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Abstract 

 

 In our paper, we focus on the credit risk quantification methodology. We 

demonstrate that the current regulatory standards for credit risk management 

are at least not perfect. Generalizing the well-known KMV model, standing behind 

Basel II, we build a model of a loan portfolio involving a dynamics of the com-

mon factor, influencing the borrowers’ assets, which we allow to be non-normal. 

We show how the parameters of our model may be estimated by means of past 

mortgage delinquency rates. We give statistical evidence that the non-normal 

model is much more suitable than the one which assumes the normal distribution 

of risk factors. We point out in what way the assumption that risk factors follow 

a normal distribution can be dangerous. Especially during volatile periods compa-

rable to the current crisis, the normal-distribution-based methodology can under-

estimate the impact of changes in tail losses caused by underlying risk factors. 

 

Keywords: credit risk, mortgage, delinquency rate, generalized hyperbolic dis-

tribution, normal distribution 
 
JEL Classification: G21 

 

 

 

Introduction 
 

 Minimum standards for credit risk quantification are often prescribed in de-

veloped countries with regulated banking. A system of financial regulation has 

been developed and is maintained by European supervisory institutions (Basel 
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Committee on Banking Supervision, Committee of European Banking Supervi-

sors – CEBS) with its standards formalized in the Second Basel Accord (Basel 

II, see BIS, 2006) which is implemented into European law by the Capital Re-

quirements Directive (CRD) (European Commission, 2006).  

 For credit risk, Basel II allows only two possible quantification methods – 

a Standardized Approach (STA) and an Internal Rating Based Approach (IRB) 

(for more details on these two methods see BIS, 2006). The main difference 

between STA and IRB is that while the STA methodology is based on prescribed 

parameters, under IRB banks are required to use internal measures for both the 

quality of the deal (measured by the counterparty’s probability of default – PD) 

and the quality of the deal’s collateral (measured by the deal’s loss given default 

– LGD).  

 The PD is the chance that the counterparty will default (or, in other words, 

fail to pay back its liabilities) in the upcoming 12 months. A common definition 

of default is that the debtor is delayed in its payments for more than 90 days 

(90+ days past due).  

 The LGD, on the other hand, is the percentage of the size of the defaulted 

debt which the bank will actually lose given that the default happens – in prac-

tice, the potential 100% loss decreases by expected recoveries from the default, 

i.e., the amount that the creditor expects to be able collect back from the debtor 

after the debtor defaults; these recoveries are mainly realized from collateral 

sales and bankruptcy proceedings. 

 It is possible to say that PD and LGD are two major and common measures of 

deal quality and basic parameters for credit risk measurement. The PD is usually 

obtained either from a scoring model, from a Merton-based distance-to-default 

model (e.g., Moody's KMV, mainly used for commercial loans; Merton, 1973 

and 1974) or as a long-term stable average of past 90+ delinquencies.
2
 The mod-

el, presented later in the paper, provides a connection between the scoring mod-

els and those based on past delinquencies. The LGD can generally be understood 

as a function of collateral value; however, we view LGD as fixed in the present 

paper for simplicity.  

 Once PDs and LGDs have been obtained, we are able to calculate the ex-

pected loss. The expected loss is the first moment of a loss distribution, i.e., 

a mean measure of the credit risk. The expected loss is a sufficient measure of 

credit risk on the long-term horizon. However, in the short-term (e.g., the one-    

-year horizon), it is insufficient to be protected only against expected losses be-

cause of the stochasticity of the losses. Thus a bank should look into the right tail 

                                                           
 2 Delinquency is often defined as a delay in installment payments, e.g., 90+ delinquencies can 

be interpreted as a delay in payments for more than 90 days. 
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or the distribution of the losses and decide which quantile (probability level) of 

the loss should be covered by holding a sufficient amount of capital.  

 Banks usually cover a quantile level suggested by a rating agency, which, 

however, has to be no less than the regulatory level 99.9%. This level may seem 

a bit excessive, as it can be interpreted as meaning that banks should cover a loss 

which occurs once in a thousand years. The reason for choosing such a conserva-

tive value is the usual absence of data for an exact estimation of the quantiles, 

resulting in a large error of the quantiles estimation.  

 The quantile is usually calculated by Value-at-risk type models, such as 

Saunders and Allen (2002), Andersson et al. (2001) or by the IRB approach 

which assumes that the credit losses are caused by two normally distributed risk 

factors: credit quality of the debtor and a common risk factor for all debtors, 

often interpreted as the macroeconomic environment (see Vasicek, 1987).  

 In this paper, we will introduce a new approach to quantifying credit risk 

which can be classed with the Value-at-risk models. Our approach is different 

from the IRB method in the choice of the loss distribution. In the general version 

of our model, we assume a generally non-normal distribution of the risk factors. 

Moreover, we model a dynamics of the common factor (modeling a dynamics of 

the factor being necessary especially with respect to the present financial crisis). 

In the simpler version of our model, which we later apply to the mortgage data, 

we keep the IRB assumption of the normal individual factor (credit quality of 

a debtor) while allowing a non-normal common factor; in its general form, how-

ever, our approach allows a non-normal individual factor, too, which could be 

useful to measure the credit risk of many types of banking products, e.g., con-

sumer loans, overdraft facilities, commercial loans with a lot of variance in col-

lateral, exposures to sovereign counterparties and governments, etc.  

 As we said previously, we apply our model to the US nationwide mortgage 

portfolio assuming the normal distribution of the individual factor and a generalized 

hyperbolic distribution of the common factor. We compare our results to the IRB 

approach, showing that the assumption of a normal common factor is inappropriate. 

 There are several other extensions of Vasicek’s model; however, they mainly 

focus on the randomness of LGD. The simplest (and the most natural) enhance-

ment of the Vasicek model incorporating LGD is the one proposed in Frye 

(2000), which assumes that LGD is a second risk indicator driving credit losses. 

An extension of the Frye model can be found in Pykhtin (2003), who supposes 

that the risk factor driving LGD depends on one systemic and two idiosyncratic 

factors. Another extension of the Vasicek model can be found in Witzany (2011) 

where LGD is assumed to be driven by a specific factor different from the one 

driving defaults and by two systemic factors, one common to the defaults and the 
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other specific to LGD. None of these models allows a non-normal distribution 

for the PD systemic factor. 

 The paper is organized as follows. After the introduction we describe the 

usual credit risk quantification methods and Basel II – embedded requirements in 

detail. Then we derive our method of measuring credit risk, based on the class of 

generalized hyperbolic distributions and Value-at-risk methodology. In the last 

part, we focus on the data description and verification of our approach's ability to 

capture the credit risk more accurately than the Basel II IRB. Further, we 

demonstrate that the class of distributions we use better fits the empirical data 

than several distributions that are, alongside the IRB’s standard normal distribu-

tion, commonly used for credit risk quantification. At the end we summarize our 

findings and offer recommendations for further research. 
 

 

1.  Credit Risk Measurement Methodology 
 

 The Basel II document is organized into three separate pillars. The first pillar 

requires banks to quantify credit risk, operational risk, and market risk by 

a method approved by the supervisor.
3
 For credit risk there are two possible 

quantification methods: the method STA and the method IRB.
4
 Both methods are 

based on quantification of risk-weighted assets for each individual exposure.  

 The STA method uses measures defined by the supervisor, i.e., each deal is 

assigned a risk-weight based on its characteristics. Risk-weighted assets are ob-

tained by multiplying the assigned risk-weight by the amount that is exposed to 

default. The IRB approach, on the other hand, is more advanced than STA. It is 

based on a Vasicek-Merton credit risk model (Vasicek, 1987) and calculation of its 

risk-weighted assets is more complicated than in the STA case. First of all, PD 

and LGD are used to define the riskiness of each deal. These measures are then 

used to calculate risk-weighted assets based on the assumption of normal distri-

bution for the asset value. In both cases, the largest permitted loss that could 

occur at the 99.9% level of probability
5
 is stated as 8% of the risk-weighted as-

sets (for more details on calculations of risk-weighted assets see BIS, 2006). The 

loss itself is defined as the amount that is really lost when a default occurs. The 

default is defined as a delay in payments for more than 90 days (90+ delinquency).  

                                                           
 3 A supervisor is a regulator of a certain country’s financial market; for the Czech Republic, 

the supervisor is the Czech National Bank. 
 
 4 As defined in the provision of the Czech National Bank No. 123/2007 Sb. 
 
 5 The 99.9% level of probability is defined by the Basel II document and is assumed to be 

a far-enough tail for calculating losses that do not occur with a high probability. Note that a 99.9% 

loss at the one-year horizon means that the loss occurs once in 1 000 years on average. Because the 

human race lacks such a long dataset, 99.9% was chosen based on rating agencies’ assessments.  
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1.1.  Expected and Unexpected Loss for an Individual Exposure 
 

 The expected and unexpected losses are the two basic measures of credit risk. 

The expected loss is the mean loss, i.e., the expectation of the loss distribution, 

whereas the unexpected loss is the random difference between the expected and 

the actual loss. First, let us focus on expected and unexpected loss quantification 

for a single exposure, e.g., one particular loan based on PD and LGD. As there is 

no PD or LGD feature in the STA method, and because regulatory institutions 

are interested only in unexpected losses, under STA it is impossible to calculate 

the expected loss, and even the unexpected loss calculation is highly simplified 

and based on benchmarks only. On the other hand, the advantage of this method 

is its simplicity. The IRB approach uses PDs and LGDs and thus is more accu-

rate than the STA but relatively difficult to maintain. 

 A bank using the IRB method has to develop its own scoring and rating mod-

els to estimate PDs and LGDs. These parameters are then used to define each 

separate exposure.
6
 The average loss that could occur in the following 12 months 

is calculated as follows: 
 

 . ( ) . EL PD E LGD EAD                                         (1) 
 

where  

 EAD  – the exposure-at-default,
7
  

 EL  – the abbreviation for Expected Loss.  
 

 The EAD is usually regarded as a random variable as it is a function of 

a Credit Conversion Factor – CCF;
8
 however, for mortgage portfolios, CCF is 

prescribed by the regulator as a fixed value. For our calculations we assume that 

if a default is observed, it happens on a 100% drawn credit line, so we don’t treat 

EAD as a variable but as a constant.  

 EL can be regarded as an “ordinary” loss that would occur each year and thus 

is something that banks incorporate into their loan-pricing models so it has to be 

covered by ordinary banking fees and/or interest payments. However, banks also 

have to protect themselves against the randomness of the loss, which they do by 

holding capital to cover the maximum loss that could occur at the regulatory 

                                                           
 6 Exposure is the usual expression for the balance on a separate account that is currently ex-

posed to default. We will adopt this expression and use it in the rest of our paper. 
 
 7 Exposure-at-default is a Basel II expression for the amount that is (at the moment of the 

calculation) exposed to default. 
 
 8 CCF is a measure of what amount of the loan (or a credit line) amount is on average with-

drawn in the case of a default. It is measured in percentage of the overall financed amount and is 

important mainly for off-balance sheet items (e.g., credit lines, credit commitments, undrawn part 

of the loan, etc.). 
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probability level at minimum. To capture the variability in credit losses and to 

calculate the needed quantile of the loss distribution, we clearly need to know the 

shape of the loss distribution.  

 On the deal level, the distribution of the loss can be easily determined: De-

fault is a binary variable occurring with a probability equal to PD. If the LGD 

is positive, the loss occurs with the same probability as the default, and the 

distribution of the loss can readily be determined from the distribution of the 

LGD.
9
  

 

1.2.  Expected and Unexpected Loss for a Portfolio 
 

 On the portfolio level (constructed from a certain number of individual 

deals), the expected loss can be calculated easily: since the loss of the portfolio 

as a whole is the sum of the losses of individual deals, its expected loss equals, 

by the additive property of expectations, to the sum of expressions (1) for all the 

individual deals. If, in addition, the PDs of the individual deals are identical and 

the LGDs are equally distributed then the expected loss comes out as PD times 

the sum of the individual EAD’s. However, the calculation of the unexpected 

loss on the portfolio level is not so straightforward for the reason that deals may 

be correlated with each other within a complicated correlation structure that is 

usually unknown.  

 There are two ways of constructing a model for calculating unexpected loss. 

If the correlation structure among the individual deals is known, we can calcu-

late the variance of the unexpected loss from the variances of individual deals 

and the correlation matrix. This approach is often referred to as a bottom-up 

one. Often, however, the correlation matrix of the individual deals is not 

known and thus a different approach has to be chosen to determine the unex-

pected loss of the loan portfolio. The second approach is widely known as 

a top-down approach and the main idea is to estimate the loss distribution 

based on historical data or assume a distribution structure and determine the 

standard deviation or directly find the difference between the chosen quantile 

and the mean value.
10

 

 In the present paper, we assume a rather simple dependence structure of the 

individual deals, similar to the one from Vasicek (2002): in particular, we 

assume that the default happens if a factor variable of a deal, summing an 

individual and a common part, falls below a certain threshold. 

                                                           
 9 Please note that the LGD variable may take on negative values in some cases. This is, for 

example, a situation when a loan’s collateral covers the loan value and a bank collects some addi-

tional cash on penalty fees and interest.  
 
 10 Remember that the loss mean value equals the expected loss of a deal. 
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2.  Our Approach 
 
2.1.  The Distribution of Loan Portfolio Value 
 

 The IRB to modeling the loan portfolio value is based on the famous paper by 

Vasicek (2002) assuming that the value ,1iA or the -th's borrower's assets at time 

one can be represented as 
 

,1 ,0log logi i iA A X                                       (2) 

where  

 ,0iA   – the borrower's wealth at time zero, 

  and  – constants, 

 iX   – a (unit normal) random variable, which may be further decomposed as 
 

i iX Y Z  

where 

   – a factor common to all the borrowers,  

   – a private factor, specific to each borrower.  
 

 It is assumed that, at time t – 1, all the borrowers, having the same initial 

wealth ,0iA  = 0A , take mortgages of the same size. Assuming the number of the 

borrowers to be very large and applying the Law of Large Number to the 

conditional distribution of the wealth given the common factor , the famous 

Vasicek distribution of the percentage loss of the portfolio holder (i.e., the 

percentage of those borrowers whose wealth ,1iA at time  is not sufficient to 

repay that mortgage) is obtained (see Vasicek, 2002 for details). 

 
2.1.1.  The Generalization 
 

 We generalize the model in two ways: we assume a dynamics of the common 

factor  over discrete times t = 1, 2… and we allow non-normal distributions of 

both the common and private factors. For each time, t  we assume, similarly 

to the original model, that 
 

, , 1 ,log logi t i t t i tA A Y U                               (3) 

where  

   – the wealth of the -th borrower at time,  

 t   – a random variable specific to the borrower,  

 tY   – the common factor following a general (adapted) stochastic process with 

a deterministic initial value 0Y .  
 

 For simplicity, we assume that the duration of the debt is exactly one period 

and that different borrowers take mortgages in each period, the initial wealth of 
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each borrower equating to the (cummulative) common factor plus a zero mean 

borrower-specific disturbance, i.e., 
 

1
, 1 1 ,log t

i t j j i tA Y V  
 
for all i n where ,i tV  is a centered random variable specific to the borower – 

such an assumption makes sense, for instance, if tY  stands for log-returns of 

a stock index which and the borrower owns a portfolio with the same com-

position as the index plus some additional assets.  

 Suppose ,i tU  and ,i tV  to have the same distribution with zero mean and with 

a strictly increasing cummulative distribution function for each i n , ,t  

where n is the number of borrowers and that all , , ,( ,  )i t i t i n tU V  are mutually 

independent and independent of ( )t tY . Note that we do not require increments 

of tY  to be centered (which may be regarded as compensation for the term  

present in (1) but missing in (2)). 
 
2.1.2.  Percentage Loss (Delinquency Rate) in the Generalized Model 
 

 Denote )  (t tY Y  the history of the common factor up to time t Analo-

gously to the original model, the conditional probability of the bankruptcy of the 

-th borrower at time  given   tY  equals to  
 

, , , 1 1| | Ψt t
i t i t t i t j j t j jA B Y Z logB Y Y b Y  

 
where 1,1 1,1,  Z U V  – the cummulative distribution function of Z, ,i tB  are 

the borrower's debts (installments) which we assume to be the same for all the 

borrowers and all times, i.e., ,log ,  ,  ,i tB b t i n  for some b.  
 
 The primary topic of our interest is the percentage loss (delinquency rate) tL  

of the entire portfolio of the loans at time t. After taking the same steps as 

Vasicek (1991) (with conditional non-normal c.d.f.s instead of the unconditional 

normal ones), we get, for a very large portfolio, that 
 

1Ψ , t
t j jL b Y t  

further implying that  

 
1 1

1Ψ Ψ ( )t t tY L L  (4) 

and 

  1
1Ψ Ψt t tL L Y  (5) 

 

the latter formula roughly determines the dynamics of the process of the losses 

(delinquency rates), and the former one allows us to do statistical inference on 
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the common factor based on the time series of the percentage losses (delinquen-

cy rates). To see that the Merton-Vasicek model is a special version of the 

generalized model, see the Appendix.  

 In the particular version of our general model we work with later, we assume 

both  and  to be normally distributed and the common factor to be an 

ARCH process  

1

2,  
tt t t tY c Y  

where  

 1 2,   – i.i.d. (possibly non-normal) variables,  

 c  – a constant.  
 
 Since the equation (3) may be rescaled by the inverse standard deviation of Z 

without loss of generality, we may assume that Ψ is the standard normal distri-

bution function. As was already mentioned, we assume the distribution of 1  to 

be generalized hyperbolic and we use the ML estimation to get its parameters – 

see the Appendix for details. In addition to estimation of the parameters, we 

compare our choice of the distribution to several other distribution classes. 

 
2.2.  The Class of Generalized Hyperbolic Distributions 
 

 Our model is based on the class of generalized hyperbolic distributions, first 

introduced in Barndorff-Nielsen, Blæsild and Jensen (1985). The advantage of 

this distribution class is that it is general enough to describe fat-tailed data. It has 

been shown (Eberlein, 2001; Eberlein and Prause, 2002; Eberlein and von 

Hammerstein, 2004) that the class of generalized hyperbolic distributions is bet-

ter able to capture the variability in financial data than a normal distribution, 

which is used by the IRB approach. Generalized hyperbolic distributions have 

been used in an asset (and option) pricing formula (Rejman, Weron and Weron, 

1997; Eberlein, 2001; Chorro, Guegan and Ielpo, 2008), for the Value-at-risk 

calculation of market risk (Eberlein and Prause, 2002; Eberlein and Keller, 1995; 

Hu and Kercheval, 2008) and in the Merton-based distance-to-default model to 

estimate PDs in the banking portfolio of commercial customers (e.g., Oezkan, 

2002). We will show that the class of generalized hyperbolic distributions can be 

used for an approximation of a loss distribution for the retail banking portfolio 

with a focus on the mortgage book.  

 The class of generalized hyperbolic distributions is a special, quite young 

class of distributions. It is defined by the following Lebesgue density: 
 

0,5

2 2 2 22
0,5

; , , , ,

, , , ( ( ) ) ( (( ( ) ))exp(

gh x

a x K x x

(6) 
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where 
2 2 0,5

0,5 2 2

( )
, , ,

2 . ( )K
 

 

and Kλ is a Bessel function of the third kind (or a modified Bessel function – for 

more details on Bessel functions see Abramowitz, 1968). The GH distribution 

class is a mean-variance mixture of the normal and generalized inverse Gaussian 

(GIG) distributions. Both the normal and GIG distributions are thus subclasses 

of generalized hyperbolic distributions. Here µ and δ are scale and location pa-

rameters, respectively. Parameter β is the skewness parameter, and the trans-

formed parameter  determines the kurtosis. The last parameter, λ, deter-

mines the distribution subclass. There are several alternative parameterizations 

described in the literature using transformed parameters to obtain scale- and 

location-invariant parameters. This is a useful feature that will help us with the 

allocation of economic capital to individual exposures. For the moment-genera-

ting function and for more details on the class of generalized hyperbolic distribu-

tions, see the Appendix. 

 Because the class of generalized hyperbolic distributions has historically been 

used for different purposes in economics as well as in physics, one can find sev-

eral alternative parameterizations in the literature. In order to avoid any confu-

sion, we list the most common parameterizations. These are: 
 

2 2  ,   

 
0,5  (1 ) ,     
 

,   
 

 The main reason for using alternative parameterizations is to obtain a location- 

and scale-invariant shape of the moment-generating function (see the Appendix). 

 

 

3.  Data and Results 
 

3.1.  Data Description 
 

 To verify whether or not our model based on the class of generalized hyper-

bolic distributions is able to better describe the behavior of mortgage losses, we 

used data from the US mortgage market, namely the a dataset consisting of quar-

terly observations of 90+ delinquency rates on mortgage loans collected by the 

US Department of Housing and Urban Development and the Mortgage Bankers 
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Association.
11

 This data series is the best substitute for losses that banks faced 

from their mortgage portfolios, relaxing the LGD variability (i.e., assuming that 

LGD = 100%). The dataset begins with the first quarter of 1979 and ends with 

the third quarter of 2009. The development of the US mortgage 90+ delinquency 

rate is illustrated in Figure 1. We observe an unprecedentedly huge increase in 

the 90+ delinquency rate beginning with the second quarter of 2007.  

 

F i g u r e  1  

Development of US 90+ Delinquency Rate 

 
Source: US Department of Housing and Urban Development. 

 

F i g u r e  2  

Comparison of the Development of the Common Factor and Lagged S&P 500 Returns 
 

 
Source: Own calculations (Common factor), finance.yahoo.com (S&P 500). 

 

 Starting our analysis, we have computed the values of the common factor Y 

using the formula (4) with the standard normal Ψ . Quite interestingly, its evolu-

tion is indeed similar to the one of the US stock market – see Figure 2, displaying 

                                                           
 11 The Mortgage Bankers Association is the largest US society representing the US real estate 

market, with over 2 400 members (banks, mortgage brokers, mortgage companies, life insurance 

companies, etc.). 
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the common factor (left axis), adjusted for inflation, against the S&P 500 stock 

index. The correlation analysis indicates that the common factor lags behind 

the index by two quarters (the value of the Pearson correlation coefficient is 

about 30%).  

 

3.2.  Results 
 

 We considered several distributions for describing the distribution of 1  

(hence of 1( )t tL  after a transform), namely loglogistic, logistic, lognormal, 

Pearson, inverse Gaussian, normal, lognormal, gamma, extreme value, beta and 

the class of generalized hyperbolic distributions.  

 In the set of the distributions compared, we were particularly interested in the 

goodness-of-fit of the class of generalized hyperbolic distributions and their 

comparison to other distributions. In particular, after estimating c whose estimate 

is independent of the distribution of 1 , we have, for each compared distribution, 

fitted its parameters using the maximum likelihood (see the Appendix for the 

proof that this procedure is correct) and computed the chi-square goodness-of-fit 

statistics: 
 

2 2

1

( ) /
k

i i i

i

O E E                               (8) 

 

where  

 Oi  – the observed frequency in the i-th bin,  

 Ei  – the frequency implied by the tested distribution,  

 k  – the number of bins.  
 

 It is well known that the test statistic asymptotically follows the chi-square 

distribution with (k – c) degrees of freedom, where c is the number of estimated 

parameters. In general, only the generalized hyperbolic distribution from all con-

sidered distributions was not rejected to describe the dataset on a 99% level (the 

statistic value was 22.59 with a p-value 0.0202).  

 Figure 1 graphically shows the difference between the estimated generalized 

hyperbolic and normal distributions. From Figure 1 we can see that the GHD is 

better able to describe both the skewness and the kurtosis of the dataset. 

 The main result of our estimation is that the class of generalized hyperbolic 

distributions is the only one suitable to describe the behavior of delinquencies 

among a wide variety of alternatives. The main reason for this is, in our opinion, 

the fact that GHD are fat-tailed, which suggests a need for a larger stock of capi-

tal to cover a certain percentile delinquency. We demonstrate this in the next 

Section. 



1017 

F i g u r e  3  

Compared Histograms: GHD vs. Normal vs. Dataset 
 

 
Source: Own calculations. 

 

3.3.  Economic Capital at the One-year Horizon: Implications for the Crisis 
 

 The IRB formula, defined in Pillar 1 of the Basel II Accord, assumes that 

losses follow a distribution that is a mix of two standard normal distributions 

describing the development of risk factors and their correlation. The mixed dis-

tribution is heavy-tailed and the factor determining how heavy the tails are is the 

correlation between the two risk factors. However, because the common factor is 

considered to have the standard normal distribution, the final loss distribution’s tails 

may not be heavy enough. If a heavy-tailed distribution is considered for the com-

mon factor, the final loss distribution will probably have much heavier tails. Because 

the regulatory capital requirement is calculated at the 99.9% probability level, this 

may lead to serious errors in the assessment of capital needs. To show the differ-

ence between the regulatory capital requirement (calculated by the IRB method) 

and the economic capital requirement calculated by our model, we performed the 

economic capital requirement calculations at the 99.9% probability level as well. 

 When constructing loss forecasts, we repeatedly used (5) to get  
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Ψ( )Ψ ( )t t t

i

L L Y  

 

(note that our data were quarterly and that a one-year forecast is required). If we 

wanted to describe the distribution of the forecasted values exactly, we would 

face complicated integral expressions. We therefore decided to use simulations to 

obtain annual figures. We were particularly interested in the capital requirement 

based on average loss and the capital requirement based on last experienced loss. 
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The average loss was calculated as the mean value from the original dataset of 90+ 

delinquencies and served as a through-the-cycle PD estimate. This value is impor-

tant for the regulatory-based model (Basel II), as a through-the-cycle PD should be 

used there. The last experienced loss is, on the other hand, important for our model 

due to the dynamical nature of the model. The Table 1 summarizes our findings. 

To illustrate how our dynamic model would predict if the normal distribution of 

the common factor was used, we added this version of the dynamic model as well. 

 
T a b l e  1  

Comparison of Basel II, Dynamic Normal and Dynamic GHD Models Tail  

Delinquency Rates 

Model Basel II IRB  

(through-the-cycle PD) 

Our dynamic model  

with normal  

distribution 

Our dynamic model  

with GHD 

Distribution used for  
the individual factor 

Standard Normal Standard Normal Standard Normal 

Distribution used for  

the common factor 

Standard Normal Normal Generalized Hyperbolic 

99.9% loss 10.2851% 9.5302% 12.5040% 

Source: Own calculations. 

 

 The first column in Table 1 relates to the IRB Basel II model, i.e., a model 

with a standard normal distribution describing the behavior of both risk factors 

and the correlation between these factors set to the usual value of 15%. The PD 

used in the IRB formula (see Vasicek, 2002 for details) was obtained from the 

original dataset as an average default rate through the whole time period. The 

second column contains results from the dynamic model with a normal individu-

al common factor. The last column is related to our dynamic model with the 

GHD of the common factor (for estimated parameter values, see the Appendix). 

The results in Table 1 show that the dynamic model, based on the last experi-

enced loss, predicts higher quantile losses in the case of GHD and slightly lower 

in the case of a normal distribution, compared to the IRB formula. Thus, heavy 

tails of the GHD distribution evoke higher quantile losses than the current regu-

latory IRB formula, which ultimately leads to a higher capital requirement.  
 

 

Conclusion 
 

 We have introduced a new model for quantification of credit losses. The mo-

del is a generalization of the current framework developed by Vasicek and our 

main contribution lies in two main attributes: first, our model brings dynamics 

into the original framework and second, our model is generalized in the sense that 

any probability distribution can be used to describe the behavior of risk factors.  
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 To illustrate that our model is better able to describe past risk factor behavior 

and thus better predicts the future need for capital, we compared the performance 

of several distributions common in credit risk quantification. In this sense, we 

were particularly interested in the performance of the class of Generalized Hy-

perbolic distributions, which is often used to describe heavy-tail financial data. 

For this purpose, we used a quarterly dataset of mortgage delinquency rates from 

the US financial market. Our suggested class of Generalized Hyperbolic distribu-

tions showed much better performance. 

 We have compared our dynamic model with the current risk measurement 

system required by the regulations. Our results show that the mix of standard 

normal distributions used in the Basel II regulatory framework underestimates 

the potential unexpected loss on the one-year horizon. Therefore, introducing the 

dynamics with a heavy-tailed distribution describing the common factor may 

lead to a better capturing of tail losses.  

 Despite the good results of our model, there are still several questions that 

need to be answered before our model (with the class of generalized hyperbolic 

distributions as a noise in the process of the common factor) can be used for 

credit risk assessment. First question points at the use of the 99.9
th
 quantile. As 

this was chosen by the Basel II framework based on benchmarks from rating 

agencies, it is not known whether this particular quantile should be required in 

our dynamic generalized model. Second, more empirical studies have to be per-

formed to prove the goodness-of-fit of the class of generalized hyperbolic distri-

butions. The final suggestion is to add an LGD feature to the calculation to ob-

tain a general credit risk model. 

 

 

A p p e n d i x 
 

 The moment-generating function for the class of generalized hyperbolic dis-

tributions is of the form: 
 

2 22 2
/2

2 2 22

( ( ) )
  ( )

( )

u K u
M u e

Ku
                     (1) 

 

where u denotes the moment. For the first moment, the formula is simplified to 

(for details see, e.g., Eberlein, 2001): 
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 The second moment is calculated in a (technically) more difficult way: 
 

2 2
1

2

2 2 2 2

2
2 2 2 22

2 1

2 2 2 2 2 2
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K
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K

K K

K K

      (3) 

 

 By substituting from equations (2) and (3) into equation (1) we obtain a much 

simpler expression for the first and second moments of the class of generalized 

hyperbolic distributions. The following equations express the first and the sec-

ond moment of the class of generalized hyperbolic distributions in their scale- 

and location-invariant shape: 
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2 2
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K
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On MLE Estimation of the Parameters 
 

 To estimate the parameters of the model, i.e., the constant c and the vector of 

parameters  of (the distribution of) 1 , we apply the (quasi) ML estimate to the 

sample 2 3,  Y Y  computed from (4), using the fact that the conditional density 

of tY  given 1tY  is  
 

;  . ( ) ;  t tf y c c y  
1

2 2
1( )t tc Y c  

 

where ;Θz is the p.d.f. of the distribution 1  dependent on parameters . The 

(quasi) log-likelihood function is then 
 

2 2

.Θ log( ( )) log( ;  Θ
T T

t t i

i i

L c c c Y  

 

 Therefore, if the distribution of 1  has a free scaling parameter which is part 

of , we may find its maximum in two steps: first, estimate the value of  by 

maximizing the left-hand sum, and, second, find the parameter  by a maximiza-

tion of the right hand sum which is, incidentaly, the likelihood function of the 



1021 

distribution of 1 so the standard ML procedure may be used to maximize it (the 

existence of the scaling parameter guarantees independence of the right sum’s 

minimum on ). 
 

The Merton-Vasicek Model as a Special Case of Our Generalized Framework 
 

 In the current section, we show how our generalized model relates to the 

original one. Let us start with the computation of the loss's distribution. Reall 

that, in our model, the probability of default equals  
 

1
, , 1 1 1 1( | )  ( | ) ( )t t

t i t i t t t j j t t j jp A B Y b Y Y b Y  
 

where 1,:  t t tY Z , t  is its conditional c.d.f. given 1tY  and t  is the 

conditional c.d.f. of tY . Further, by section III.2, 
 

1
1 1 1

1 1 1
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t
t t j j t
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recall that Ψ  the c.d.f. of 1,tZ . Further, denoting , ,:  i t t i tX Y Z , we get  
 

, , 1 , 1 1cov( , ) var( , ) var( )i t j t t i t t t tX X Y X Y Y Y  

and, consequently,  
 

1

, , 1

1

var( )
( , )

var( ) var( )

t t

i t j t t

t t t

Y Y
corr X X Y

Y Y Z
 

 

 Now, if we assume, with Vasicek (2002), that  
 

1 1,1: (0,  ),   : (0,  1 )Y N Z N  
 

for a certain  then clearly 1 : (0,  1)N   implying  
 

1 1
1

1

1 1
1

( ) 1 ( )
( ) 1
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N p N
L N

N N p
N

 

and  

,1 ,1( ,  )i jcorr X X  
 

i.e., the formulas of Vasicek (2002). 
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Estimated parameters of the GHD distribution: 

lambda alpha mu sigma gamma 

0.0995296201 0.5711172510 –0.0005942671 0.0234327245 0.0081063782 

log-likelihood: 

292.9479 

AIC 

–575.8958 

Parameter variance covariance matrix 

 lambda alpha mu sigma gamma 

lambda   1.3666785019 –0.3367366178 –6.805791e–04 –1.974175e-02 6.803657e-04 
alpha –0.3367366178   0.3816490666 –5.602050e–04 –2.925449e-02 4.998918e-04 
mu –0.0006805791 –0.0005602050   9.634706e–06 1.405187e-04 –9.641320e-06 
sigma –0.0197417490 –0.0292544924   1.405187e–04 1.285614e-02 –9.736328e-05 
gamma   0.0006803657   0.0004998918 –9.641320e–06 –9.736328e-05 1.481876e-05 

Source: Own calculations. 
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