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Abstract This article is a continuation of the paper Kočvara
and Stingl (Struct Multidisc Optim 33(4–5):323–335, 2007).
The aim is to describe numerical techniques for the solution
of topology and material optimization problems with local
stress constraints. In particular, we consider the topology
optimization (variable thickness sheet or “free sizing”) and
the free material optimization problems. We will present an
efficient algorithm for solving large scale instances of these
problems. Examples will demonstrate the efficiency of the
algorithm and the importance of the local stress constraints.
In particular, we will argue that in certain topology opti-
mization problems, the addition of stress constraints must
necessarily lead not only to the change of optimal topol-
ogy but also optimal geometry. Contrary to that, in material
optimization problems the stress singularity is treated by the
change in the optimal material properties.
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1 Introduction

In our first article on this subject (Kočvara and Stingl 2007)
we have introduced the concept of Free Material Optimiza-
tion (FMO) and discussed formulations of stress constraints
that would be computationally tractable and would lead to
results consistent with physics. The same approach was
also used for the standard problem of Topology Optimiza-
tion (TO). We have introduced a numerical algorithm for
the solution of the resulting finite dimensional optimization
problems and presented several examples.

The present article results from further intensive study of
this problem in the framework of the EU project PLATO-N
(2006–2009).1 First, we have developed a new optimiza-
tion algorithm based on sequential convex optimization that
allows us to solve much larger instances of the uncon-
strained problems. Further, we investigated several ways
how to introduce the stress constraints in the problem in
an efficient way. The results are presented here. The new
algorithms allow us to solve large-scale two- and three-
dimensional problems with stress local stress constraints. In
the numerical section we present results of several exam-
ples containing stress singularity that stems from the initial
geometry (re-entrant corner). While the topology optimiza-
tion approach must necessarily lead to the removal of this
singularity by changes in the geometry of the boundary of
the optimal structure, the FMO result shows that the sin-
gularity is removed by the local properties of the optimal
material.

1www.plato-n.org
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We emphasize that we focus on the problem of free mate-
rial optimization. The only topology optimization problem
we consider is the Variable Thickness Sheet (VTS) prob-
lem (also called “free sizing problem”). This is to emphasize
that, while mathematically very similar, these two problems
(FMO and VTS) lead to completely different results when
stress constraints are introduced. We do not consider the
popular SIMP approach (e.g. Rozvany 2001a), as it brings
another level of difficulty (loss of concavity in the depen-
dence of the stiffness matrix on the design variable and the
need to introduce some kind of filtering in the problem)
and the SIMP problem is not really analogous to our pri-
mal problem which is FMO. There is a vast literature on the
SIMP approach with stress constraints; see, e.g., Rozvany
et al. (1992) or the recent article by Le et al. (2010) and the
exhaustive list of references therein.

2 Primal FMO problem

2.1 Setting of the problem

Material optimization deals with optimal design of elastic
structures, where the design variables are material proper-
ties. The material can even vanish in certain areas, thus one
often speaks of topology optimization.

Let � ⊂ R
2 be a two-dimensional bounded domain2

with a Lipschitz boundary. By u(x) = (u1(x), u2(x)) we
denote the displacement vector at a point x of the body
under load f , and by

ei j (u(x)) = 1

2

(
∂ui (x)

∂x j
+ ∂u j (x)

∂xi

)
for i, j = 1, 2

the (small-)strain tensor. We assume that our system is gov-
erned by linear Hooke’s law, i.e., the stress is a linear
function of the strain

σi j (x) = Ei jk�(x)ek�(u(x)) (in tensor notation),

where E is the elastic stiffness tensor. The symmetries of E
allow us to write the 2nd order tensors e and σ as vectors

e = (e11, e22,
√

2e12)
T ∈ R

3,

σ = (σ11, σ22,
√

2σ12)
T ∈ R

3 .

2The entire presentation is given for two-dimensional bodies, to keep
the notation simple. Analogously, all this can be done for three-
dimensional solids.

Correspondingly, the 4th order tensor E can be written as a
symmetric 3 × 3 matrix

E =
⎛
⎝E1111 E1122

√
2E1112

E2222
√

2E2212

sym. 2E1212

⎞
⎠ . (1)

In this notation, Hooke’s law reads as σ(x) = E(x)e(u(x)).

For the elastic stiffness tensor E and given L independent
external load functions f � ∈ [L2(�)]2 (where � is the part
of boundary of � that is not fixed by Dirichlet boundary
conditions) the system is in equilibrium for a displacement
function u� which solves the weak equilibrium equations for
� = 1, . . . , L

∫
�

〈E(x)e(u�(x)), e(v(x))〉dx

−
∫

�

f �(x) · v(x)dx, ∀v ∈ V (2)

where V ⊂ [H1(�)]2 reflects the Dirichlet boundary
conditions.

Consider the following optimization problem

inf
E,ρ,u∈V

∫
�

g(E(x), ρ(x)) dx

subject to

〈E(x)e(u�(x)), e(v(x))〉dx −
∫

�

f �(x) · v(x)dx,

∀v ∈ V , � = 1, . . . , L∫
�

f �(x) · u�(x)dx ≤ γ, � = 1, . . . , L

ρ ≤ h(E(x), ρ(x)) ≤ ρ .

(3)

This problem can be interpreted as a minimum volume prob-
lem with a compliance constraint, where

∫
�

f (x) ·u(x)dx is
the value of the compliance and γ the corresponding upper
bound.

For different choices of E and ρ and functions g and h,
we get different classes of problems:

– Free material optimization (FMO) (Zowe et al. 1997;
Bendsøe and Sigmund 2002)

ρ ≡ 1, E(x) ∈ S
+ a.e. in �

g(ρ) = tr(E), h(ρ) = spectrum of E at x

where S
+ denotes the space of symmetric positive

semidefinite matrices of proper dimension. The design
variable is the elastic stiffness tensor E which is a
function of the space variable x (see Bendsøe et al.
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1994). The only constraints on E are that it is physi-
cally reasonable, i.e., that E is symmetric and positive
semidefinite. As a “cost” of E we use the trace of E .

– Topology optimization (TO) with a given material

ρ ∈ L∞(�), E ≡ E0

g(ρ) = h(ρ) = ρ

where E0 is the elasticity matrix of an isotropic
material.
A particular case is the Variable Thickness Sheet (VTS)
problem (Bendsøe and Sigmund 2002; Petersson 1996).
Here ρ has the meaning of thickness of a two-
dimensional isotropic elastic body. Another interpreta-
tion of the variable ρ is an artificial density. In such a
case, we may try to avoid intermediate values by replac-
ing ρ by ρ p with increasing p and getting thus the SIMP
approach; see Bendsøe and Sigmund (2002).

2.2 Discretization

Let m denote the number of finite elements and n the num-
ber of nodes. Depending on the type of the problem we
solve, we either approximate ρ(x) by a function that is
constant on each element, i.e., characterized by a vector
ρ = (ρ1, . . . , ρm) of its element values, or the matrix func-
tion E(x) by a function that is constant on each element, i.e.,
characterized by a vector of matrices E = (E1, . . . , Em) of
its element values. We further assume that the displacement
vector u(x) is approximated by a continuous function that is
bilinear/trilinear on every element. Such a function can be
written as u(x) = ∑n

i=1 uiϑi (x) where ui is the value of
u at i-th node and ϑi is the basis function associated with
i-th node (for details, see Ciarlet 1978). At each node the
displacement has dim components, so u ∈ R

dim·n . With
the basis functions ϑ j , j = 1, . . . , n, we define (3 × 2)

matrices

B̂ j =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂ϑ j

∂x1
0

0
∂ϑ j

∂x2

1

2

∂ϑ j

∂x2

1

2

∂ϑ j

∂x1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Now, for the i-th finite element, let Di be an index set of
nodes belonging to this element. Let nig denotes the num-
ber of Gauss integration points in each element. By Bi,k we
denote the block matrix composed of (3 × 2) blocks B̂ j at
the j-th position, j ∈ Di , (evaluated at the k-th integration
point) and zeros otherwise. Hence the full dimension of Bi,k

is (3 × 2n).

The (global) stiffness matrix K is a sum of element
stiffness matrices Ki :

K (E, ρ) =
m∑

i=1

ρi Ki (E), Ki (E) =
nig∑
k=1

BT
i,k Ei Bi,k .

After the discretization, problem (3) becomes

min
E,ρ,u∈Rn

m∑
i=1

g(Ei , ρi )

subject to

K (E, ρ)u� = f �, � = 1, . . . , L
(

f �
)�

u� ≤ γ, � = 1, . . . , L

ρ ≤ h(ρi ) ≤ ρ, i = 1, . . . , m

(4)

with variables (E1, . . . , Em) ∈ S
+ × . . . × S

+ for the FMO
problem or ρ ∈ R

m for the TO problem.
Assuming that ρ > 0, we can eliminate the displacement

variable using the equilibrium equation u = K (E, ρ)−1 f
to get the reduced primal problem:

min
E,ρ,u∈Rn

m∑
i=1

g(Ei , ρi )

subject to
(

f �
)�

K (E, ρ)−1 f � ≤ γ, � = 1, . . . , L

ρ ≤ h(ρi ) ≤ ρ, i = 1, . . . , m .

(5)

3 Stress constraints

The motivation for our formulation of local stress con-
straints, together with references to the literature, have been
discussed in detail in our previous paper (Kočvara and Stingl
2007). Let us just emphasize a point that is, in our opinion,
very important.

3.1 Stress or strain constraint?

It is well known that the stress/strain constraint prob-
lem may lead to serious numerical difficulties due to the
effect of so-called vanishing constraints, see Achtziger and
Kanzow (2007): The constraints may be active even in
regions where the design variable tends to zero and which
are then effectively void. This, in effect, leads to so-called
singularity problem,3 extensively studied in the structural

3Not to be confused with the singularity of the stress function, e.g., in
the corner of an L-shaped domain.
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optimization literature; see, e.g., Kirsch (1990), Cheng and
Jiang (1992) and Rozvany (2001b). Whether or not we get
this effect depends on the formulation of the constraint, the
topology optimization model and, in particular, interpre-
tation of the design variable. We will not concentrate on
the solution of problems with vanishing constraints, as it
requires special techniques, as described in Achtziger and
Kanzow (2007). In our previous paper (Kočvara and Stingl
2007) we have presented an example demonstrating this
effect in the contents of FMO.

3.1.1 Topology optimization

Let us first consider the topology optimization problem
(E(x) = ρ(x)E0 with the variable ρ). For an i th finite
element and a kth integration point the formula for the
discretized strain is given by

ei,k = Bi,ku .

Clearly, the strain does not explicitly dependent on the
design variable and thus, if ρi → 0, then ei,k does not have
to go to zero.4 Hence, in this case, we will get a problem
with vanishing constraints.

The formula for stress depends on our interpretation of
the variable ρ. When ρ is interpreted as a thickness of a
plate, then the stress is computed as

σi,k = E0 Bi,ku .

We get exactly the same situation as above and again a
problem with vanishing constraints.

If, on the other hand, we interpret ρ as an artificial
density of the material, the stress is given by

σi,k = ρE0 Bi,ku .

Now the stress does depend on the design variable, which
means that for ρi → 0 also σi,k → 0. We may expect that
this problem is much easier to solve numerically, as there
are no vanishing constraints any more.

3.1.2 Free material optimization

In the FMO model (E(x) is the design variable), the strain
is, obviously computed by the same formula as in the topol-
ogy optimization problem, leading thus to a problem with
vanishing constraints.

The stress, on the other hand is computed by the formula

σi,k = E Bi,ku

4Of course, the strain still depends on ρ implicitly, through u. How-
ever, this dependence does not force the strain to vanish when ρ tends
to zero.

(we have no choice here). Again, the stress now explicitly
depends on the design variable and we get an optimization
problem without vanishing constraints.

3.2 Constraint formulation

In the continuous formulation, we would work with point-
wise stresses, i.e., we would restrict the norm ‖σ(x)‖ for
all x ∈ �. However, in the finite element approximation
we use the primal formula (working with displacements)
and it is a well-known fact that, generally, evaluation of
stresses (from displacements) at points may be rather inex-
act. Hence we will consider the following integral form of
stress constraints

∫
�i

‖σ‖2
vM ≤ sσ |�i | ; (6)

here �i is the i th finite element and |�i | its volume. The
(semi)norm ‖ · ‖vM (where “vM” stands for von Mises) is
defined as

‖σ‖2
vM := σ�Mσ, with M =

⎛
⎝ 2 −1 0

−1 2 0
0 0 3

⎞
⎠ .

The upper bound sσ > 0 can be different for different load
cases so, in general, we will consider bounds

s�
σ , � = 1, . . . , L .

The integrals will be further approximated by the Gaussian
integration formulas, as in the finite element interpolation.

We will denote the stress in the i th element correspond-
ing to �th load case by

σi,�(E, ρ) :=
nig∑
k=1

‖E Bi,k K (E, ρ)−1 f �‖2
vM

hence the stress constraints will be written as

σi,�(E, ρ) ≤ s�
σ ρ2, i = 1, . . . , m; � = 1, . . . , L . (7)

3.3 Numerical treatment of stress constraints

We want to solve the reduced primal formulation (5). By
adding the stress constraints to any of these formulations,
we add many nonlinear constraints. This may cause seri-
ous problems in the behaviour of the respective algorithm
and thus we need to treat these constraints carefully. In
PENSCP, the following three different options have been
implemented.
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3.3.1 Direct treatment

Here we solve the original problem with all the new con-
straints directly, with no additional reformulation. That
means, we solve the problem

min
E,ρ,u∈Rn

m∑
i=1

g(Ei , ρi )

subject to
(

f �
)�

K (E, ρ)−1 f � ≤ γ, � = 1, . . . , L

ρ ≤ h(ρi ) ≤ ρ, i = 1, . . . , m

σi,�(E, ρ) ≤ s�
σ ρ2, i = 1, . . . , m; � = 1, . . . , L .

(8)

The stress constraints are handled, just as the compliance
constraint, by the sequential convex programming tech-
nique, as explained in Stingl et al. (2009a). Due to the large
number of the stress constraints (the same as the number
of finite elements), the computational complexity of the
PENSCP algorithm grows rapidly. Hence this approach is
only recommended for small to medium problems.

3.3.2 Direct treatment with active set strategy

An active set strategy is introduced in the PENSCP algo-
rithm in order to reduce the computational effort needed
to build the strictly convex separable approximations and
solve the corresponding NLP. In the k–th iteration of
PENSCP we fix a (small) threshold η > 0 and discard
any stress constraint with i = 1, . . . , m, � = 1, . . . , L ,
for which

σi,�(E, ρ) − s�
σ ρ2 < −η .

Hence in the inner subproblems we only consider con-
straints that are η-active at the current iteration; all other
constraints are ignored. This strategy is adopted also in the
very first iteration.

This strategy may reduce the computational effort sig-
nificantly if the number of active constraints at the optimum
is low. Unfortunately, this is not the case of stress con-
straints. During the testing it turned out that for several
examples from the academic test library there are many
active stress constraints at the optimum—the amount of
active constrains may vary from 5–30% of the total num-
ber of constraints. In these cases the active strategy does
not bring the required speed up, as compared to the direct
treatment.

Notice that similar difficulties caused by the large num-
ber of active constraints may be expected in methods based
on augmented Lagrangians and general optimality criteria
approach, such as the DCOC method by Zhou and Rozvany
(1992, 1993).

3.3.3 Penalty approach

The most efficient way how to treat the stress constraints
is to replace them by only one constraint. We can con-
sider the following constraint that is fully equivalent to con-
straints (7):

max
�=1,...,L

max
i=1,...,m

(σi,�(E, ρ) − s�
σ ρ2) ≤ 0 , (9)

i.e., the �∞-type constraint. This is, however, a non-
differentiable function and cannot be handled by the
(smooth) PENSCP algorithm. We can use the standard
approach and approximate the �∞ norm by an �p norm with
big enough p. In the context of stress constrained topol-
ogy optimization, this approach has been used, e,g, by Yang
and Chen (1996), Duysinx and Sigmund (1997) and Le
et al. (2010). Furthermore, to improve the conditioning, we
can scale the constraint function by the log function and
consider the following approximation of (9):

log
L∑

�=1

m∑
i=1

(σi,�(E, ρ) − s�
σ ρ2)p ≤ 0 . (10)

However, neither this type of constraint delivered sufficient
improvement in the efficiency of the PENSCP algorithm.
Hence we opted for another standard idea from nonlin-
ear optimization: replacing the constraints by a quadratic
penalty term in the objective function. Thus, instead of
solving problem (8), we solve a sequence of problems

min
E

m∑
i=1

g(Ei , ρi )

+ κ

L∑
�=1

m∑
i=1

(
max

{
0,

(
σi,�(E, ρ) − s�

σ ρ2
)})2

subject to(
f �
)�

K (E, ρ)−1 f � ≤ γ, � = 1, . . . , L

ρ ≤ h(ρi ) ≤ ρ, i = 1, . . . , m (11)

with increasing penalty parameter κ . Of course, unless we
drive κ → ∞, the solution of (11) will only be an approx-
imation of the solution to (8). In particular, we cannot
guarantee that the element-wise stress constraints are all fea-
sible at the solution of (11). However, it is our experience
that after 3–5 solutions of (11) with κ multiplied by 3 after
each problem solution, we get a very good approximation to
the solution of the original problem. Of course, the user can
choose the initial value of κ , its update and the number of
penalty updates.

Formulation (11) proved to be the most efficient one,
in connection with the PENSCP solver. The examples
presented in the next section were all solved using this
formulation.
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3.4 Sensitivity analysis

In the following, we describe how the sensitivities of each
individual stress constraint σi,�(E, ρ) are computed. For
simplicity, we restrict to the FMO case and omit the vari-
able ρ in the rest of this paragraph. The partial derivative of
σi,� w.r.t. an entry of the elastic stiffness tensor associated
with element j (assuming i �= j) is given as

∂

∂(E j )p,q
σi,�

= 2
nig∑
k=1

(
Ei Bi,ku�

)�
M

(
Ei Bi,k K (E)−1 K j,p,qu�

)

= 2

⎛
⎝ nig∑

k=1

(Ei Bi,ku�)�M Ei Bi,k

⎞
⎠ K (E)−1 K j,p,qu�,

where K j,p,q is defined as

K j,p,q =
⎧⎨
⎩
∑nig

k=1 b �
j,k,pb j,k,q , p = q,

∑nig
k=1 b �

j,k,pb j,k,q + b �
j,k,qb j,k,p , p �= q,

(12)

and b j,k,p is the p-th row of B j,k . In the case i = j an
additional term

2
nig∑
k=1

(Ei B j,k)
�M Ip,q B j,ku�,

with Ip,q being a matrix with 1 in position (p, q) and
(q, p) and zeros otherwise is added. Obviously, when
treating the stress constraints directly or in the frame-
work of an active set approach, for each (active) con-
straint a system of the type K (E)v = d with d given as
2
∑nig

k=1(Ei Bi,ku�)�M Ei Bi,k has to be solved. For a large
number of finite elements and consequently stress con-
straints, this can be prohibitive. The situation is different
when using the penalty formulation outlined above. For
convenience, we rewrite the penalized expression as

σ̂�(E) :=
m∑

i=1

ϕ
(
σi,�(E) − s�

σ ρ̄2
)

, (13)

where ϕ is the smooth and convex function max{0, ·}2, and
make use of the fact that the derivative of σ̂� with respect to
the matrix variable E is given as

∇E σ̂�(E) =
m∑

i=1

ϕ′ (σi,�(E) − s�
σ ρ̄2

)
∇Eσi,�(E). (14)

Taking this into account, we derive

∂

∂(E j )p,q
σ̂�(E)

= 2

⎡
⎣ m∑

i=1

αi

nig∑
k=1

(
Ei Bi,ku�

)�
M Ei Bi,k

⎤
⎦K (E)−1 K j,p,qu�

+ 2
nig∑
k=1

(E j B j,k)
�M Ip,q B j,ku�

with coefficients αi = ϕ′(σi,�(E) − s�
σ ρ̄2). Thus only one

linear system of the type K (E)v = d has to be solved for
each load case. Note that the same idea can be applied when
calculating the gradient of (10).

4 The PENSCP algorithm

Here we present the basic steps of the PENSCP algorithm
together with the main convergence result. Full details can
be found in Stingl et al. (2009b).

4.1 Basic problem statement

Our aim is to solve the following generic semidefinite
program:

min
Y∈S

f0(Y )

subject to

f�(Y ) ≤ 0, � = 1, 2, . . . , L ,

gk(Y ) ≤ 0, k = 1, 2, . . . , K ,

Yi �
S

di Yi �
S

di Yi , i = 1, 2, . . . , m

(P)

with

S = S
d1 × S

d2 × . . . × S
dm and (d1, d2, . . . , dm) ∈ N

m .

We assume that, in general, m is large (103–105) and di

are small (2–10). That is, we have many small-size matrix
variables and matrix constraints.

Throughout the section we make the following assump-
tions:

(A1) The functions f� : S → R, (� = 0, 1, . . . , L) are
continuously differentiable.

(A2) The functions gk : S → R (k = 1, 2, . . . , K ) are
continuously differentiable, convex and separable
with respect to the matrix variable Y .

(A3) Problem (P) admits at least one solution.
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Our main motivation is to solve the FMO and TO prob-
lems described in detail in Section 3. However, other
applications can be found, e.g., in spline approximation
(Alizadeh et al. 2008) and sparse SDP relaxation of poly-
nomial optimization problems (Waki et al. 2006).

4.2 A block-separable convex approximation scheme

In this section we briefly outline the concept of block
separable convex approximations (see Stingl et al. 2009b)
of continuously differentiable functions f : S → R.
We introduce the following convenient notation: Let I =
{1, 2, . . . , m}. On S we define the inner product 〈·, ·〉S :=∑

i∈I〈·, ·〉Sdi , where 〈·, ·〉
S

di is the standard inner product
in S

di (i ∈ I). Moreover, we denote by ‖ · ‖S the norm
induced by 〈·, ·〉S. Finally, we denote the directional deriva-
tives of f of first and second order in directions V, W ∈ S

by ∂
∂Y f (Y ; V ) and ∂2

∂Y ∂Y f (Y ; V, W ), respectively.
We start with the following definition:

Definition 1 Let f : S → R be continuously differentiable
on a subset B ⊂ S and Ȳ = (Ȳ1, Ȳ2, . . . , Ȳm) ∈ B.
Moreover let asymptotes L = (L1, L2, . . . , Lm)� , U =
(U1, U2, . . . , Um)� be given such that

Li ≺
S

di+
Ȳi ≺

S
di+

Ui for all i ∈ I

and τ := {τ1, τ2, . . . , τm} be a set of non-negative real
parameters. Then we define the hyperbolic approximation
f L ,U,τ

Ȳ
of f at Ȳ as

f L ,U,τ

Ȳ
(Y ) := f (Ȳ )+

m∑
i=1

〈
∇ i+ f (Ȳ ), (Ui − Ȳi )(Ui − Yi )

−1

× (Ui − Ȳi ) − (Ui − Ȳi )

〉
S

di

−
m∑

i=1

〈
∇ i− f (Ȳ ), (Ȳi − Li )(Yi − Li )

−1

× (Ȳi − Li ) − (Ȳi − Li )

〉
S

di

+
m∑

i=1

τi

〈
(Yi − Ȳi )

2, (Ui − Yi )
−1

+ (Yi − Li )
−1

〉
S

di

,

(15)

where for all i ∈ I we define differential operators entry-
wise by

(
∇ i f

)
�, j

:=
(

∂ f

∂Yi

)
�, j

, 1 ≤ l, j ≤ di

and denote by ∇ i+ f (Ȳ ) and ∇ i− f (Ȳ ) the projections of

∇ i f (Ȳ ) onto S
di+ and S

di− .

In Stingl et al. (2009b) it is proven that (15) is a convex
approximation of f in the sense that the function value and
partial (matrix) derivatives of f and f L ,U,τ

Ȳ
coincide at Ȳ ,

f L ,U,τ

Ȳ
is strictly (matrix-) convex and block separable.

The formula (15) differs from the original formula in
Stingl et al. (2009b) in the choice of the asymptotes. Here
we restrict ourselves to only one (fixed) choice of asymp-
totes. The reason for this simplification is twofold. First it
helps to unburden the notation. Second, and more important,
there is no efficient dynamic choice of asymptotes known in
the semidefinite programming case. This is in sharp contrast
to the standard nonlinear programming situation; see Svan-
berg (1987), Fleury (1989), Bletzinger (1993) and Zillober
(2001).

4.3 A globally convergent algorithm based on hyperbolic
approximations

Now we will use the local hyperbolic approximations
defined in Section 4.2 in order to define an algorithm for
the solution of the generic optimization problem (P).

Given an iteration index j and an associated feasi-
ble point Y j of problem (P), we define local hyperbolic
approximations of f� (� = 0, 1, . . . , L) as

f j
� (Y ) := ( f�)

τ j

Y j (Y ) := ( f�)
L ,U,τ j

Y j (Y ),

and local approximations of (P) close to Y j by replac-
ing the objective and constraints in (P) by f j

� (Y ), (� =
1, 2, . . . , L), respectively.

Now we are able to present the basic algorithm for the
solution of (P):

Algorithm 1

Let asymptotes L and U feasible with Definition 1
and a constant ϑ > 1 be given.
(0) Find Y 1 ∈ F.
(1) Put j = 1.

(2) Choose τ ≥ τ
j

1 , τ
j

2 , . . . , τ
j

m ≥ τ > 0.
(3) Solve problem (P j ). Denote the solution by Y +.

(4) If f j
� (Y +) ≥ f�(Y +) for all � = 0, 1, . . . , L ,

GOTO (6).

(5) Put τ
j

i ← ϑτ
j

i for all

i ∈
{
� ∈ {0, 1, . . . , L} | f j

� (Y +) < f�(Y +)
}

and GOTO (3).
(6) Y j+1 = Y +.
(7) If Y j+1 is stationary for problem (P), STOP;

otherwise put j = j + 1and GOTO (2).
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An appropriate update scheme for the parameters τ
j

i
(step 2) will be proposed below, where we will also discuss
algorithmic details as, for instance, a practical stopping cri-
terion in step 7. There we will further point out, how we
carry out step 0 above. For a detailed description of the
algorithm applied to the solution of the subproblems aris-
ing from step 3, we refer again to Stingl et al. (2009b) and
the references therein.

Algorithm 1 consists of outer iterations (steps 2–7) and
inner iterations (steps 3–5). The inner iterations replace the
line search used in the original algorithm stated in Stingl
et al. (2009b). An interpretation of the inner iterations is
as follows: Whenever the condition in step 4 fails to hold,
we increase the influence of the strong convexity term. This
results in a more conservative model. In a sense this is
related to the trust region idea, which is a popular alternative
to line search methods.

We now restate the central convergence result for
Algorithm 1:

Theorem 1 Suppose that assumptions (A1)–(A3) are sat-
isf ied. Then, either Algorithm 1 stops at a stationary point
of (P), or the sequence {Y j } j generated by Algorithm 1
has at least one accumulation point and each accumulation
point is a stationary point of (P).

For the proof, see Stingl et al. (2009b). To prove the con-
vergence theorem, we have essentially followed the lines
of the convergence proof in Svanberg (2002). Neverthe-
less all results needed to be restated in the semidefinite
context.

5 Numerical experiments

5.1 Algorithmic details

The choice of the asymptotes As already mentioned in
Section 4.2 we use fixed asymptotes. The following choice
turned out to be robust:

Li = 0, Ui = 1.1 ρ Id,

where Id is the identity matrix in S
3 and S

6 for 2D- and 3D-
problems, respectively.

The subproblems During all iterations, we solve the sub-
problems approximately. We use the following strategy: we
start with a moderate accuracy of ε = 10−3 for the KKT
error of the subproblem. During the outer iterations we
adjust the tolerance according to the current KKT error of
the master problem.

The choice of τ The parameters τ
j

i (i ∈ I) in the j-
th outer iteration are initialized such that the following
condition is valid:

−∇ i f�(E j ) + τ
j

i I � δ I (i ∈ I)

for all i ∈ I and all � = 0, 1, . . . , L . A typical choice for
δ is 10−4. The constant update factor ϑ used in step 4 of
Algorithm 1 is typically chosen from the interval [2, 10].
For a more sophisticated update scheme we refer to Svan-
berg (2002).

A practical stopping criterion We use two stopping cri-
teria for Algorithm 1. The first one is based on the relative
difference of two successive objective function values. We
consider this stopping criterion as achieved if the relative
difference falls below some given threshold ε1 (typically
ε1 = 10−8). The second stopping criterion is based on the
following KKT-related error measures:

err1 =
∥∥∥∇L(Y l , yl , ul , Ul , U

l
)

∥∥∥ ,

err2 = max
{

f�
(
Y l), gk

(
Y l) | �

= 1, 2, . . . , L , k = 1, 2, . . . , K
}
,

err3 = max
{
|yl

� f�(Y
l)|, |ul

k gk(Y
l)|,

|〈Ul
j , Y l

j −Y j 〉|, |〈Ul
j , Y j −Y l

j 〉|
∣∣

�=1, . . . , L , k =1, . . . , K , j =1, . . . , m
}
,

where Y l is the approximate solution at iterate l, L is the
Lagrangian associated with problem (P) and yl , ul , Ul and

U
l

are the corresponding vectors of Lagrangian (matrix)
multipliers associated with the constraint functions f�, gk

and the lower and upper matrix bound constraints, respec-
tively. Recall that the feasibility of Y l w.r.t. the matrix bound
constraints is maintained throughout all iterations. Now we
define our second stopping criterion as

1

3

3∑
i=1

erri ≤ ε2, (16)

where a typical value for ε2 is 5 · 10−5.

Fig. 1 L-shaped domain:
geometry, load and
boundary conditions
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Fig. 2 Problem TC04-s4, FMO,
no stress constraints. Trace of
the optimal material (top-left),
von Mises stress (top-right),
principal stress directions
(bottom-left), zoom on the
re-entrant corner (bottom-right)

Fig. 3 Problem TC04-s4, FMO,
stress constraints. Trace of the
optimal material (top-left),
von Mises stress (top-right),
principal stress directions
(bottom-left), zoom on the
re-entrant corner (bottom-right)
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Fig. 4 Problem TC04-s4, VTS,
without and with stress
constraints. Optimal ρ for the
unconstrained problem
(top-center), the corresponding
stress (mid-left), zoom on the
stress at the re-entrant corner
(mid-right), ρ for the stress
constrained problem
(bottom-left) and the
corresponding stresses
(bottom-right)

How to f ind an initial feasible point? We use the fol-
lowing strategy inspired by Zillober (2001): If no feasible
point is known, we start by solving the following auxiliary
problem:

min
Y∈S

f0
j (Y ) +

∑
�=1,...,L

η� f j
� (Y )

subject to

gk(Y ) ≤ 0, k = 1, 2, . . . , K ,

Yi �
S

di Yi �
S

di Yi , i = 1, 2, . . . , m .

Here the parameters η�, � = 1, 2, . . . , L , are penalty
parameters, which are increased until a feasible solution is
identified.

The code We have implemented the algorithm in the C
programming language. In what follows we refer to the
resulting code as PENSCP. All FMO and TO computations
have been carried out by the software platform PLATO-N.

5.2 Numerical examples

The classic example for testing the effect of stress con-
straints is the L-shaped domain; see Fig. 1. When made
of homogeneous isotropic material, the structure exhibits a
stress singularity at the peak of the re-entrant corner. If we
transform the problem to a local radial coordinate system,
located at this corner, the radial stress components would go
to infinity when approaching the origin. In the global Carte-
sian coordinate system, the norm of the stress tensor goes
to infinity as we approach the re-entrant corner. When we
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Fig. 5 Problem TC13-s3, geometry and forces

solve the discretized problems with a homogeneous mesh,
the stress would only go to infinity when the mesh size
parameter goes to zero. For fixed mesh size, however, the
stress values still reach much bigger values at the elements
neighboring the corner than in the rest of the domain.

In all numerical examples, we first solve the problem
without stress constraints. From the solution of the uncon-
strained problem we obtain the maximal stress and, based on
that, select the stress upper bound for the constrained prob-
lem. The stress constrained problem is then solved with the
same data. Notice that he compliance constraint is essen-
tial even in the presence of the stress constraints. In the
absence of the compliance constraint the material in most
finite elements would be on the lower bound and the opti-
mal structure would not have any practical sense. The upper
bound on the compliance was chosen such that the optimal
objective function value is about 0.3 in all examples.

All examples below were solved on a single core of a
standard PC with a tact frequency 2.83 GHz and 8 Gbyte
memory.

Example 1 (TC04-s4, FMO) We first solved the FMO prob-
lem discretized by 30 000 finite elements without the stress
constraints (problem TC04-s4 in the academic test library).
The upper bound for compliance was 8,500. The PENSCP
code needed 295 iterations and 51 min 43 s CPU time to
reach an objective value (total stiffness) of 0.3321. The opti-
mal solution was feasible. The trace of the optimal material
is depicted in Fig. 2 (top-left) while the von Mises stress
in each element is shown in the top-right figure. The max-
imal stress of 5.7 was obviously reached in the two corner

Fig. 6 Problem TC13-s3, no
stress constraints: a material
density & deformed geometry;
b principal material orientation;
c stress distribution

(a) (b)

(c)
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Fig. 7 Problem TC13-s3 with
stress constraints: a material
density & deformed geometry;
b principal material orientation;
c stress distribution; d stress
distribution—active set

(a) (b)

(c) (d)

elements. Figure 2 bottom-left and bottom-right show the
corresponding principal stress directions and the zoom on
the re-entrant corner, respectively. As the material in most
elements is orthotropic, these directions also corresponds to
the directions of orthotropy.

Next we have solved the same example again with com-
pliance bound 8,500, this time with the stress constraints.
The upper stress bound was chosen sσ = 2.0. We solved
a sequence of four problems (11) with increasing value
of the penalty parameter κ . The total CPU time was 5 h
20 min 7 s. The final value of the highest stress was 2.00034
and value of the objective 0.3602. The results are depicted
in Fig. 3, with the same meaning as in the unconstrained
case. When comparing the unconstrained and the stress con-
strained results, we can see that there is hardly any change
in the trace of the optimal material. There are, however,
changes in the principal stress directions. So the stress con-
centration is “smoothened” by different properties of the
material in the neighborhood of the re-entrant corner, rather
than by changes in the geometry.

For the VTS problem (where the material properties are
fixed and we just design the multiplier of the material matrix
ρ ∈ R

m), the only way to remove the stress singularity is to
change the geometry of the domain, in particular, to replace
the sharp corner by a sort of smooth arc. The next example
will demonstrate this.

Example 2 (TC04-s4, VTS) We solve the same problem as
above, this time using the VTS model. Figure 4 shows the
results. First we the distribution of the optimal ρ for the
unconstrained problem (top-center), then the corresponding

Fig. 8 Problem TC11-s4—geometry and forces
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Fig. 9 Problem TC11-s4, no
stress constraints: a material
density & deformed geometry
(first load case); b stress
distribution; c principal material
orientation; d principal material
orientation (zoom)

(a) (b)

(c) (d)

Fig. 10 Problem TC11-s4 with
stress constraints: a material
density & deformed geometry
(first load case); b stress
distribution—active set;
c principal material orientation;
d material orientation (zoom)

(a) (b)

(c) (d)



14 M. Kočvara, M. Stingl

stress (mid-left) and zoom on the stress at the re-entrant
corner (mid-right) and, finally, the distribution of ρ for
the stress constrained problem (bottom-left) and the corre-
sponding stresses (bottom-right). We can see, as expected,
that the stress concentration was removed by a change in
the geometry of the optimal structure; the re-entrant cor-
ner is replaced by a smooth circular “hole”. Notice that
we only consider the VTS problem, not a 0–1 material.
Hence this circular “hole” does not have a distinct bound-
ary. For isotropic material, the stress is given by a function
c(φ)r−1/2 where (r, φ) are the polar coordinates centered at
the corner. In order to eliminate this singularity (to make the
stress function locally constant), we have to multiply this
function by ρ(r, φ) = c(φ)r1/2 with some suitable c(φ).
Hence, as we approach the corner, the density will go to zero
as square root of 2 and thus will not be equal to zero even
very close to the corner. This effect is further emphasized by
the fact that we are only using approximate (and thus finite)
values of the stress obtained by the discretization.

Again, we used four iterations of the penalty algorithm,
so four calls to PENSCP. The final objective value was
0.3506. The maximum stress value in each iteration was,
respectively, 2.68, 2.40, 2.23, and 2.12. The total CPU time
was 24 min 1 s and the cumulated number of iterations was
189. (Unconstrained problem: 144 iterations, 12 min 9 s,
maximal stress value 5.7 and objective value 0.3401.)

Example 3 (TC12-s2, FMO) In order to demonstrate the
ability of the code to solve three-dimensional problems,
we consider a three-dimensional L-shaped geometry, prob-
lem TC12-s2 from the PLATO-N library. We only consider
the FMO formulation. The design domain clamped at the
bottom is loaded by a vertical load on the right hand side
of the structure (see Fig. 5). The design space is dis-
cretized by approximately 12.000 finite elements. In both,
the unconstrained as well as the constrained case, we have
used the compliance bound of 19.0. We first minimize the
compliance of the structure without stress constraint. The
computation time for the unconstrained problem was 56
min and 204 iterations were required. At the optimum the
value of the objective was 0.3191 and the highest stress was
8.1290. Figure 6 shows:

– the optimal material density computed by the trace of
the material tensor on every element together with the
deformation of the body (a);

– the principal material orientation (b);
– the von Mises stress distribution (c).

As expected, stress concentration appears along the edge of
the re-entrant corner (see Fig. 6c).

The results with penalized stress constraints for the upper
stress bound sσ = 2.5 are shown in Fig. 7. Using the same

compliance bound we obtained a slightly higher objective
value of 0.3853 (see Fig. 7a). On the other hand, the stress
concentration was completely avoided (see Fig. 7c)—the
highest stress value was 2.5099. Moreover, Fig. 7d indicates
that the stress constraints become active in large areas of
the design domain (activity is indicated by the red color).
Figure 7b provides an explanation how the stress reduction
is achieved: as in the two-dimensional example the material
forms an arch like structure close to the sharp edge. The con-
strained problem was solved in approximately 2 h 27 min,
taking 911 iterations.

Example 4 (TC11-s4, FMO) Finally, we solve a large-scale
three-dimensional example with several load cases, to sim-
ulate the behaviour of the code on real-world examples. We
consider problem TC11-s4 from the PLATO-N library—a
T-bar structure with four load cases discretized by 40.000
finite elements. To solve the FMO problem without stress
constraints, the PENSCP code needed approximately 2 h
and 30 min (using 151 iterations). The stress constrained
problem (with 840.000 design variables and 40.000 stress
constraints) was solved in about 36 h and 40 min (using
608 iterations). Applying a stress bound of 30, the maxi-
mal stress could be reduced from 90.9 (unconstrained case)
to 30.02 (constrained case). On the other hand, the objec-
tive function value grew from 0.325 (unconstrained case)
to 0.425 (constrained case). As in the previous examples,
the compliance of the structure was the same in both cases.
Figure 8 shows the initial structure and Figs. 9 and 10
the results.
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