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Abstract

Probabilistic compositional models, similarly to graphical Markov models, are able to represent multidimen-
sional probability distributions using factorization and closely related concept of conditional independence.
Compositional models represent an algebraic alternative to the graphical models. The system of related con-
ditional independencies is not encoded explicitly (e.g. using a graph) but it is hidden in a model structure
itself. This paper provides answers to the question how to recognize whether two different compositional
model structures are equivalent - i.e. whether they induce the same system of conditional independencies.
Above that, it provides an easy way to convert one structure into an equivalent one in terms of some ele-
mentary operations on structures, closely related ability to generate all structures equivalent with a given
one, and a unique representative of a class of equivalent structures.
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1. Introduction

One of the many ways to handle uncertainty in decision making is to express our knowledge about a
real world problem using a multidimensional probability distribution and base the reasoning process on
probability theory.

The efficient representation of multidimensional probability distribution (the size of probability distri-
butions grows exponentially with the number of involved variables) is possible if the concept of probabilistic
conditional independence (CI) [11] is taken into consideration. Since every CI-statement can be interpreted
as a certain qualitative relationship among involved variables, the dimensionality of the problem can be
reduced and a more effective way of storing the knowledge base can be found.

System of CI statements can be encoded in many different ways and e.g. in case of wide spread graphical
models, this is done by graphs. The idea of compositional models (CM) is to abandon the necessity to use
graphs to describe the CI structure of a modeled distribution. In contrast, CM describe directly how the
multidimensional distribution is computed - composed - from a system of low-dimensional distributions and,
therefore, need not represent respective CI structure explicitly. See [5] for CM basic properties and [10] (the
logical but unofficial prequel of this paper) for more details about CI statements in CM.

The considerable advantage of CM is that they can also be developed in possibility theory [14] and
Dempster-Shafer theory of belief functions [6],[7] equally efficiently. This means that they can also be
applied to situations when the assumption of additivity is not adequate [9]. Nevertheless, in this paper, we
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shall restrict our consideration to probabilistic case only. Another advantage is that CM appear to be less
computationally demanding for the frequent task of computing marginal probability distributions [5].

The thorough investigation of the induced system of CI statements is essential not only for deeper
understanding of CM but also for the further development of learning algorithms [1], etc. In case of CM, the
system of presumed CI-statements is not very obvious at the first glance. It is encoded in the compositional
model structure. However, the structure as a tool for representing such a system is imperfect. Two different
structures may induce the same structural independencies; we say they are equivalent. Then, the question
how to recognize two equivalent structures makes sense and it is of special importance to have a simple rule
to do that (the notion of a rule’s simplicity may differ when considering whether people or a computer will
use it). Another very important aspect is the ability to generate all structures equivalent with a given one
and an easy way to convert a structure into an equivalent one in terms of some elementary operations on
structures. All these questions/problems are known as the equivalence problem.

This text covers the solution of all parts of the equivalence problem and it is closely tied to [10] where a
partial solution of the equivalence problem was given. Let us say, this is its continuation.

2. Basic concepts

In this text, we will deal with a non-empty finite set of finite-valued variables {u, v, w, x, y, z, . . .}, subsets
of which will be denoted by upper-case Roman characters such as U, V,W,Z and specials K,R, S. The
symbol π(U) will be used for a probability distribution defined over variables U . Ordered sequences of
variable sets will be denoted by calligraphic characters like P = (U1, . . . , Un), P ′ = (U1, U2, U3, U4, U5), or
P ′′ = (U2, U1, U3, U4, U5). Notice here that P ′ ̸= P ′′ because P ′′ is a reordering (permutation) of P ′. If not
specified otherwise, P = (U1, . . . , Un) in the following text. I.e. the number of sets in the sequence P is
n. The symbol

∪
P will denote set of all variables from the sequence -

∪
P′ =

∪
P′′ = U1 ∪ . . . ∪ U5 and∪

P = U1 ∪ . . . ∪ Un.

2.1. Permutations

For frequent reorderings we will use the concept of permutation [2] and we employ the well-known fact
that every permutation can be expressed as a product of transpositions. Let us have a set and i, j be two
position indices. The transposition σ = (i j) = (j i) is the permutation which maps i-th element to j-th
position i 7→ j, j-th element to i-th position j 7→ i, and fixes all other elements in the set. We also use
r-cycles: r-cycle (i1 i2 . . . ir) is the permutation which maps i1 7→ i2, i2 7→ i3, . . . , ir−1 7→ ir, ir 7→ i1 and
fixes all other elements in the set. Logically, every r-cycle can be expressed as a product of transpositions
(2-cycles). Note that for example,

(1 2 3 4 5) = (5 4)(4 3)(3 2)(2 1)

does what we want for a cycle of length 5. Analogous calculations establish the same for other lengths.
If σ is a permutation, we shall write iσ for the image of the element i ∈ X under σ (rather then σ(i)).

The principal reason for doing this is that it makes composition of permutations much easier: σ1σ2 will
mean we apply σ1 first and then apply σ2, rather than the other way around. E.g. P(1 2) = (U2, U1, U3, U4)
for P = (U1, U2, U3, U4), in case of natural numbers 2(1 2) = 1, 3(1 2 4) = 3.

2.2. R and S parts

Assume a structure P = (U1, . . . , Un). We use the symbol Ui ∈ P to express the fact that Ui belongs
to P. Such a set will be called a column of P to distinguish it from a general set of variables U ⊆

∪
P .

Moreover, we recognize the auxiliary notation KP
i which reflects the ordering in P: KP

i is the i-th column
in P; e.g., for P = (U1, . . . , Un) it holds that K

P
i = Ui for all i = 1, . . . , n. The reason for double notation

of the same column within P is as follows: Consider P = (U1, U2, U3, U4) and let P ′ be its reordering - for
example - P ′ = (U4, U3, U2, U1) = P(1 4)(2 3). In this case, U3 is the second column in P ′ - i.e. KP′

2 = U3;
on the contrary, U2 is the third column in P ′: KP′

3 = U2. Note that K
P
i = KPσ

iσ for every column and every
permutation σ.
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In addition, each column KP
i can be divided into two disjoint parts with respect to its position in P.

We denote them RP
i and SP

i , where

RP
1 = KP

1 and RP
i = KP

i \(KP
1 ∪ . . . ∪KP

i−1) ∀i = 2, . . . , n

and
SP
1 = ∅ and SP

i = KP
i ∩ (KP

1 ∪ . . . ∪KP
i−1) ∀i = 2, . . . , n

It has the following meaning: RP
i denotes the variables first occurring in the i-th column of the sequence

P (taken from left to right). Conversely, SP
i denotes variables from the i-th column of P which have been

already used in a previous one. Observe that KP
i = RP

i ∪SP
i and {RP

i }i=1,...,n is a disjoint covering of
∪

P .
We say that a column KP

i is trivial in P if RP
i = ∅ (i.e. KP

i = SP
i ). Otherwise, KP

i is non-trivial in P.
Trivial column does not introduce any new variable to the sequence P.

Example 2.1. Consider P = (U1, U2, U3, U4) = ({u}, {v, w}, {u, v, x}, {w, x, y}) and its permutation
P ′ = P(1 4)(2 3) = (U4, U3, U2, U1). For the respective R and S-parts see Table 1. Notice that U3 and U4

i KP
i RP

i SP
i KP′

i RP′

i SP′

i

1 U1 = {u} {u} ∅ U4 = {w, x, y} {w, x, y} ∅
2 U2 = {v, w} {v, w} ∅ U3 = {u, v, x} {u, v} {x}
3 U3 = {u, v, x} {x} {u, v} U2 = {v, w} ∅ {v, w}
4 U4 = {w, x, y} {x, y} {w} U1 = {u} ∅ {u}

Table 1: R- and S-parts of P ′ and P ′ = P(1 4)(2 3).

are trivial in P ′ but not in P.

3. Compositional model

Compositional model is a multidimensional distribution assembled from a sequence of low-dimensional
unconditional distributions, with the aid of an operator of composition. The binary operator of composition
◃ used during the compositioning process is basically a normalized product of its parameters designed to
create a probability distribution over the union of variables for which the input distributions are defined:

Definition 3.1. For two arbitrary distributions π1(U) and π2(V ) their composition is given by the formula

(π1 ◃ π2)(U ∪ V ) =
π1(U)π2(V )

π2(U ∩ V )

if π1(U ∩ V ) ≪ π2(U ∩ V ) 1, otherwise the composition remains undefined.

As stated above, the result of the composition (if defined) is a new distribution. We can iteratively repeat
the process of composition to obtain a multidimensional distribution. Consider a sequence of low-dimensional
probability distributions π1(U1), π2(U2), . . . , πn(Un). If all compositions are defined, then multidimensional
distribution (compositional model) (π1 ◃ π2 ◃ . . .◃ πn)(U1 ∪ U2 ∪ . . . ∪ Un)) is represented by the sequence
π1, π2, . . . , πn. Regarding the fact that the operator ◃ is neither commutative nor associative, we always
apply the operator from left to right; e.g.,

π1 ◃ π2 ◃ π3 ◃ . . .◃ πn = (((π1 ◃ π2)◃ π3)◃ . . .)◃ πn.

Note that the operator of composition is closely related to the notion of conditional probability indepen-
dence; the operator of composition introduces conditional independence among the variables:

1π1(U) ≪ π2(U) denotes that the distribution π1(U) is absolutely continues with respect to distribution π2(U), which, in
our finite settings, means that whenever π1(U) is positive also π2(U) must be positive.
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Assertion 3.2. Let π = π1◃π2 be defined for π1(U) and π2(V ) and U \V ̸= ∅ ≠ V \U . Then (U \V )⊥⊥(V \
U)|(U ∩ V )[π].

Having a model defined by sequence of probability distributions π1(U1), π2(U2), . . . , πn(Un) then the
sequence of sets of variables P = (U1, U2, . . . , Un) is said to be its structure. Considering both a probability
distribution represented by a compositional model and Assertion 3.2, we can see that there are independence
statements induced fully by the model structure. Above that, every probability distribution represented by
a model with the same structure has to meet identical independence statements. We will call them structural
independencies. (To read more about compositional models we refer the reader to the readable survey [5]
written by R. Jiroušek.)

3.1. Persegram

To read structural independencies, we use structure visualization - the so-called persegram. Let P be
a structure of a compositional model. Its persegram is a table in which rows correspond to variables from∪

P (in an arbitrary order) and columns to all sets Ui ∈ P; the ordering of the columns corresponds to
the structure. A position in the table is marked if the respective set contains the corresponding variable.
Markers for the first occurrence of each variable (i.e., the leftmost marker in each row) are box-markers, and
for other occurrences there are bullets. Observe that bullets in the i-th column correspond to variables from
SP
i while box-markers to variables from RP

i .

Remark 3.3. The word ”column” has two different interpretations now. It is either a set from a structure
or a part of a persegram. Note that these two concepts are closely related.

Example 3.4. Consider two structures P and P ′ = P(1 4)(2 3) from Example 2.1 once more. See respective
persegrams in Figure 1. Note that the shape of markers may variate during permutation - e.g. while [U1, u]
is a box-marker in P, it is a bullet in P ′.

U1 U2 U3 U4

y

x

w

v

u

(a) P

U4 U3 U2 U1

y

x

w

v

u

(b) P(1 4)(2 3)

Figure 1: Persegram of a structure and one of its permutation

3.2. Z-avoiding trails

Here we shall demonstrate how to read structural independencies from respective persegram. Such an
independence statement is indicated by the absence of a trail connecting relevant markers and avoiding
others defined below. This technique was originally published in [8] altogether with this theorem: ”Every
independence statement read from the structure (or its persegram) of a compositional model corresponds to
probability independence statement valid for every multidimensional probability distribution represented by a
compositional model with this structure.”

Definition 3.5. A sequence of markers m0, . . . ,mt in a persegram of a structure P is called a Z-avoiding
trail (Z ⊆

∪
P) that connects m0 and mt if it meets the following five conditions:

0. neither m0 nor mt corresponds to a variable from Z
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1. for each s = 1, . . . , t, the couple (ms−1,ms) is either in the same row (i.e., horizontal connection) or
in the same column (vertical connection);

2. each vertical connection must be adjacent to a box-marker (i.e., one of the markers in the vertical
connection is a box-marker) - the so-called regular vertical connection;

3. no horizontal connection corresponds to a variable from Z;

4. vertical and horizontal connections regularly alternate with the following possible exception: at most
two vertical connections may be in direct succession if their common adjacent marker is a box-marker
of a variable from Z;

If a Z-avoiding trail connects two markers corresponding to variables u and v, we say that these variables
are connected by a Z-avoiding trail. This situation will be denoted by u⊥̸⊥v|Z[P].

Example 3.6. Consider structures P = (U1, U2, U3, U4) and P ′ = (U4, U3, U2, U1) from the previous exam-
ples. There are two different sequences of markers highlighted in persegrams of both structures in Figure 2.
In order to illustrate vertical and horizontal connections and to highlight the ordering, each two consecutive
markers are connected with a line, either solid or dashed.

By the solid line we depict sequence τ1 = [U2, w], [U2, v], [U3, v], [U3, x] and by the dashed one sequence
τ2 = [U3, u], [U3, x], [U4, x], [U4, y], [U4, w]. Note that τ1 is Z-avoiding trail in P if Z = ∅ or Z = {u}. (There
are horizontal and regular vertical connections, regularly alternating.) Similarly τ2 is a Z-avoiding trail if
{y} ⊆ Z ⊆ {y, v} (y has to be a part of Z in this case because of two consecutive vert. connections and
Condition 4 of Definition 3.5). Hence for P: w⊥̸⊥x|∅[P], w⊥̸⊥x|u[P], u⊥̸⊥w|y[P] (and many others).

U1 U2 U3 U4

y

x

w

v

u

(a)

U4 U3 U2 U1

y

x

w

v

u

(b)

Figure 2: Two different sequence of markers in a structure and its reordering

On the contrary, τ1 cannot form a Z-avoiding trail in P ′ because its vertical connection in U2 is not
regular - required by Condition 2. of Definition 3.5. However, τ2 represents a Z-avoiding trail under the
same assumptions as in P. Moreover, observe that [U4, y] can be excluded from τ2 in this case because
vertical connection [U4, w], [U4, x] is regular. I.e. τ2 is not the shortest possible trail (by number of markers)
representing u⊥̸⊥v|Z[P ′].

3.3. Structural independencies

As it was stated in the previous subsection, Z-avoiding trails can be used to read structural independen-
cies induced by respective structure.

Definition 3.7. By structural independencies induced by structure P we understand a system of disjoint
triples U, V, Z ⊂

∪
P such that U, V ̸= ∅ and no u ∈ U is connected with any v ∈ V by a Z-avoiding trail in

the structure (in symbol U⊥⊥V |Z[P]). We say that sets of variables U and V are conditionally independent
given Z in P.

Remark 3.8. Considering the previous definition, realize that for any structure P its induced system of
structural independencies is uniquely determined by the set of ”elementary relations” u⊥̸⊥v|Z[P] representing
the existence of a Z-avoiding trail in P connecting u with v, where u and v are singletons.
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4. Equivalence problem

Structure - as a tool for representing CI statements (the so-called structural independencies) - is imperfect.
Two or more different structures can induce the same set of structural independencies and we say that they
are equivalent in that case.

Remark 4.1. Another definition of the equivalence can sound like this: ”Two compositional model structures
are said to be equivalent if the set of probability distributions that can be represented by compositional models
with one of those structures is identical to the set of distributions that can be represented by models with the
other one.”

In the prequel of this paper - in [10] - we described several structure properties invariant within a class
of equivalence.

4.1. Invariants

One of the most important features introduced in [10] is the concept of the so-called non-trivial sets. We
have already defined what is meant by a trivial and non-trivial column of a structure. (Recall that column
KP

i is non-trivial in P if RP
i ̸= ∅.) Non-trivial set is its generalization for an arbitrary set of variables - not

only for columns of the respective structure.

4.1.1. Non-trivial set

We say that a set U is non-trivial in P if ∃KP
i such that U ⊆ KP

i and U∩RP
i ̸= ∅. Otherwise, U is trivial

in P. To read more about non-trivial sets - see [10]. Note that every non-trivial column is a non-trivial set
in respective structure simultaneously. The collection of all non-trivial sets in a structure P is denoted by
N (P) and it has been proven in [10] that it is invariant within a class of equivalence:

Assertion 4.2. If structures P and P ′ are equivalent then N (P) = N (P ′)

In this paper we also add the opposite implication:

Lemma 4.3. If N (P) = N (P ′) then P and P ′ are equivalent.

To prove the lemma, it is enough to realize the close relation between non-trivial sets of cardinality 2
and 3 and Z-avoiding trails.

Observation 4.4. In the language of persegrams, a set is non-trivial if there exists a column containing
all respective markers and at least of of them is a box-marker. Hence, every regular vertical connection
corresponds to a non-trivial set of cardinality 2 and vice-versa. I.e. {u, v} ∈ N (P) ⇔ u⊥̸⊥v|Z[P] for all
Z ⊆

∪
P \{u, v}

Observation 4.5. Assume {u,w}, {v, w} ∈ N (P) and {u, v} ̸∈ N (P). There are basically two types of
structures satisfying these assumptions. See Figure 3 for a simplified situation where columns and rows out
of focus are omitted. Then

Ui
. . . Uj . . . Uk

u

v

w

(a) {u, v, w} ∈ N (P)

. . . Ui
. . . Uj

u

v

w

(b) {u, v, w} ̸∈ N (P)

Figure 3: Illustration of Observation 4.5
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• {u,w, v} ∈ N (P) ⇔ u⊥̸⊥v|Z[P] for all Z ⊆
∪

P \{u, v} such that w ∈ Z. I.e. the trail can be composed
from two regular vertical connections in direct succession with common box-marker in w. (Figure 3a)

• {u,w, v} ̸∈ N (P) ⇔ u⊥̸⊥v|Z[P] for all Z ⊆
∪

P \{u, v} such that w ̸∈ Z. I.e. the trail can be composed
from two regular vertical connections in different columns with a horizontal connection in w. (Figure
3b)

Proof. (Lemma 4.3) The proof of this lemma is based on inductive step showing that every Z-avoiding trail
in one structure has a corresponding Z-avoiding trail in the other one (Remark 3.8). Suppose u⊥̸⊥v|Z[P].
Without loss of generality, choose a trail τ representing u⊥̸⊥v|Z[P] which involves the minimal number of
vertical connections. Denote the number of involved vertical connections as nv(τ).

It is evident for τ with nv(τ) = 1 by Observation 4.4 and assumption of N (P) = N (P ′). In case of τ
with nv(τ) = 2 we have three variables involved: u, v and e.g. w. The choice of τ implies that u cannot
be connected with v directly - there is no shorter trail than τ and therefore {u, v} ̸∈ N (P) by Observation
4.4. On the other hand {u,w}, {v, w} ∈ N (P) from the same reason. Then this is a simple consequence of
Observation 4.5 and assumption of N (P) = N (P ′).

Assume τ with nv(τ) = m ≥ 3 and that the implication holds for trails τ ′ with nv(τ ′) < m. Note that
τ involves m + 1 variables. Denote them u0, u1, . . . , um where u0 = u and um = v ordered with respect to
τ . Then we can split τ into two parts u⊥̸⊥uk|Z[P] and uk⊥̸⊥v|Z[P] in a way uk ̸∈ Z (this is always possible
since there can be at most two vertical connections in a direct succession by the definition, m ≥ 3, and no
horizontal connection can correspond to a variable from Z). Both these trails also exist in P ′ by induction
hypothesis. Obviously, {uk−1, uk}, {uk, uk+1} ∈ N (P) and {uk−1, uk+1} ̸∈ N (P) by the choice of τ . Above
that {uk−1, uk, uk+1} ̸∈ N (P) by Observation 4.5. Since N (P) = N (P ′) then, using Observation 4.5, both
trails end in uk in different columns and one can connect them by horizontal connection in uk and create
u⊥̸⊥v|Z[P ′]. Since the role of P and P ′ is interchangeable, the proof is done.

Remark 4.6. It became apparent that there is a close connection between the system of non-trivial sets and
characteristic imsets introduced by Studený, Hemmecke, and Lindner [13] as a unique algebraic representative
of a Bayesian network structure. Characteristic imset is a 0-1 vector indexed by subsets of the set of
variables. It appears that in the case of Bayesian network structure – acyclic directed graph – inducing the
same independence model as a given CM structure, the characteristic imset of the acyclic directed graph
takes value 1 on components corresponding to non-trivial sets only in the respective CM structure.

Note that the basic idea for introducing such an algebraic representative lies in possibility of using classical
linear programming methods for learning the Bayesian network structure. For example, we refer to [13] for
their solution in the case of undirected forests.

To brighten the connection, the alternative definition of characteristic imset cG of graph G states:
cG(U) = 1 iff there exists u ∈ U with U \ {u} ⊆ paG(u) where paG(u) denotes the parent set of node
u; paG(u) = {v ∈ N |v → u} (Theorem 1 in [13]). On the other hand, it had been shown that Bayesian
networks and CM represent the same class of probability distributions and, above that, a conversion algo-
rithm from CM to Bayesian network and vice-versa was published in [4]. In the language of this text, every
non-trivial set of cardinality two (recall that in case of a persegram it is a pair of markers in one column
where at least one of them is a box-marker) represents an arrow whose orientation is in the direction to the
box-marker. Hence, having a box-marker, parent set of the respective variable is represented by all bullets
and some box-markers in the column. Hence, every non-trivial set corresponds to a subset of a parent set of
a variable.

The number of sets to be possibly non-trivial is exponential in the number of variables. That is why we
do not consider collection of induced non-trivial sets as a handy tool for practical use. Here, we will derive
another closely related feature - the so-called formal ratio.

4.1.2. Formal ratio

Another test of equivalence related to non-trivial sets is the so-called formal ratio. One writes a formal
ratio F(P) for every structure P as follows: in the numerator one lists all sets KP

i while in the denominator
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one lists all sets SP
i for i = 1, . . . , n. Then cancelation is performed: one occurrence of a set U ⊆

∪
P in the

denominator is canceled against one occurrence of U in the numerator. For example the structure P ′ from
Example 2.1 induces the following ”ratio” (See Table 1):

P ′ :
{w, x, y} ∗ {u, v, x} ∗ {v, w} ∗ {u}

∅ ∗ {x} ∗ {v, w} ∗ {u}
.

Then, after cancelation, its formal ratio is

F(P ′) =
{w, x, y} ∗ {u, v, x}

∅ ∗ {x}
.

Lemma 4.7. Two structures P1,P2 are equivalent iff they lead to the same formal ratio F(P1) = F(P2).

To prove the lemma we will employ the fact that system of non-trivial sets characterizes equivalence
(Assertion 4.2, Lemma 4.3) and we introduce affine transformation of a system of non-trivial sets into
formal ratio.

Consider set U . When checking U ∈ N (P) then, by definition of non-trivial set, we are looking for
columns KP

i such that U ⊆ KP
i and simultaneously U∩RP

i ̸= ∅. If there are several columns in P containing
U then, obviously, U has non-empty intersection with respective R part at most once. It is the first column
containing U . Indeed, variables U were already introduced for successive columns and therefore they are in
their S-parts. Hence, for function cP : 2

∪
P → {0, 1} such that cP(U) = |{KP

i : U ⊆ KP
i }|−|{SP

j : U ⊆ SP
j }|

holds
U ∈ N (P) ⇐⇒ cP(U) = 1. (4.1)

Because of the fact that equal sets KP
i = SP

j are canceled in the formal ratio, the result of function cP
would be the same if one uses sets from numerator of respective formal ratio instead of sets KP

i and sets
from its denominator instead of sets SP

j in formula (4.1). I.e. the same characterization of non-trivial sets

can be got using function uP : 2
∪

P → {. . . ,−2,−1, 0, 1} based on respective formal ratio F(P). Its value
for set U is got as the number of occurences of set U in the numerator minus the number of its occurrence
in the denominator. Therefore

cP(U) =
∑

V,V⊇U

uP(V ) (4.2)

and the formula (4.1) can be reformulated as

U ∈ N (P) ⇔ cP(U) =
∑

V,V⊇U

uP(V ) = 1. (4.3)

Note that the function uP uniquely characterizes respective formal ratio F(P). Indeed, one can easily
reconstruct F(P) using the following process: If uP(U) = 0 do nothing, if uP(U) = 1 put U into the
numerator of F(P), and if uP(U) = −k put U k-times into its denominator.

Proof. (Lemma 4.7) ⇐: For two structures P1 and P2 with identical formal ratio evidently uP1(U) = uP2(U)
for all U ⊆

∪
P1

=
∪

P2
. Thus, by (4.3), N (P1) = N (P2) which finishes this part of the proof by Lemma

4.3.
⇒ Assuming the equivalence, N (P1) = N (P2) by Assertion 4.2 and we will show uP1 = uP2 . This will

conclude the proof since respective formal ratios are uniquely reconstructible from these functions. Note
that

∪
P1

=
∪

P2
. Put W =

∪
P1

.
Using (4.3), one can rewrite lemma assumption N (P1) = N (P2) into

cP1(U) = cP2(U) for all U ⊆ W (4.4)

Let us also prove that functions uP1 and uP1 coincide using a proof by induction on |U |. For U = W :
uP1(W ) = cP1(W ) = cP2(W ) = uP2(W ) by (4.4) (there is no superset of W in W in the sum of (4.3)).
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Now assume that the induction holds for all U ⊆ W such that |U | ≥ |W | − k. For U ⊂ W such that
|U | = |W | − k − 1 holds by induction hypothesis

cP1
(U) =

∑
V,V⊇U

uP1
(V ) = uP1

(U) +
∑

V,V⊃U

uP1
(V ) = uP1

(U) +
∑

V,V⊃U

uP2
(U).

Then uP1(U) = uP2(U) by (4.4) which finishes the proof.

Example 4.8. Assume a simple structure P = ({u, v}, {v, w}, {u, v, x}) and its permutation P ′ = ({u, v, x}, {v, w}, {u, v}).
Their ’ratios’ are

P :
{u, v} ∗ {v, w} ∗ {u, v, x}

∅ ∗ {v} ∗ {u, v}
, P ′ :

{u, v, x} ∗ {v, w} ∗ {u, v}
∅ ∗ {v} ∗ {u, v}

.

The structures are equivalent since their formal ratios coincide:

F(P) = F(P ′) =
{v, w} ∗ {u, v, x}

∅ ∗ {v}
.

4.2. Elementary operations

The fact that formal ratio characterizes equivalence gives us a specific notion how two equivalent struc-
tures look like. They both have to contain columns corresponding to numerator of respective formal ratio.
Moreover, columns are in an ordering induced by S-sets listed in the denominator. Considering Example
2.1 and Table 1, realize that respective structures P and P ′ are not equivalent.

Equivalence problem (as formulated in the Introduction) also includes the subproblem of an easy way
to get from P to an equivalent P ′ in terms of some elementary operations invariant the the equivalence.
Considering formal ratio, two types of operations can be considered only: (i) changing the structure ordering
(permutation) in a way that the set of induced S-parts remains the same, or (ii) adding/removing columns
corresponding to ”cancelation” from formal ratio creation process.

Now we will derive two special transpositions. We will restrict ourselves to transpositions of successive
columns only. The reason for such a restriction is simple and, for case of referencing, it is summarized in
the following remark:

Remark 4.9. Recall that both R and S-parts are defined by respective column and the union of previous ones
in the structure. Imagine a transposition of two successive columns, e.g. (k−1 k). Then these parameters are
the same for all other columns in both the original and the permutated structure because the union operator
is commutative. Hence, a transposition of two adjacent columns affects R and S-parts of those columns only.

4.2.1. Constant transposition

Considering the previous remark, we will distinguish two transpositions. The first one is the so-called
constant transposition It is defined in a way that S-parts of affected column do not change. Its idea is
the following: S-part of a column represents variables already introduced in the previous columns of the
structure. Thus, when switching two adjacent columns, it is enough to guarantee that variables from S-part
of the latter one are not introduced in the former one. I.e. in case of transposition (k−1 k) to guarantee
that RP

k−1 ∩ SP
k = ∅.

Definition 4.10. For a structure P of length n ≥ 2 and k ∈ {2, . . . , n} a transposition σ = (k−1 k) = (k k−1)
is said to be constant in P if RP

k−1 ∩ SP
k = ∅. We say that Pσ is a constant transposition of P.

Recall the structure P from Example 2.1. Note that the transposition (1 2) is constant in P - see Table
1.

Lemma 4.11. Consider a structure P and a transposition σ which is constant in P. Then RP
i = RPσ

iσ and
SP
i = SPσ

iσ for all i ∈ {1, . . . , n}.
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Proof. Let σ = (k−1 k). Since KP
i = KPσ

iσ by definition of permutation and Si = Ki \ Ri, it is enough to
prove that RP

i = RPσ
iσ but only for indices i = k−1, k by Remark 4.9.

For index k − 1:

RPσ
(k−1)σ = RPσ

k

= KPσ
k \ (KPσ

1 ∪ . . . ∪KPσ
k−2 ∪KPσ

k−1)

= KP
k−1 \ (KP

1 ∪ . . . ∪KP
k−2 ∪KP

k )

= RP
k−1 \KP

k = RP
k−1

where the first and second equations are given by definition of σ and RPσ
k , respectively. The third equation

is given by the way how any permutation σ works, while the last equation is guaranteed by the fact that σ
is a constant transposition in P: RP

k−1 ∩KP
k = RP

k−1 ∩ SP
k = ∅.

Considering index k: RPσ
kσ = RP

k is a direct consequence of the fact that {RPσ
i }i=1,...,n is a disjoint

partition of
∪

P =
∪

P′ .

Note that it is the previous lemma that states that S-parts of affected columns do not change. It is a
simple consequence of the fact that KP

i = KPσ
iσ for every column and every permutation σ.

Remark 4.12. Notice that if σ is a constant transposition in P, then σ is a constant transposition in Pσ as
well. Indeed, considering σ = (k−1 k), then RPσ

k−1 ∩ SPσ
k = RP

k ∩ SP
k−1 = ∅ by Lemma 4.11 and definition of

RP
k . This also means that the role of P and Pσ is interchangeable in a way that if P ′ = Pσ then P = P ′σ.

To simplify some of the following proofs, we introduce two special generalizations of constant transposi-
tion - cycles - that can be easily replaced by a composition of constant transpositions.

Let P be a structure of lengthn ≥ 2 and i ∈ {1, . . . , n−1}, k ∈ {1, . . . , n−i}. If RP
i ∩(SP

i+1∪. . .∪SP
i+k) = ∅

then σ1 = (i i+1) is constant transposition in P. Similarly, since RPσ1
i+1 = RP

i by Lemma 4.11, then (i+1 i+2)
is constant transposition in Pσ1, etc. Hence, for σ = (i+k i+k−1 . . . i) = (i i+1)(i+1 i+2) . . . (i+k−1 i+k)
holds that Pσ may be obtained from P by a sequence of constant transpositions.

Corollary 4.13. If for P holds that RP
i ∩ (SP

i+1 ∪ . . . ∪ SP
i+k) = ∅ then Pσ, where σ = (i+k i+k−1 . . . i),

may be obtained from P by iterative application of constant transposition.

Similarly, consider a structure P of length n ≥ 3, i ∈ {1, . . . , n − 2}, k ∈ {2, . . . , n − i} such that
KP

i ⊇ SP
i+k. Observe that ∀j such that i < j < i+k holds that: RP

j ∩SP
i+k = ∅. Then, similarly, permutation

σL = (i+1 i+2 . . . i+k) = (i+k i+k−1)(i+k−1 i+k−2) . . . (i+2 i+1) may be replaced by a sequence of constant
transpositions in P by iterative application of Lemma 4.11, and one can conclude:

Corollary 4.14. If for P holds that KP
i ⊇ SP

i+k then Pσ, where σ = (i+1 i+2 . . . i+k), may be obtained
from P by iterative application of constant transposition.

4.2.2. Box transposition

The second transposition is the so-called box transposition. It is designed in a way that involved columns
exchange their S-parts during the transposition. I.e. considering the following Lemma 4.16, while two
adjacent columns switch their position, respective S-parts seems to hold their position.

Definition 4.15. For P with length n ≥ 2 and k ∈ {2, . . . , n} we call transposition σ = (k−1 k) = (k k−1)
a box transposition in P if SP

k \RP
k−1 = SP

k−1. We say that Pσ is box transposition of P.

Recall the structure P ′ from Example 2.1. Note that (1 2) is a box transposition in P ′. Check Table 1.

Lemma 4.16. If σ is a box transposition in P then SP
i = SPσ

i for all i = 1, . . . , n.
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Proof. Suppose σ = (k−1 k). It will be enough to show the lemma for i = k−1, k by Remark 4.9. Using the
definition of box transposition, it holds for index k−1:

SPσ
k−1 = KPσ

k−1 ∩ (KPσ
1 ∪ . . . ∪KPσ

k−2) = KP
k ∩ (KP

1 ∪ . . . ∪KP
k−2) = SP

k \RP
k−1 = SP

k−1.

To prove the same for index k, one has to realize that by definition of box transposition

SP
k−1 ⊆ SP

k and SP
k ⊆ RP

k−1 ∪ SP
k−1 = KP

k−1. (4.5)

Then, employing distributive law for set operations and (4.5), one can finish the proof with

SPσ
k = KP

k−1 ∩ (KP
1 ∪ . . . ∪KP

k−2 ∪KP
k )

= SP
k−1 ∪ (KP

k−1 ∩KP
k ) = SP

k−1 ∪ (KP
k−1 ∩ SP

k )

= KP
k−1 ∩ SP

k = SP
k .

In case of a persegram sets RP
i and SP

i correspond to box-markers and bullets in corresponding column,
respectively. Considering previous lemma, S-parts (and corresponding sets of bullets) seems to keep their
positions during box transposition and box-markers are the only thing that seems to move. If the reader
realizes this link, the adjective ”box” (in ”box transposition”) makes sense.

Remark 4.17. Observe that if σ = (k−1 k) is a box transposition in P, then it is a box transposition in Pσ as
well. To prove this, check the validity of SPσ

k \RPσ
k−1 = SPσ

k−1 which can be rewritten into SP
k \ (KP

k \SP
k−1) =

SP
k−1 using Lemma 4.16. Since U \ (V \W ) = (U \ V )∪ (U ∩W ) for arbitrary sets U, V,W , the equation is

guaranteed by SP
k−1 ⊆ SP

k following from the fact that σ is box transposition in P - recall (4.5). Moreover,
since any transposition is its own inversion then Pσσ = P. Hence the roles of P and Pσ are interchangeable
with respect to σ. (P ′ = Pσ if and only if P = P ′σ)

4.2.3. Reduction/extension

Assume a structure P. Recall its formal ratio F(P) creation process. One lists sets KP
i in the numerator

and sets SP
i in the denominator for all i ∈ {1 . . . , n}. Then cancelation is performed: one occurrence of a

set U in the denominator is canceled against one occurrence of U in the numerator. One can say that the
ratio has been reduced. If there is no ”cancelation” in the process - we say that the structure is reduced as
well.

Definition 4.18. A structure P is said to be reduced if @i, j ∈ {1, . . . , n} such that KP
i = SP

j .

As an example or reduced structure recall the structure P from Example 2.1. Structures that are not
reduced can be found in Example 4.8.

Remark 4.19. An arbitrary reduced structure has several interesting and convenient properties:

• there is no trivial column in it (recall that a column KP
i is trivial in P if KP

i = SP
i ),

• reduced structure consists from columns listed in numerator of respective formal ratio exactly,

• if two reduced structures are equivalent, they are each other’s permutation (their formal ratios coincide
by Lemma 4.7).

Assume a structure P that is not reduced. I.e. ∃i, j ∈ {1, . . . , n} such that KP
i = SP

j . If i = j then the

column KP
i is trivial in P and it may be deleted. And this is the idea on which the following definition is

based:

Definition 4.20. Simple reduction means a change of a structure P into a structure P ′ by removing a
trivial column.

Simple extension means a change of structure a P into a structure P ′′ by adding a trivial column.
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Remark 4.21. Note that formal ratio is invariant with respect to elementary reduction/extension and
constant and box transpositions. Indeed, while this is guaranteed for constant and box transposition by
Lemma 4.11 and 4.16, respectively; application of simple reduction/extension does not represent any threat
due to the cancelation in formal ratio creation process.

Lemma 4.22. Every non-reduced structure can be transformed into its reduced and equivalent form using
simple reduction, constant transposition, and box transposition.

Proof. Assume a structure P that is not reduced. I.e. ∃i, j ∈ {1, . . . , n} such that KP
i = SP

j . If i = j then

the column KP
i is trivial in P and it may be removed by simple reduction. If i > j then, however, KP

i must
be trivial column as well since it is contained in previous column KP

j and therefore KP
i = SP

i . This case has

been already treated. If i < j put k = j− i, i.e. KP
i = SP

i+k. Then we can use special permutation - k-cycle
σC = (i+1 i+2 . . . i+k) - which can be replaced by a sequence of constant transpositions by Corollary
4.14. Considering the fact (i + k)σC = i + 1, it implies that KPσC

i = KP
i = SP

i+k = SPσC
i+1 by Lemma

4.11. Then, however, σb = (i i+1) is a box transposition in PσC and KPσCσb
i+1 = KPσC

i = SPσC
i+1 = SPσCσb

i+1 .

Hence KPσCσb
i+1 is trivial and it can be removed using simple reduction. By iterative application of the above

process one obtains a reduced structure which is equivalent with the given one by Remark 4.21.

Note that every k-cycle (i+1 . . . i+k) simply moves i+k-th column to the i+1-th position and shifts the
other columns accordingly. Hence, we can consider every k-cycle as one operation, easily. Thus - following
the previous proof - when reducing a structure, one needs at most 3 operations for every column causing
that structure is not reduced. If the length of the reduced structure is m and the length of non-reduced is
n, then we need at most 3(n − m) operations. Nevertheless, since one has to scan the whole structure to
find a pair KP

i = SP
j for every i ∈ {1, . . . , n}, the reduction is polynomial in n.

5. Solution of the Equivalence problem

In this last section we present the complete solution of the so-called equivalence problem in all its parts
described in the Introduction. We list characteristic properties of equivalence - i.e. properties necessary
and sufficient to guarantee equivalence of given structures. Similarly, we show how to transform a given
structure into an arbitrary equivalent one structure using elementary operations like constant transposition,
box transposition, simple extension, and simple reduction. This process is described in the proof of the most
important assertion of this paper - Theorem 5.3. First, let us state several auxiliary assertions.

Lemma 5.1. Let P,P ′ be two reduced structures such that F(P) = F(P ′). Then one can transform P ′ to
have the same last column as P (including its R and S-part) with the help of box and constant transpositions
only.

Proof. The assumption of F(P) = F(P ′), together with the fact that P,P ′ are reduced, implies that P
and P ′ are of the same length n and P ′ = Pσ for some permutation σ by Remark 4.19. Then, similarly,
KP

n = KPσ
nσ and we will show how to permute Pσ to move KPσ

nσ to the n-th position. Recall that since both
P and Pσ are reduced, RP

n ̸= ∅ and KP
n ,KPσ

nσ have to be the only columns containing variables from RP
n .

Then
RP

n ∩ SPσ
i = ∅ for all i ̸= nσ. (5.1)

This implies that RPσ
nσ ⊇ RP

n . We can distinguish two cases:

I. RPσ
nσ = RP

n

II. RPσ
nσ ⊃ RP

n

If RPσ
nσ = RP

n then σR = (n n−1 n−2 . . . nσ) (which can be replaced by a sequence of constant
transpositions by (5.1) and Corollary 4.13) moves KPσ

nσ to the n-th position in PσσR. I.e. KPσσR
n = KP

n

and RPσσR
n = RP

n by Lemma 4.11 which finishes the proof.
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If RPσ
nσ ⊃ RP

n then (using KP
n = KPσ

nσ )

SP
n \RPσ

nσ = SPσ
nσ . (5.2)

Since the formal ratios of P and Pσ coincide, then their denominators coincide as well. Hence ∃k > 0 such
that SPσ

nσ+k = SP
n . Then, KPσ

nσ = KP
n ⊃ SP

n = SPσ
nσ+k and PσσL can be, for σL = (nσ+1 nσ+2 . . . nσ+k),

obtained from Pσ by a sequence of constant transpositions by Corollary 4.14 - which, by iterative application
of Lemma 4.11, implies that

SPσσL
nσ+1 = SP

n . (5.3)

After applying this observation to (5.2), one can see that σb = (nσ nσ+1) is a box transposition in PσσL

and SPσσLσb
nσ+1 = SP

n by (5.3) and Lemma 4.16. Moreover, since KPσσLσb
nσ+1 = KP

n by nσσLσb = nσ + 1 then
RPσσLσb

nσσLσb
= RP

n . Then, the case I. occurs for the pair P and PσσLσb which was already treated. This
concludes the proof.

To simplify the following, we introduce the concept of substructure. Consider structure (U1, . . . , Un).
Then (U1), (U1, U2), (U1, U2, U3), . . .,(U1, . . . , Uk) are its substructures for k < n. In other words, substruc-
ture of a structure is its left part containing first k columns.

Remark 5.2. Each of elementary reduction/extension, constant transposition, and box transposition is
defined with respect to previous columns. Hence, if an operation is elementary reduction/extension, constant
transposition, or box transposition in a substructure, then it is elementary reduction/extension, constant
transposition, or box transposition, in corresponding structure, respectively.

Theorem 5.3. Supposing PA and PB are two structures, the following four conditions are mutually equiv-
alent:

(1) PA and PB are equivalent

(2) N (PA) = N (PB)

(3) F(PA) = F(PB)

(4) there exists a sequence P1, ...,Pm, m ≥ 1 of structures over N such that P1 = PA,Pm = PB and Pi+1

is obtained from Pi using one of the elementary reduction/extension, constant transposition, and box
transposition for i = 1, . . . , (m−1).

Proof. We show (1) ⇔ (2) and (1) ⇔ (3) ⇔ (4). Note that the (1) ⇔ (2) is stated in Assertion 4.2 and
Lemma 4.3. Similarly, (1) ⇔ (3) is in Lemma 4.7.

To prove (3) ⇒ (4), first assume that both PA and PB are reduced. This, combined with (3) guarantees
that PA and PB are of the same length n and we prove the implication (3) ⇒ (4) by induction on n. The
induction statement for n ≥ 1 is that (3) ⇒ (4) holds for any pair of structures PA,PB of length m ≤ n.
The implication is evident for n = 1. Assume n ≥ 2.

Observe that (3) altogether with our assumption of reduced structures implies the existence of a sequence
of structures PA = P1, . . . ,Pk such that KPk

n = KPB
n , SPk

n = SPB
n and Pi+1 is obtained from Pi using one

of constant or box transposition for i = 1, . . . , (k−1) according to Lemma 5.1. Then introduce P ′
k and P ′

B

as the substructures of Pk and PB , respectively, by removing their last column (which is the same including
its R and S-part). Note that F(P ′

k) = F(P ′
B) by Remark 4.21 and the definition of substructures. By the

induction hypothesis, there exists a desired sequence of P ′
k, . . . ,P ′

k+m = P ′
B where m ≥ 1. Introduce Pk+i as

a structure obtained from P ′
k+i by adding a column KPB

n at the last position for i = 1, . . . ,m. Using Remark
5.2, Pk+i+1 is obtained from Pk+i using one of elementary reduction/extension, constant transposition, and
box transposition for i = 1, . . . , (m−1). Hence Pk+m = PB which concludes the induction step.

If PA or PB is not reduced, then one may easily create sequences of structures PA = PA1 , . . . ,PAk
and

PB = PB1 , . . . ,PBl
where both PAk

and PBl
are reduced and PAi+1 or PBj+1 is obtained from PAi or

PBj , respectively, by an elementary reduction/extension, constant transposition, or box transposition for
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i = 1, . . . , (k−1) and j = 1, . . . , (l−1) by Lemma 4.22. Since formal ratios of both PAk
,PBl

coincide by
Remark 4.21, the case where both structures are reduced occurs for the pair (PAk

,PBl
) which was already

treated.
The proof of (4) ⇒ (3) follows from Remark 4.21

Note that the above proof is constructive when transforming one structure into another equivalent one.
We need at most 3n operations for the transformation when having two reduced structures of length n (let
us consider k-cycle as one operation) - we need at most two k-cycles and one box transposition for every
column. Considering non-reduced structures of length m1 and m2 that have length n in their reduced case,
then we need at most 3(m1 − n) + 3(m2 − n) + 3n operations. However, the complexity of the algorithm
(when including resources for finding identical columns and columns with the same S-part) is polynomial.

Conclusions

This paper deals with the so-called equivalence problem whose solution occupies a large part of this text.
The equivalence problem is understood as a problem of how to recognize whether two given structures P
and P ′ over the same set of variables induce the same set of structural independencies - i.e. whether they
can represent the same class of probability distributions. It is of special importance to have a simple rule
to recognize that two structures are equivalent in this sense, and an easy way to convert P into P ′ in terms
of some elementary operations on structures. Another very important aspect is the ability to generate all
structures which are equivalent to a given structure.

In this text, we present the solution of all above-mentioned subproblems. We introduced and described
two structure properties - characteristics - necessary and sufficient to guarantee the equivalence of respective
structures. They are the so-called non-trivial sets and formal ratio. It should be stressed that using formal
ratio, the equivalence can be tested in polynomial time, while neither Z-avoiding trails nor non-trivial sets
are operational. Moreover, formal ratio represents a unique representative of an equivalence class. We also
introduce four elementary operations and we shown the way how to transform a structure into an arbitrary
equivalent one using these operations. (See Proof of Theorem 5.3, which is constructive.) Moreover, using
this set of operations one can generate the complete class of equivalent structures - nevertheless, there is
still no efficient algorithm to do that and this area is a problem open to further research.
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gratitude belongs to Milan Studený. Thanks to his design of Lemma 4.7, the whole work could be signifi-
cantly simplified - if compared with the procedure published in the thesis. I would also like to thank both
anonymous reviewers for their careful reading and valuable suggestions.

References

[1] V. B́ına: Multidimensional probability distributions: Structure and learning. (Doctoral disertation) University of Eco-
nomics, Prague (2011).

[2] M. Bona: Combinatorics of Permutations, Chapman Hall-CRC, (2004). ISBN 1-58488-434-7.
[3] D. Geiger, T. Verma, J. Pearl: Identifying independence in bayesian networks. Networks 20:5 (1990), 507–534.
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[5] R. Jiroušek: Foundations of compositional model theory. International Journal of General Systems 40:6 (2011), 623–678.
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[9] R. Jiroušek and J. Vejnarová: General framework for multidimensional models. International journal of intelligent
systems, 18 (2003), 107127.

[10] V. Kratochv́ıl: Characteristic Properties of Equivalent Structures in Compositional Models. International Journal of
Approximate Reasoning 52:5 (2011), 599–612.

[11] J. Pearl: Probabilistic Reasoning in Intelligent systems: Networks of Plausible Inference, Margan Kaufmann, San Mateo,
CA, (1988).

[12] J. Pearl: Causality: Models, Reasoning, and Inference, Cambridge University Press, (2000).
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