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Abstract Any field of social sciences is based on uncertain knowledge, uncertain
information and uncertain data. The economics is not an exception. This is why
probability theory and probabilistic modeling play an important role in economet-
rics. In practical applications one has to cope with the fact that even relatively small
models have to take into account rather hundreds than tens of factors. This is why the
methods for multidimensional probability distribution representation, like Bayesian
networks, have become so popular in this field. The goal of this paper is to promote
an alternative approach, so called compositional models.

1 Introduction

There are more and more fields of human activities which are giving rise to
databases of enormous size. In some of them, the research data bases are a side
product of other business activities, like, for example, in banking where even small
banks store hundreds or rather thousands of records describing their clients’ activ-
ities every day. As another example we can consider the research in the field of
customer relationship management, which is based on the analysis of records de-
scribing the customer spending. On the other hand, creating large data bases has
become a business of its own, as the different media research companies attest to.
These companies collect data on all possible marketing activities, like data from
TV-meters, or data monitoring advertising investments, such as data on advertising
in journals and on the Internet. An existence of such institutions proves the fact that
data have become a business product and that their analysis and processing is an
important part of business life.
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So, it is not surprising that there is abundant literature on application techniques
such as Bayesian networks [3, 14], which is perhaps the most popular tool to de-
scribe and process multidimensional probability distributions. Here we are expected
to present some examples of research papers describing typical applications of
Bayesian networks, but we do not dare to do it; in a few seconds Google has found
more than two million incidences of ‘application of Bayesian network to . . . ’. In
this paper we do not intend to present the two-millionth-first paper on the Bayesian
networks. On the contrary, we want to present a survey paper (summarizing some
of the results published in [5, 9, 8]) on an alternative approach to multidimensional
probability distribution representation and processing, an approach based on the so-
called operator of composition.

In contrast to Bayesian networks, an advantage of the models described in the
current paper, which we call compositional models, is that we can make do with
probability theory. Though they are as powerful as Bayesian networks (they can
model the same class of distributions), they do not use graphs to represent the dis-
tribution structure. For other advantages of compositional models see Conclusions.

2 Notation and Basic Concepts

We consider variables u ∈ N, each having a finite (non-empty) set of values that
will be denoted by Xu. The set of all combinations of the considered values will
be denoted XN =×u∈NXu. Analogously, for a subset of variables K ⊂ N, XK =
×u∈KXu.

Distributions of the considered variables will be denoted by Greek letters κ,λ , . . .
with possible indices; thus for K ⊆N, we can consider a distribution κ(K), which is
a |K|-dimensional distribution and κ(x) denotes the value of probability distribution
κ for point x ∈ XK .

For a probability distribution κ(K) and J ⊂ K, we will often consider a marginal
distribution κ↓J of κ , which can be computed for all x ∈ XJ by

κ
↓J(x) = ∑

y∈XK :y↓J=x

κ(y),

where y↓J denotes the projection of y ∈ XK into XJ . Note that we do not exclude
situations when J = /0. By definition, we get κ↓ /0 = 1.

Having two distributions π(K) and κ(K), we say that κ dominates π (in symbol
π � κ) if for all x ∈ XK , for which κ(x) = 0 also π(x) = 0. As a measure of simi-
larity of these two distributions we will consider their Kullback-Leibler divergence
[13] (or crossentropy) defined1

Div(π;κ) = ∑
x∈XK

π(x) log
π(x)
κ(x)

,

which is known to be zero if and only if π = κ .

1 In this paper we take 0.0
0 = 0 by definition.



Brief Introduction to Probabilistic Compositional Models 3

The most important notion of this paper is the operator of composition, which
realizes an operation in a way inverse to marginalization. For a probability distri-
bution κ(K) and J ⊂ K, the respective marginal distribution κ↓J is unique. For a
distribution π(J) there are (infinitely) many distributions ν(K) such that ν↓J = π .
All these distributions ν are extensions of π for variables K. But if we want to find
that ν(K), which is as similar as possible to a given distribution µ(K), we can take
the distribution

ν = arg min
λ (K):λ ↓J=π

Div(λ ; µ),

which is unique if the divergence is defined. In this case we say that ν is a projection
of µ into the set (space) of all the extensions of π for variables K.

The operator of composition is designed in the way that the projection of µ into
the set of all the extension of π is got as a composition of π and µ - see Property 3
of the following Proposition.

Definition 1. For two arbitrary distributions κ(K) and λ (L), for which κ↓K∩L �
λ ↓K∩L, their composition is, for each x ∈ XL∪K , given by the following formula

(κ .λ )(x) =
κ(x↓K)λ (x↓L)

λ ↓K∩L(x↓K∩L)
.

In case κ↓K∩L 6� λ ↓K∩L, the composition remains undefined.

Let us summarize the most important properties of the composition operator that
were proved in [5, 9]

Proposition 1. Suppose κ(K) and λ (L) are probability distributions for which
λ ↓K∩L� κ↓K∩L. Then the following statements hold:

1. Domain: κ .λ is a distribution for K∪L.
2. Composition preserves first marginal: (κ .λ )↓K = κ .
3. Projection: κ .λ = arg min

ν(K∪L):ν↓K=κ

Div(ν↓L;λ ).

4. Non-commutativity: In general, κ .λ 6= λ .κ .
5. Commutativity under consistency: If κ↓K∩L = λ ↓K∩L, then κ .λ = λ .κ .
6. Non-associativity: Suppose µ(M) is a probability distribution, then, in general,

(κ .λ ).µ 6= κ . (λ .µ).
7. Associativity under a special condition: Suppose µ(M) is a probability distribu-

tion, and suppose L⊃ (K∩M). Then, (κ .λ ).µ = κ . (λ .µ), if the right hand
side formula is defined.

8. Stepwise composition: Suppose M is such that (K∩L)⊆M⊆ L. Then (κ .λ ↓M).
λ = κ .λ .

9. Simple marginalization: Suppose M is such that (K ∩ L) ⊆ M ⊆ K ∪ L. Then
(κ .λ )↓M = κ↓K∩M .λ ↓K∩M .

10. Maximum entropy extension: If κ↓K∩L = λ ↓K∩L, then κ .λ = arg max
ν∈Π(κ,λ )

H(ν),

where Π(κ,λ ) is the set of all common extensions of κ and λ , and H(ν) is a
Shannon entropy of ν .
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3 Compositional Models

To avoid some technical problems and the necessity of repeating some assumptions
to excess, let us make three conventions.

In this and the next section we will consider a system of n distributions κ1(K1),
κ2(K2), . . . ,κn(Kn). Therefore, whenever we speak about a distribution κk, if not
explicitly specified otherwise, the distribution κk will always be assumed to be a
distribution of variables Kk. Thus, for example, κ2 . κ1 . κ4, if it is defined, will
determine the distribution of variables K1∪K2∪K4.

Our second convention pertains to the fact that the operator of composition is
neither commutative nor associative. To avoid having to write too many parentheses
in the formulas, in the rest of the paper we will apply the operators from left to right.
Thus

κ1 .κ2 .κ3 . . . . .κn = (. . .((κ1 .κ2).κ3). . . . .κn),

and the parentheses will be used only when we want to change this default ordering.
Therefore, to construct a multidimensional distribution it is sufficient to determine
a sequence – we call it a generating sequence – of oligodimensional distributions.

The third convention is of a rather technical nature. Since in the remaining part of
the paper we are interested in a construction of multidimensional models, it is quite
natural that we will always assume that all the models (compositions) we speak
about are defined.

3.1 Perfect Sequences

Definition 2. A generating sequence of probability distributions κ1, κ2, . . . ,κn is
called perfect if all the distributions from this sequence are marginals of the distri-
bution (κ1 .κ2 . . . . .κn), i.e., if for all i = 1,2, . . . ,n

(κ1 .κ2 . . . . .κn)
↓Ki = κi.

Notice that when defining a perfect sequence, let alone a generating sequence,
we have not imposed any conditions on sets of variables for which the distributions
were defined. For example, considering a generating sequence where one distribu-
tion is defined for a subset of variables of another distribution (i.e., K j ⊂ Kk) is fully
sensible and may provide some information about the resulting multidimensional
distribution. If, e.g., κ(u),λ (v),µ(u,v,w) is a perfect sequence, it is quite obvious
that

κ(u).λ (v).µ(u,v,w) = µ(u,v,w)

(because all the elements of a perfect sequence are marginals of the resulting distri-
bution and therefore µ must be marginal to κ .λ . µ). Nevertheless, it can happen
that for some reason or another, it may be more advantageous to work with the
model defined by the perfect sequence than just with the distribution µ . From this
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model one can immediately see that variables u and v are independent, which, not
knowing the numbers defining the distribution, one cannot say about distribution µ .

Let us present two important properties on perfect sequences (Theorem 10.14
and Theorem 10.15 in [9]).

Proposition 2. If a sequence of distributions κ1,κ2,. . . ,κn is perfect, then

H(κ1 .κ2 . . . . .κn)≥H(ν)

for any ν ∈ {π(K1∪K2∪ . . .∪Kn) : π↓Ki = κi ∀i = 1,2, . . . ,n}.

Proposition 3. If a sequence of distributions κ1, . . . ,κn and its permutation κi1 , . . . ,κin
are both perfect, then κ1 .κ2 . . . . .κn = κi1 .κi2 . . . . .κin .

From the point of view of practical applications it is important to know that each
generating sequence can be transformed into a perfect sequence. The process of
transformation is described in the following assertion proved in [9] (Theorem 10.9).

Proposition 4. For any generating sequence κ1,κ2, . . . ,κn, the sequence π1,π2,
. . . ,πn computed by the following process

π1 = κ1,

π2 = π
↓K2∩K1
1 .κ2,

π3 = (π1 .π2)
↓K3∩(K1∪K2) .κ3,

...

πn = (π1 . . . . .πn−1)
↓Kn∩(K1∪...Kn−1) .κn

is perfect and κ1 . . . . .κn = π1 . . . . .πn.

From the theoretical point of view, this process is simple. Unfortunately, it need
not be valid from the point of view of computational complexity. The process re-
quires marginalization of models, which are distributions represented by generating
sequences, and this may be computationally very expensive [6]. To avoid these com-
putational problems we will use decomposable generating sequences introduced in
the following paragraph.

3.2 Decomposable Sequences

We call a generating sequence κ1,κ2, . . . ,κn decomposable if the corresponding se-
quence of variable sets K1,K2, . . . ,Kn meets the running intersection property (RIP),
i.e., if

∀i = 2, . . . ,n ∃ j(1≤ j < i)

(
Ki∩ (

i−1⋃
k=1

Kk)⊆ K j

)
.
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The importance of these sequences follows, among others, from the following
assertion [9].

Proposition 5. If κ1,κ2, . . . ,κn is a sequence of pairwise consistent probability dis-
tributions such that K1, . . . ,Kn meets RIP, then this sequence is perfect.

The reader can notice, that if the sequence K1,K2, . . . ,Kn in Proposition 4 meets
RIP, then K3∩ (K1∪K2) equals either K3∩K1 or K3∩K2. Similarly, K4∩ (K1∪K2∪
K3) equals K4∩K j for some j≤ 3. It means that, thanks to RIP, for all i = 3,4, . . . ,n
the necessary marginal distributions

(π1 . . . . .πi−1)
↓Ki∩(K1∪...∪Ki−1)

can be computed from some π j as π
↓Ki∩K j
j , because π1, . . . ,πi−1 is a perfect sequence

and therefore π j is marginal to π1 . . . . . πi−1. All this means that for this type of
distributions the process of perfectization can be performed locally.

4 Conditioning

In this short section we will show that the operator of composition can also serve
as a tool for computation of conditional distributions. Define a degenerated one-
dimensional probability distribution π|u;α as a distribution of variable u achieving
probability 1 for value u = α , i.e.,

π|u;α(x) =
{

1 if x = α,
0 otherwise.

Now, consider a probability distribution κ(K) for which {u,v} ⊂ K and compute
(π|u;α .κ)↓{v}. For any y ∈ Xv

(π|u;α .κ)↓{v}(y) = ((π|u;α .κ)↓{u,v})↓{v}(y) = (π|u;α .κ
↓{u,v})↓{v}(y)

= ∑
x∈Xu

π|u;α(x) ·κ↓{u,v}(x,y)
κ↓{u}(x)

=
κ↓{u,v}(α,y)

κ↓{u}(α)
= κ(v = y|u = α).

Thus we have got that κ(v|u = α) = (π|u;α .κ)↓{v}.

In the same way it can be shown for any L⊆ K \{u} that
(
π|u;α .κ

)↓L is an |L|-
dimensional conditional distribution κ under the condition that variable u attains
value α , i.e., κ(L|u = α). Proceeding analogously even further we can get that for
any v ∈ K \ (L∪{u}) and β ∈ Xv

κ(L|u = α,v = β ) =
(
π|v;β .

(
π|u;α .κ

))↓L
is a conditional distribution for variables from L given that variables u and v attain
values α and β , respectively.
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5 Local Computations

By local computations we understand a process based on the ideas published in the
famous paper by Lauritzen and Spiegelhalter [15]. Here we have especially in mind
the idea that when computing the required conditional probability, one performs
computations only on the system of marginal distributions defining the decompos-
able model. It means that during the computational process one does not need to
store more data than what is necessary to store for the decomposable model.

In the preceding paragraph we showed that the conditional distribution can be
expressed as a composition of a degenerated distribution with the distribution for
which we want to compute the conditional distribution. So, let us assume that a
distribution κ is decomposable, i.e.,

κ = κ
↓K1 .κ

↓K2 . . . . .κ
↓Kn

for a sequence K1,K2, . . . ,Kn meeting RIP, and we want to compute, say, κ(L|u =

α,v = β ) =
(
π|v;β .

(
π|u;α .κ

))↓L.
For this, we will have to take advantage of the famous fact (an immediate conse-

quence of the existence of a join tree, see [1]) that if K1,K2, . . . ,Kn can be ordered
to meet RIP, then there are many of such orderings, and for each k ∈ {1,2, . . . ,n},
at least one of them starts with Kk. Therefore, thanks to Proposition 3, we can con-
sider any of these orderings. So, consider any Kk for which u ∈ Kk, and find the
ordering meeting RIP which starts with this Kk. Without loss of generality let it be
K1,K2, . . . ,Kn (so, u ∈ K1).

Thus, our goal is to compute in the first step
(
π|u;α .κ

)
π|u;α .κ = π|u;α . (κ↓K1 .κ

↓K2 . . . . .κ
↓Kn).

Now applying (n− 1) times Associativity under a special condition (Property 7 of
Proposition 1) we get (recall that we selected the RIP ordering, for which u ∈ K1)

π|u;α . (κ↓K1 .κ
↓K2 . . . . .κ

↓Kn) = π|u;α . (κ↓K1 .κ
↓K2 . . . . .κ

↓Kn−1).κ
↓Kn

= . . .= π|u;α .κ
↓K1 .κ

↓K2 . . . . .κ
↓Kn ,

from which the following computationally local process (see Proposition 4 and the
comment in Section 3.2)

ν1 = π|u;α .κ
↓K1 ,

ν2 = ν
↓K2∩K1
1 .κ

↓K2 ,

ν3 = (ν1 .ν2)
↓K3∩(K1∪K2) .κ

↓K3 ,

...
νn = (ν1 . . . . .νn−1)

↓Kr∩(K1∪...Kn−1) .κ
↓Kn ,
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yields a perfect decomposable sequence ν1, . . . ,νn, such that π|u;α .κ = ν1 .. . . .νn.
Now, it has remained to compute in the second step the required

κ(L|u = α,v = β ) =
(
π|v;β .

(
π|u;α .κ

))↓L
=
(
π|v;β . (ν1 . . . . .νn)

)↓L
.

Thanks to decomposability of the sequence ν1, . . . ,νn the computations will proceed
in the same way as in the first step. First, distributions νi will be reordered in the
way that ν j1 , . . . ,ν jn meet RIP and variable v is among the variables for which ν j1
is defined. Then we can, as in the first step, due to Associativity under a special
condition deduce that

π|v;β . (ν j1 .ν j2 . . . . .ν jn) = (π|v;β .ν j1).ν j2 . . . . .ν jn ,

which can be, again, converted into a perfect sequence by the computationally local
process of perfectization.

6 Heuristics for Model Construction

The reader interested in other theoretical issues concerning the operator of composi-
tion and perfect sequence models is referred to [9] and the papers cited there. Here,
we want to briefly introduce a possible heuristic way to create a perfect sequence
model from a data file – see Figure 1. For a more detailed description of this process,
as well as for an example of its application to a small data file, the reader is referred
to [8]. Notice that the described process is fully driven by an expert, and thus the
following decisions must be made by a human expert:

1. Selection of oligodimensional distributions at the beginning of the whole process.
2. Decision which type of “refinement” procedure should be chosen (detailed ex-

planation is given below).
3. Stopping rule.

As it can be seen from the diagram in Figure 1, the process is initiated with
definition of a system of oligodimensional distributions. Regarding the fact that the
process cyclically employs steps of verification and refinement, during which this
initial system is gradually changed, the result is fairly independent of the initial
selection. For example, starting with all two-dimensional distributions may be quite
reasonable (for application to small data files with a limited number of variables one
can consider a possibility to start with three-dimensional marginal distributions). In
other situations, an expert can select the initial marginal distributions from which the
model should be constructed. Generally, we propose to select distributions carrying
a greater amount of information. This idea is supported by the following assertion,
proved in [7] (Corollary 1.). It claims that the higher information content of a perfect
sequence, the better approximation of the unknown distribution.
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Definition of
oligodimens.
distributions

Construction of
generating
sequence

Perfectization

Computation of
K-L

divergences

VERIFICATION REFINEMENT

?

?

?
6 6

Definition
of new

distributions
IPFP

�

Fig. 1 Process of model construction

Proposition 6. Consider an arbitrary distribution κ , and a generating sequence
consisting of its marginals κ↓K1 , κ↓K2 , . . . ,κ↓Kn . If this generating sequence is per-
fect, then

Div(κ‖κ(xK1). . . . .κ(xKn)) = I(κ)− I(κ(xK1). . . . .κ(xKn)),

where the Information content I(π) of a distribution π(J) is the Kullback-Leibler
divergence of π and a product distribution of its one-dimensional marginal distri-
butions:

I(π) = Div(π‖∏
u∈J

π
↓{u}) = ∑

x∈XJ

π(x) log
π(x)

∏
u∈J

π↓{u}(x↓{u})
.

Let us stress that the information content is a generalization of a Shannon mutual
information, which will be used in the algorithm further in this text, and which is
for two disjoint (nonempty) L,M ⊂ J defined by the formula

MIπ(K;L) = ∑
x∈XK

∑
y∈XL

π
↓K∪L(x,y) log

π↓K∪L(x,y)
π↓K(x) ·π↓L(y)

.

If we want to construct a perfect sequence model approximating an unknown
distribution κ , we have to aim at getting the model with the highest possible infor-
mation content (under the assumption that the oligodimensional distributions, which
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the perfect sequence consists of, are marginals of the approximated distribution). In
[8] we have published the following heuristic algorithm producing a sub-optimal
generating sequence from a system of oligodimensional distributions.

Algorithm
Input: System of low-dimensional distributions κ1(K1), . . .κn(Kn).
Initialization: Select a variable u and a distribution κ j such that

u ∈ K j. Set π1 := κ
↓{u}
j , L := {u} and k := 1.

Computational Cycle: While K1 ∪ . . . ∪ Kn \ L 6= /0 perform the following
3 steps:

1. for all j = 1, . . . ,n and all v ∈ K j \L compute the mutual information
MIκ j(v;K j ∩L).

2. Fix j and v for which MIκ j(v;K j ∩L) achieved its maximal value.

3. Increase k by 1. Set πk := κ
↓(K j∩L)∪{v}
j and L := L∪{m}.

Output: Generating sequence π1,π2, . . . ,πk.

What can be said about the resulting generating sequence π1,π2, . . . ,πk? Distribu-
tion ν = π1 .π2 . . . . .πk is a probability distribution of variables K1∪K2∪ . . .∪Kn.
The algorithm realizes a greedy (therefore very efficient) process, which seeks to
find a sequence utilizing the information content of individual oligodimensional
distributions in a maximal possible way. The result is a generating sequence which,
unfortunately, need not be perfect. It means that some of the input distributions are
not marginals of the resulting multidimensional model. As a rule, the expert (the
model constructor) has to accept some deviations of the model marginals from the
input oligodimensional distributions. To decide whether the obtained deviations are
acceptable, i.e., whether the whole model construction process depicted in Figure 1
should be terminated, the expert must be provided with some additional informa-
tion. To get it, the process employs the perfectization procedure described in Propo-
sition 4. Then it is possible to compare original oligodimensional distributions with
the corresponding marginals defined by the model. The comparison may be done
with the help of Kullback-Leibler divergence; as already said above, its value equals
0 iff π = κ , otherwise it is always positive. Therefore, the lower this value, the closer
κ to π . The goal of this step is to find all the marginal distributions which are un-
acceptably distorted by the model. If there is no such a marginal distribution, the
process is terminated. In the opposite case, the expert proposes to perform another
cycle of the whole process with a modified system of oligodimensional distribu-
tions. The described process then proceeds so that several original distributions are
substituted with one a-little-bit-more-dimensional one in the refinement step.

As the reader can see from Figure 1, there are two possibilities to get these new
distributions. If it is possible (i.e., the data file is large enough) the expert can decide
to get them as estimations from the given data file (going along the left branch of
the refinement box in Figure 1). However, if the data file is too small to get reliable
estimations (which may happen easily if one needs to substitute several distribu-
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tions with a distribution whose dimensionality is high – let us say, 6 or more), then
one can take advantage of the well-known Iterative Proportional Fitting Procedure
(IPFP) (see [2]; for its effective implementation, which makes it possible to compute
distributions of pretty high dimensions, see [4]). In this way, when all the desired
substitutions are realized, a new system of oligodimensional distributions is set up,
to which the heuristic algorithm for generating sequence construction is again ap-
plied. The described cycle is repeated until the expert decides that a suitable multi-
dimensional model representing (approximating) all the required oligodimensional
distributions has been achieved.

Let us stress once more that the process shown in Figure 1 is fully controlled by
the expert. The more cycles of the process are performed, the higher dimensions of
the input distributions are considered. If the expert had continued ad absurdum, the
process would have, in fact, finished with an application of IPFP to all of the initial
oligodimensional distributions (which is, as a rule, computationally intractable in
practical situations).

7 Conclusions

In this paper we summarized most of the practically oriented properties of composi-
tional models and showed that they can be applied to multidimensional distribution
representation. We also showed that conditional distributions can be computed as a
composition of one or several degenerated distributions with the respective model,
and that these computations can be, for decomposable models, performed locally.

Let us, now, mention another advantage of perfect compositional models that
is important for another computational process that was not discussed in this pa-
per. We have in mind the process of marginalization. Since the perfect model is
composed of a system of its marginal distributions, it is not difficult to show on ex-
amples that there are number of situations when marginalization in a compositional
model is simple but the same process in the corresponding Bayesian network is ei-
ther computationally very expensive or even intractable. This advantageous property
of compositional models is employed in algorithms described in [6].

As the last remark, let us mention that compositional models where introduced
not only within the framework of probability theory, but also in possibility theory
[16], the theory of belief functions [12], and recently also for the Shenoy’s valuation-
Based Systems [11]. Thus, most of the results presented in this paper can easily be
extended into the above mentioned theoretical frameworks. For example, the content
of Sections 4 and 5 have originally been published for belief functions [10], not for
probability theory.
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