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1 Introduction

One of the key roles in price formation at today's �nancial markets is played by market makers
(MMs) - agents who are obliged to set buying and selling qoutes (bid and ask) and trade for the
prices they set. Clearly, as other economic agents, MMs are pro�t maximizers. The economic
analysis of their behariour is, however, quite complicated since the decision problems they face are
dynamic by nature hence intractable (see[2] and the citation therein).

In the present paper, we suggest a rather simple version of such a decision problem. In particular,
we assume the MM to maximizehis discounted consumption while keeping the probability of the
bancrupcy (i.e. running out of the money or the traded asset) at a prescribed, perhaps very small
level. We do not give analytic solution of the problom but we prove that the prices set by the MM
depend - out of all the past information - only on the amount of the asset held by MM and on his
uncertainty concerning the fair price.

After a nomral approximation of (Compound Poisson) bought and sold anounts of an asset we
are able to determine a distribution of the process of midpoint prices and the inventory of the
MM (i.e. total number of assets held) which we, after a local linearization of optimal strategies,
validate by means of ten seconds high frequency data and estimate its parameters. As we used
OLS, our estimates are both consistent and asyptotically normal. We also show a benchmark
models assuming irrationality of the MM's and/or the liquidity takers, may be rejected in favour
of our model.

2 The setting

Let there be two types of agents: the market makers posting quotes (the best bid and ask), and
the informed traders.

In our model, there is a single (representative) market maker, i.e., agent who, at each t ∈ N,1 sets
the log-quotes at and bt (the actual best ask and best bid are then At = eat , Bt = ebt ,respectively)
in order to maximize their discounted overall consumption.

In reaction to the quotes, the traders post market orders, i.e. requests to buy or to sell a certain
amount of the asset for the ask price, bid price, respectively. The numbers of buy and sell market
orders arrived from time t − 1 to t, are Poisson with intensities depending solely on a distance of
the corresponding log-quote to a log-fair price πt ∈ R, in particular, the intensities are

λ(at−1 − πt−1), λ(πt−1 − bt−1),

respectively where

λ(z) =

{
r(1− z/D) z ≤ D
0 z > D

, r > 0, D > 0

The sizes of the orders are random, with common distribution P, independent each on other and
on the numbers of the order arrived. We denote µ the mean and s the raw second moment of P
(i.e. the variance of P is s− µ2).

The (log)fair price π follows a possibly non-normal non-homogenous random walk with

E∆πt = 0,

We distinguish three possible degrees of information, available to the MM:

(I) The MM is fully informed, i.e. the values of π are observable to him

1Other trading frequencies may be modelled by scaling of the time.
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(P) The MM is partially informed, i.e. he observes a proxy

et = πt + ζt

for some ζt, E(ζt) = 0

(U) The MM is uninformed.

Denoting Xt+1 and Yt+1 the total volume of the buy market orders, sell market orders, respectively,
which have arrived since t to t+ 1, and denoting

Ξt = (π0, X1, Y1, e1, π1, . . . , Xt, Yt, et, πt) (1)

all the (historical) information relevent for the market (given (I), we can put et = πt, given (U),
we can assume an in�nite variance of et by de�nition), our setting may be formally described as
follows:

(D1) Xt|Ξt ∼ CP (λ(at−1 − πt−1),D) ,

(D2) Yt|Ξt−1,∼ CP (λ(πt−1 − bt−1),D) ,

(I1) ∆πt, ζt and (Ξt−1, Xt, Yt) are mutually independent.

(I2) Xt is conditionally independent of Yt given at−1 − πt−1, πt−1 − bt−1

Here, CP(κ,Q) denotes the compound Poisson distribution with intensity κ and summands' distri-
bution Q.

Note that the functions d̄(p) = µκ(p − πt) and s̄(p) = µλ(πt − p), are equal to the expected
volumes of buy market orders, sell market orders, respectively, arriving between t and t+1; therefore,
d̄ and s̄ may be interpreted as (expected) demand curve, supply curve, respectively. Moreover, since

πi = arg max
p

[d̄(p) ∧ s̄(p)]

we may regard πt as the equilibrium price. The expected overall traded volume between t and t+ 1
is then given by

R = d̄(πt) = s̄(πt) = µr;

thus, constant R may be called preliquidity. Finally, as

d̄(p) ∧ s̄(p) ≥ 0⇔ p ∈ (πt −D,πt −D)

the parameter D may be named prespread.

3 The MM's decision problem

Let us turn out to the study of the MM holding M0 units of cash and N0 units of the traded asset
at the time 0. Denote Ct the MM's consumption at t. Naturally, the increments of the cash holding,
asset holding, respectively, are

∆Mt = eat−1Xt − ebt−1Yt − Ct−1, ∆Nt = Yt −Xt, t > 0. (2)

We assume that the consuption Ct may be also negative, i.e. it is allowed to MM to �put its own
money into the bussiness� if needed. Moreover, we allow the MM to borrow stocks for a single
period.
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As we have already premised, we assume the MM to maximize his discounted consumption at
a time t so that both the probability of running out of the money (i.e. a negative Mt+1) and the
probability of depleeting the asset (i.e. a negative Nt+1) is less than a prescribed level.

As the MM possibly does not know the values of the fair price, his information set at the time
t consists of

ξt = (e1, X1, Y1, e2, X2, Y2, . . . et, Xt, Yt)

where et = πt in case of (I) and et has an in�nite variance by de�nition in case of (U).

De�nition 1. The decision problem, solved by the MM at each t ∈ N ∪ {0}, is given by

Vt(ξt) = sup
aτ ,bτ ,Cτ ,t≤τ≤T

E

[
T−1∑
τ=t

e−ρ(τ−t)Cτ + e−ρ(T−t)(MT + eπTNT )|ξt

]
(3)

such that, for all t ≤ τ < T ,
(aτ , bτ , Cτ )is σ(ξτ ) measurable,

aτ ≥ bτ A(τ)

P [Mτ+1 < 0|ξτ ] ≤ γ, M(τ)

P [Nτ+1 < 0|ξτ ] ≤ γ, N (τ)

τ ≥ t.
Here, T is a time horizon ful�lling t ≤ T ≤ ∞, ρ is a discount factor and γ is a prechosen probability
level.

4 Approximation

Denote

hτ = E(πτ |ξτ ), Pτ =
aτ + bτ

2

the expected (log)fair price, (log)midpoint price, respectievely, and de�ne

δτ = Pτ − hτ , στ =
aτ − bτ

2
.

ther relative price, half-spread respectively.

Our next aim is to describe the dyna_mics of hτ and the distribution of h′τs observation error

ητ = hτ − πτ

Because, in cases (U) and (P), the dynamics of h comes out as non-linear and the distribution of
ητ as non-normal, an approximation is needed. To this end, denote

vη,τ = var(ητ |ξτ ),

and observe that, once
ris high enough

and

at − ht +
√
vη,t = σt + δt +

√
vη,t � D, ht − bt +

√
vη = σt − δt +

√
vη,t � D, (4)

we may approximate the Compound Poisson conditional distributions of Xt and Yt by normal one
with �rst and second moments matching. From the Chebyshev inequality and from (4), we further
get that the probability of at − ht + ηt > D, ht − bt − ηt > D is very small (similarly bt) so we may
take λ as linear. Therefore, we keep assuming (I1) and (I2) but we approximate
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(A1) Xt|Ξt−1∼̇N
(
R
(

1− at−1−πt−1

D

)
, sµR

(
1− at−1−πt−1

D

))
(A2) Yt|Ξt−1, ∼̇N

(
R
(

1− πt−1−bt−1

D

)
, sµR

(
1− πt−1−bt−1

D

))
Further, for each t, we assume

∆πt ∼ N (0, vπ)

ζt ∼ N (0, vζ)

Unfortunatelly, even given this approximation, we would not get analytical formulas for the condi-
tional distribution of ηt given ξt which we will need to describe the dynamics of the price-volume
process (the reason being the conditional variance of both Xt and Yt dependent on ηt). One way to
overcome this is to approximate its conditional density; however, since the formulas, resulting from
that approach, would still be quite complex hence di�cult to work with further, we rather assume
that, instead of both the values Xt and Yt, the MM takes into account only the value the increase
of the inventory

∆Nt = Yt −Xt,

whose conditional variance does not depend on ηt. This approximation could be justi�ed by the
fact that the loss of information given such a simpli�cation is not large.2Hence, we assume

(A3) ξt = (e1,∆N1, . . . , et,∆Nt)

until the end of the paper.

Proposition 2. Given (I1),(I2),(A1)-(A3) and if

ηt−1|ξt−1 ∼ N (0, vη,t−1)

then
∆ht = −cN (k−1∆Nt − δt−1) + ce(et − ht−1)

where

k = 2
R

D

cN = cN (vη,t−1, σt−1) =
vη,t−1vζ
ut

,

ce = ce(vη,t−1, σt−1) =
vη,t−1vθ,t + vπvθ,t + vη,t−1vπ

ut

ut = u(vη,t−1, σt−1) = vη,t−1vπ + vη,t−1vθ,t + vπvθ,t + vη,t−1vζ + vθ,tvζ

vθ,t = vθ(σt−1) =
s

kµ
(D − 2σt−1)

and
ηt|ξt ∼ N (0, vη,t),

where

vη,t = vη(vη,t−1, σt−1)

= vη,t−1 + vπ −
1

ut
(v2
η,t−1vζ + v2

η,t−1vθ,t + vη,t−1vπvθ,t

+ v2
η,t−1vπ + vη,t−1vθ,tvπ + v2

πvθ,t + vη,t−1v
2
π).

2As, due to (4), the variances of Yt and Xt are similar and their relation to et is analogous, their contribution to
the information about πt is similar too so the same absolute value of coe�tients in an eventual linear estimate of πt
are defensitble; moreover, as they depend on πt reverse way, the signs of the coe�tient should clearly be opposite.
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Proof. Denote

ϑt =
∆Nt
k
− δt−1 − ηt−1.

Given (P), we have

ϑt|Ξt−1, ζt,∆πt = ϑt|Ξt−1

∼̇
N
(
R
[(

1− πt−1−bt−1

D

)
−
(

1− at−1−πt−1

D

)]
, sµR

[(
1− at−1−πt−1

D

)
+
(

1− πt−1−bt−1

D

)])
k

− δt−1 − ηt−1

=
N
(
R
(
− 2πt−1−(bt−1+at−1)

D

)
, sµR

(
2− at−1−bt−1

D

))
k

− δt−1 − ηt−1

=
N
(
k (ηt−1 + δt−1) , k sµ (D − 2σt−1)

)
k

− δt−1 − ηt−1 = N (0, vθ,t) ∼ ϑt|σt−1,

vθ,t =
s

kµ
(D − 2σt−1)

(the last �∼� follows from the fact that the the parameters of the conditional distribution of ϑt|Ξt−1

are measurable with respect to σ(σt−1)) from which and the assumptions it is clear that

ϑt, ζt,∆πt, ηt−1|Ξt−1 ∼ N(0,diag(vϑ,t, vζ,t, vπ,t, vη,t−1))

Now, denote zt = k−1∆Nt. Since

πt = ht−1 − ηt−1 + ∆πt

zt = δt−1 + ηt−1 + ϑt,

et = πt + ζt = ht−1 − ηt−1 + ∆πt + ζt

we are geting that (πt, zt, et) given ξt−1is normal with mean (ht−1, δt−1, ht−1) and variance vη,t−1 + vπ −vη,t−1 vη,t−1 + vπ
−vη,t−1 vθ,t + vη,t−1 −vη,t−1

vη,t−1 + vπ −vη,t−1 vπ + vζ + vη,t−1


so, by textbook formula,

πt|zt, et, ξt−1

is normal with mean

ht−1 + (−vη,t−1, vη,t−1 + vπ)

(
vθ,t + vη,t−1 −vη,t−1

−vη,t−1 vπ + vζ + vη,t−1

)−1 [
zt − δt−1

êt

]
= ht−1 +

1

ut
(−vη,t−1, vη,t−1 + vπ)

(
vπ + vζ + vη,t−1 vη,t−1

vη,t−1 vθ,t + vη,t−1

)[
zt − δt−1

et − ht−1

]
= ht−1 +

1

ut
[−vη,t−1(vπ + vζ + vη,t−1)

+ vη,t−1(vη,t−1 + vπ),−v2
η,t−1 + (vη,t−1 + vπ)(vθ,t + vη,t−1)]

[
zt − δt−1

et − ht−1

]
= ht−1 +

1

ut
(−vη,t−1vζ , vη,t−1vθ,t + vπvθ,t + vη,t−1vπ)

[
zt − δt−1

et − ht−1

]
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and variance

vη,t = vη,t−1 + vπ

− 1

ut
(v2
η,t−1vζ + v2

η,t−1vθ,t + vη,t−1vπvθ,t + v2
η,t−1vπ + vη,t−1vθ,tvπ + v2

πvθ,t + vη,t−1v
2
π)

Untill the end of the paper assume the case (P), i.e., that the mm is partially informed.

5 The optimal decision

Before proceeding, note that, as hτ is (by de�nition) ξτ -measurable, any strategy of (3) may be
alternatively expressed by (δτ , στ , Cτ ).

The following Proposition shows how the optimal dicesion depends on the past of the MM's
information.

Proposition 3. Denote (δτ , στ , Cτ )τ≥t, be optimal solution of (3). Then,

(i) if

• T is �nite

or

• T =∞ and additional constraints

δτ ∈ [−D0, D0], στ ≤ S0, C(τ)

are added to the problem,

then

• Vt(ξt) = V (Mt, Nt, vη,t, ht, T − t) for some function V

• δτ = δ(Nτ , vη,τ , T − τ),σt = σ(Nτ , vη,τ , T − τ) for some functions δ, σ

• Cτ = C(Mt, Nτ , vη,τ ,hτ ) for some function C.

(ii) For T =∞ and given constraint C,

V (M,N, v, h) =
1

1− e−ρ
Mτ + ehτW (N, v)

where W is given by a �Bellman-like� equation

W (n, v) = sup
δ,σ
{φ(δ, σ) +

1

eρ − 1
R[eδ+σ(1− δ + σ

D
)− eδ−σ(

δ − σ
D
− 1)]

+E[ew(δ,σ,∆N)W (n+ ∆N, vη(v, σ))]}
s.t.

δ ∈ [−D0, D0],

σ ∈ [0, S0]

P(∆N +N < 0) ≤ γ

Here,
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• ∆N ∼ N
(
kδ, k2(v + vθ(v, σ))

)
• k,R, ρ,D, γ,D0, S0 are previously de�ned constants

• cN , ce, vη, vθ are previously de�ned functions

• φ(σ, δ) = sup{x; Ψ(x; δ, σ) ≤ γ},

Ψ(z; δ, σ) = Eη∼N (0,v)ϕ

(
e−δz−eσR(D−(σ+δ+η))−e−σ(D−(σ−δ−η))√
Rs
µ [e2σ(D−(σ+δ+η))+e−2σ(D−(σ−δ−η))]

)

• w(δ, σ,∆N) = ce(v,σ)
v+vθ(v,σ) (k−1∆N − δ) + 1

2ce(v, σ)2
(
v + vπ + vζ − k2v2

v+vθ(v,σ)

)
− cN (v, σ)∆N

(iii) Vt is non-decreasing both in Mt and Nt
(iv) The constraintM(τ) is ful�lled with �=� for all τ ≥ t

Proof. (i): Assume �rst that T < ∞. Then the problem (3) may be reformulated by means of
Bellman equations

V (ξτ ) = sup
δτ ,στ ,Cτ ful�lling A(τ),M(τ),N (τ)

[
Cτ + e−ρE(Vτ+1(ξτ+1)|ξτ )

]
for t ≤ τ < T and

VT (ξT ) = E(MT + eπTNT |ξT ) = MT + E(eπT |ξT )NT .

We prove, by induction, that, for all t ≤ θ ≤ T ,

Vθ(ξθ) = Ṽ (Mθ, Nθ, hθ, vη,θ, T − θ) = dT−θMθ + ehθW (Nθ, vη,θ, T − θ) (5)

for some functions Ṽ and W such that W is non-decreasing in N and dθ ∈ R is deterministic.

If θ = T then (5) clearly holds with d0 = 1 and

W (n, v, 0) = nEη∼N (0,v)e
−η = nev

2/2.

(to see it, note that E(eπT |ξT ) =E(e−ηT ehT |ξT ) = ehTE(e−ηT |ξT ))

Now let τ < T and assume (5) to hold with θ = τ + 1. Put

xτ = e−hτ (Cτ −Mτ ).

Since
∆Mτ+1 = ehτ (eδτ+στXτ+1 − eδτ−στYτ+1)

we are getting

Vτ (ξt) = sup
δτ ,στ ,xτ ful�lling A(τ),M(τ),N (τ)[
Mτ + ehτxτ + e−ρE

(
dT−(τ+1)Mτ+1 + ehτ+1W (Nτ+1, vη,τ+1, T − (τ + 1))

)]
= (1 + e−ρdT−(τ+1))Mτ

+ ehτ sup
δt,σt,xt,...

[xτ + e−ρdT−(τ+1)e
−hτE(∆Mτ+1|ξτ )

+ E(e∆hτ+1W (Nτ+1, vη,τ+1, T − (τ + 1))|ξτ )]

= (1 + e−ρdT−(τ+1))Mτ + ehτF (Nτ , vη,τ+1, T − τ)
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where

F (N, v, θ) = sup
δ,σ
{φ(δ, σ) + e−ρdθ−1R[eδ+σ(1− δ + σ

D
)− eδ−σ(

δ − σ
D
− 1))

+ E(e−cN (v,σ)∆N+ce(v,σ)eW (N + ∆N, vη(v, σ), θ − 1))] (6)

s.t.

σ ≥ 0 (Ã)

P(∆N +N < 0) ≤ γ (Ñ )

where [
∆N
e

]
∼ N

([
kδ
0

]
,

[
k2(v + vθ(v, σ)) −kv

−kv v + vπ + vζ

])
Finally, since, by a textbook formula,

e|∆N ∼ N (− v

v + vθ(v, σ)
(k−1∆Nt − δt−1), v + vπ + vζ −

k2v2

v + vθ(v, σ)
)

we have

E(e−cN (v,σ)∆N+ce(v,σ)eW ) = E(E(e−cN (v,σ)∆N+ce(v,σ)eW |∆N))

= E(E(ece(v,σ)e|∆N)e−cN (v,σ)∆NW ) = E(ew(δ,σ,∆N)W )

so

F (N, v, θ) = sup
δ,σ
{φ(δ, σ) + e−ρdθ−1R[eδ+σ(1− δ + σ

D
)− eδ−σ(

δ − σ
D
− 1))

+ E(ew(σ,δ,∆N)W (N + ∆N, vη(v, σ), θ − 1))]

Therefore, Vτ (ξτ ) and the optimal solutions depend, in fact, only on Nτ ,Mτ , hτ , vη,τ , T − τ and,
specially, δτ , στ depends only on Nτ , vη,t, T − τ .

As to the monotony: since W is non-decreasing in N and neigther v nor (X,Y, e) depend on N ,
we are getting that, given the same strategy, the value of (6) is greater given a greater N . Finally,
as any strategy feasible given less N is feasible given any greater N , the monotony is proved.
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Now, let T =∞. We have

V (ξt) = sup
δτ ,στ ,Cτ , ful�lling C(τ),A(τ),M(τ),N (τ),τ≥t

E

[
lim
T→∞

T∑
τ=t

e−ρ(τ−t)Cτ |ξt

]

= sup
δτ ,στ ful�lling C(τ),A(τ),N(τ)

pτ∈[0,1],ϕ−1(pτ )≤(ehτ φ(δτ ,στ )+Mτ ),τ≥t

E

[
lim
T→∞

T∑
τ=t

e−ρ(τ−t)ϕ−1(pτ ))|ξt

]

= lim
T→∞

sup
δτ ,στ ful�lling C(τ),A(τ),N(τ)

pτ∈[0,1],ϕ−1(pτ )≤(ehτ φ(δτ ,στ )+Mτ ),T≥τ≥t

E

[
T∑
τ=t

e−ρ(τ−t)ϕ−1(pτ ))|ξt

]

= lim
T→∞

sup
δτ ,στ ,Cτ , ful�lling A(τ),M(τ),N (τ),T≥τ≥t

E

[
T∑
τ=t

e−ρ(τ−t)Cτ |ξt

]
= lim
T→∞

Ṽ (Mτ , Nτ , hτ , vη,θ, T − t)

= lim
T→∞

sup
δt,σt,Ct, ful�lling A(t),M(t),N (t)

[
Ct + e−ρE(Ṽ (Mτ , Nτ , hτ , vη,θ, T − (t+ 1))|ξτ )

]
= sup
δt,σt,Ct, ful�lling A(t),M(t),N (t)

[
Ct + e−ρE( lim

T→∞
Ṽ (Mτ , Nτ , hτ , vη,θ, T − (t+ 1))|ξτ )

]
= sup
δt,σt,Ct, ful�lling A(t),M(t),N (t)

[
Cτ + e−ρE(V (ξτ+1)|ξτ )

]
(7)

The third equality follows from Fatou-Lesbeque theorem (allowing to change the order of limit and
expectation) and variational analysis theory. Since ϕ−1(pτ ) is a monotone and di�erentiable func-

tion for all τ almost surely, the objective functions: fT = E(
∑T
τ=t ϕ

−1(pτ )|ξt) are monotone and
di�erentiable, too. Moreover, the feasible solutions of the problem form a compact set. Monotonic-
ity, di�erentiability and compactness imply the epi-convergence of fT to f∞ = E(

∑∞
τ=t ϕ

−1(pτ )|ξt).
Finally, having compact set of feasible solutions, the epi-convergence of objectives functions allows
for interchange of supremum and limit. See [1](Theorem 1.10, Theorem 2.11) or [3](Th. 7.33) for
more details.

It is clear from the third �=� of (7) that V (ξt) depends only on ht,Mt, Nt, vη,t, T − t and, as
limT f(T − t) never depends on t whatever f is, it is clear that in fact V (ξt,∞) does not depend
on t. The properties of a and b may be proved analogously to the case of �nite horizon, using the
equality of the �rst and last term in (7). The monotony of V follows from the fact that a limit of
monotonous functions is monotonous.

(ii) Follows from the previous.

(iii) The monotony in N follows from the monotony of W , the monotony in M from (5).

(iv) Follows from the facts that the function on the LHS of constraint (M̃) of problem (6) is
non-decreasing in x and that the constraint (Ñ ) does not depend on x.

6 The Price and Volume

As it was already written above, our goal is to determine the joint dynamics of the midpoint price
Pt and the the MM's inventory Nt. If we approximate

δ(n, v)
.
= d0 + d1n+ d2v,
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we get that, up to a constant, the price may be decomposed as follows

Pτ = πτ︸︷︷︸
fair price

+ ητ + d2vη,τ−1︸ ︷︷ ︸
uncertainty

+ d1Nτ︸ ︷︷ ︸
inventory

which is analogous to a well known decomposition of spread, widely discussed in market macrostruc-
ture. If we further linearize

σ(n, v) = s0 + s1n+ s2v, vη(v, σ) = w0 + w1σ + w2v

we get

vη,τ = w0 + w1στ−1 + w2vη,τ−1 = w0 + w1στ−1 −
w2

s2
(s0 + s1Nτ−1)

and, consequently,

δ(Nτ , vη,τ )
.
= d0 + d1Nτ + d2(w0 + w1στ−1 −

w2

s2
(s0 + s1Nτ−1))

= β0 + βσστ−1 + β∆N∆Nτ + βNNτ−1

If we futher linearly approximate cN (v, σ) ≡ cN and ce(v, σ) ≡ ce, we get

∆Pτ = ∆hτ + ∆δ(Nτ , vη,τ ) = cN (k−1∆Nτ − δ(Nτ , vη,τ )) + ce(et − ht−1) + ∆δ(Nτ , vη,τ )

.
= φ0 + φ∆σ∆στ−1 + φσστ−2 + φ∆N∆Nτ + φ∆N−1

∆Nτ−1 + φNNτ−2 + Eτ

where Eτ are i.i.d. The following shows results of estimation of the latter equation based on 51412
observations of 10-second snapshots data of Exxon Mobile on ISE narket.

Model 3: OLS, using observations 3�51412 (T = 51410)
Dependent variable: d_P

Coe�cient Std. Error t-ratio p-value

const 0,00101284 0,000413144 2,4515 0,0142
d_N −2,78402e�05 7,70284e�07 −36,1428 0,0000
d_N_1 1,03080e�06 7,69970e�07 1,3388 0,1807
N_2 −8,38851e�10 4,55825e�09 −0,1840 0,8540
d_Sigma_1 −0,0231703 0,00350266 −6,6151 0,0000
Sigma_2 −0,0171499 0,00373884 −4,5870 0,0000

Mean dependent var 0,000019 S.D. dependent var 0,045355
Sum squared resid 103,0372 S.E. of regression 0,044771
R2 0,025671 Adjusted R2 0,025576
F (5, 51404) 270,8713 P-value(F ) 6,6e�287
Log-likelihood 86744,62 Akaike criterion −173477,2
Schwarz criterion −173424,2 Hannan�Quinn −173460,6
ρ̂ −0,238393 Durbin�Watson 2,474708

7 Alternative models

Finally, let us discuss two alternative (sub) models and show that they are rejected in favour of our
model.
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7.1 Irrational liquidity takers

Assume, in the present Subsection, that the liquidity takers do not consider (their estimate of) the
fair price but they buy and sell the stocks randomly, i.e.

Xτ |Ξτ−1 ∼ CP(λ), Yτ |Ξτ−1 ∼ CP(λ).

This, however, means that Xτ , Yτ , hence ∆Nτ , are independent of all the past, namely of ∆Nτ−1.
This is, however, not true, as the correlation coe�tient of ∆Nτ and ∆Mτ−1, compoted from the
data above, is signi�cant on 0.0000 probability level.

7.2 Irrational market makers

Another possible violation of our model could be that the MM's do not (cannot) act rationally
but they �take prices as they come�. In particular, that once a market order arrives and causes a
movement of its corresponding quote, the MM sets the new quote so that its jump (w.r.t. its value
before the market order arrival) is proportional to the impact of the market order, which could be
mathematically expressed as

∆Mτ = β∆Nτ + ετ .

Hosever, even this model is convincingly rejected by adding ∆Mτ−1 into the regression and observing
that the probability level of the corresponding regressor is 0.0000.

8 Conclusion

A model of a rational behaviour of a risk averse partially informed market maker solving multistage
decision problem was proposed, implying an easily tractable and estimable stochastic model of high
frequency trade and quote data process, which was subsequently successfully tested by means of
data from US electronic markets.
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