π
j (τ), i ∈ I. (33)

If we restrict on stationary policies, i.e. the rules selecting actions only with
respect to the current state of Markov chain X, then policy π is fully determined
by dt ≡ d. Observe that decision vector d then completely identifies the transition
probability matrix P (d) and the ith row of P (d) has elements pi1(d(i)), . . . , piN(d(i)).
Similarly, r(d) is a (column) vector of one-stage expected rewards (i.e. i-th element
of r(d) is equal to ri(d(i))). Observe that if the decision maker’s policy it to select
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the same decision (i.e. to apply the same action) in any state no information on
the current state of the system is necessary (cf. [1, 2]).

In particular, for the discounted model with T tending to infinity, i.e. when
lim
T→∞

Uβ,π
i (T ) = Uβ,π̂

i , then by (33) can conclude that

Uβ,π̂
i = ri(d(i)) + β

∑
j∈I

pij(d(i)) · Uβ,π̂
j , i ∈ I (34)

Furthermore, (stationary) policy π̂ maximizing total expected rewards can be
found as a solution to

Uβ,π̂
i = max

d∈Di

[ri(d(i)) + β
∑
j∈I

pij(d(i)) · Uβ,π̂
j ], i ∈ I (35)

In what follows we assume that for an arbitrary policy the considered Markov
chain contains a single class of recurrent states guaranteed by the following:

Assumption 4. There exists state i0 ∈ I that is accessible from any state i ∈ I
for any stationary policy.

In contrast to (33),(35) the undiscounted values Uπ
i (T ) can be typically infinite.

However, under Assumption 4 it can be shown that for any stationary policy the
long range average reward is independent of the starting state, in particular, there
exist wπ

i and number gπ = limT→∞
1
T
Uπ
i (T ) such that

gπ + wπ
i = ri(d(i)) +

∑
j∈I

pij(d(i)) · wπ
j , i ∈ I. (36)

where gπ is unique and wπ
i ’s (for i ∈ I) are unique up to an additive constant

depending on the selected initial conditions (for details see e.g. [14, 16]).
If πT is (in general nonstationary) policy maximizing the values UπT

i (T ) for the
fixed time horizon T then

U π̂τ

i (τ) = max
d∈Di

[ri(dτ (i)) +
∑
j∈I

pij(dτ (i)) · U π̂τ−1

j (τ − 1)], for τ = T, T − 1, . . . , 1, 0.

(37)

Furthermore, for T tending to infinity then by (36), (37) we can conclude that the
maximum average reward gπ̂ can be found as a solution to

gπ̂ + U π̂
i = max

d∈Di

[ri(d(i)) +
∑
j∈I

pij(d(i)) · U π̂
j ], i ∈ I. (38)

where gπ̂ is unique and U π̂
i ’s (for i ∈ I) are unique up to an additive constant

depending on the selected initial conditions (for details see e.g. [14, 16]).
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5. Computation of optimal policies

In case that the time horizon T is finite, it is necessary to calculate (backwards) the
dynamic programming recursion according to (37). Considering the infinite time
horizon (i.e. if T → ∞), finding a solution of (37) is in some aspects much easier.
Optimal policy can be found in the class of stationary policies (i.e. policies selecting
actions only with respect to the current state of Markov chain) and can be performed
either by value iterations (successive approximations) or by policy iterations. For
details see e.g. [14] or [16].

Algorithm 1 (Policy iterations – Howard [8].)

Step 0. Select arbitrary policy, say d(0).
Step 1 – Policy evaluation. For stationary policy d(n) find v = v(d(n)) as the solution
of

g e+ v = r(d(n)) + P (d(n))

(e denotes a unit vector).

Step 2 – Policy improvement. For a given v(d(n)) find policy d(n+1) such that

r(d(n+1)) + P (d(n+1))v(d(n)) = max d∈D[r(f) + P (d)v(d(n))].

If there exists d(n+1) = d(n), then stop and policy d(n) is an optimal policy, else go
to Step 1.

Algorithm 2 (Value iteration – Bellman [3].)

Select v(0) = 0, choose some (sufficiently small) ε > 0, and iterate

v(n+1) := max
d∈D

[r(d) + P (d)v(n)] for n = 0, 1, . . . .

If ∥v(n+1) − v(n)∥ < ε then stop, and g(n) = n−1v(n) is a very good approximation of
the mean reward.

Remark. Observe that v(n)’s are identical with Uπ(n) if policy π is identified by the
decision vectors generated by Algorithm 2.

Algorithm 3 (Value iteration (modified) – White [25], Odoni [13], Sladký [19].)

Select w(0) = 0, choose some (sufficiently small) ε > 0, set w
(n)
N ≡ 0 for n = 0, 1, . . .,

and iterate
w(n+1) := max

d∈D
[r(d) + P (d)w(n)].

Then
max
i∈I

[w
(n+1)
i − w

(n)
i ], resp. min

i∈I
[w

(n+1)
i − w

(n)
i ]

is an upper (resp. lower) bound on g converging monotoneously to g.
If ∥w(n+1) − w(n)∥ < ε then stop.
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6. Conclusions

The paper is devoted to finding optimal control policy of a stochasticized version of
the Ramsey growth model. The problem can be treated by two approaches for han-
dling multistage stochastic models: multistage stochastic programming and stochas-
tic dynamic programming. It is shown that under some simplifying assumptions on
the general model of stochastic programming we can arrive at the same formulas as
obtained by stochastic dynamic programming approach. Using a reasonable approx-
imation of the stochasticized model we are able to formulate the problem as finding
optimal control of a Markov decision chain with finite state space and action sets.
For the infinite horizon models we can restrict on the class of stationary policies and
relabel actions in each state such that in each state optimal action has the same
label. This enables to apply optimal control even for problems where the decision
maker has no information on the current state of the economy system if the long
run optimality criteria are considered.

References

[1] Assaf, D.: Invariant problems in discounted dynamic programming. Adv. Appl.
Probab. 10 (1978), 472–490.

[2] Assaf, D.: Invariant problems in dynamic programming– average reward criterion.
Stochastic Processes and their Applications 10 (1980), 313–322.

[3] Bellman, R.: Dynamic Programming. Princenton Univ. Press, Princenton, NJ. 1957.

[4] Dana, R.-A. and Le Van, C: Dynamic Programming in Economics. Kluwer, Dordrecht
2003.
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[20] Sladký, K.: Approximations in stochastic growth models. In: Proceedings of the 24th
Internat. Conference Mathematical Methods in Economics 2006, University of West
Bohemia, Pilsen 2006, pp. 465–470.
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