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Oscillations and concentrations in sequences of gradients {∇uk}, bounded in Lp(Ω;RM×N ) if
p > 1 and Ω ⊂ R

n is a bounded domain with the extension property inW 1,p, and their interaction
with local integral functionals can be described by a generalization of Young measures due to
DiPerna and Majda. We characterize such DiPerna-Majda measures, thereby extending a result
by Kałamajska and Kruž́ık [13], where the full characterization was possible only for sequences
subject to a fixed Dirichlet boundary condition. As an application we state a relaxation result
for noncoercive multiple-integral functionals.
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1. Introduction

Oscillations and/or concentrations in weakly convergent sequences appear in many
problems in the calculus of variations, partial differential equations, or optimal
control theory, which admit only Lp but not L∞ a priori estimates. Young mea-
sures [31] successfully capture oscillatory behavior of sequences and found rich
applications in many problems of applied mathematics (see e.g. [20, 28]), how-
ever, they completely miss concentrations. There are several available tools to
deal with concentrations. They can be considered as generalization of Young
measures, see for example Alibert’s and Bouchitté’s approach [1], DiPerna’s and
Majda’s treatment of concentrations [7], or Fonseca’s method described in [10]. An
overview can be found in [29, 30]. Moreover, in many cases, we are interested in
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oscillation/concentration effects generated by sequences of gradients. Oscillatory
behavior of gradients was described by Kinderlehrer and Pedregal [15, 14] in terms
of gradient Young measures, cf. also [27]. The first attempt to characterize both
oscillations and concentrations in sequences of gradients is due to Fonseca, Müller,
and Pedregal [12]. They dealt with a special situation of {g(·)v(∇uk(·))}k∈N where
v is positively p-homogeneous, uk ∈ W 1,p(Ω;RM), p > 1, with g continuous and
vanishing on ∂Ω. Later on, a characterization of oscillation/concentration effects
in terms of DiPerna’s and Majda’s generalization of Young measures was given
in [13] for arbitrary integrands and in [11] for sequences living in the kernel of a
first-order differential operator. Recently, Kristensen and Rindler [17] character-
ized oscillation/concentration effects in the case p = 1. Nevertheless, a complete
analysis of boundary effects generated by gradients is still missing. We refer to
[13] for the case where uk = u + W

1,p
0 (Ω;RM) on the boundary of the domain.

As already observed by Meyers [24], concentration effects at the boundary are
closely related to the sequential weak lower semicontinuity of integral functionals
I : W 1,p(Ω;RM) → R: I(u) =

∫

Ω
v(∇u(x)) dx where v : RM×N → R is continuous

and such that |v| ≤ C(1 + | · |p) for some constant C > 0. Recently, the first au-
thor [18] stated an integral necessary and sufficient condition ensuring weak lower
semicontinuity in W 1,p which is equivalent to the one of Meyers, however, much
easier to handle due to its local character. We also refer to [2] where the weak
lower semicontinuity is treated using the so-called Biting Lemma [4].

The aim of this contribution is to give necessary and sufficient conditions ensuring
that a given DiPerna-Majda measure is generated by gradients without any restric-
tions on the generating sequence. In particular, we state a relaxation result for non-
coercive integral functionals extending results by Dacorogna [6], see Theorem 3.2.
Let us mention that for coercive variational problems, i.e., I(u) =

∫

Ω
v(∇u(x)) dx

with c(−1+|U |p) ≤ v(U) ≤ C(1+|U |p), p > 1, minimizing sequences do not exhibit
concentrations. In particular, if {uk}k∈N ⊂ W 1,p(Ω;RM) is bounded and minimiz-
ing for I then {|uk|

p}k∈N is equiintegrable. This is a consequence of the so-called
decomposition lemma proved in [12] and in an earlier version in [16]. However, for
different growth and coercivity conditions, for instance if N = M , v is finite on in-
vertible matrices and satisfies c(−1+|U |p+|U−1|p) ≤ v(U) ≤ C(−1+|U |p+|U−1|p),
the corresponding decomposition lemma is not available and appearance of con-
centrations in minimizing sequences cannot be a priori excluded [3]. We emphasize
that the aforementioned growth and coercivity conditions are relevant in nonlinear
elasticity where U is the deformation gradient and U−1 belongs to the so-called
Seth-Hill family of strain measures see e.g. [5, 25]. In particular, v(U) → ∞ if
detU → 0. Hence, DiPerna-Majda measures can serve as a suitable tool for relax-
ation. We also refer to [22] for optimal control problems exhibiting concentrations
and for their relaxation in terms of these measures including numerical approxi-
mation and to [23] for a mathematical model of debonding where concentration
effects appear, as well.
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2. Notation and preliminaries

Let us start with a few definitions and with an explanation of our basic notation.
Having a bounded domain Ω ⊂ R

N we denote by C(Ω) the space of continuous
functions from Ω into R. Its subspace C0(Ω) consists of functions in C(Ω) whose
support is contained in Ω. We write “γ-almost all� or “γ-a.e.� if we mean “up to
a set with γ-measure zero�. If γ is the N -dimensional Lebesgue measure and M ⊂
R

N we omit writing γ in the notation. Furthermore, W 1,p(Ω;RM), 1 ≤ p < +∞
denotes the usual space of measurable mappings which are together with their first
(distributional) derivatives integrable to the p-th power. The weak convergence
in these spaces will be standardly denoted by “⇀�. The support of a measure
σ ∈ rca(Ω) is a smallest closed set S such that σ(A) = 0 if S ∩A = ∅. We denote
by ‘w-lim’ the weak limit and by Br(x0) an open ball in R

N centered at x0 and the
radius r > 0. Given a set E, we write χE for its characteristic function, i.e., χE = 1
on E and χE = 0 on the complement of E. Moreover, if E ⊂ R

N and r > 0, we
define the r-neighborhood of E by (E)r :=

⋃

x∈E Br(x) . The dot product on R
N

is defined as a · b :=
∑N

i=1 aibi, and analogously on R
M×N . If a ∈ R

M and b ∈ R
N

then a⊗ b ∈ R
M×N with (a⊗ b)ij = aibj, and I denotes the identity matrix.

2.1. Global assumptions

Unless stated otherwise, the following is assumed throughout the article:

1 < p < ∞, M ∈ N, N ∈ N with N ≥ 2, (H1)

Ω ⊂ R
N is open and bounded with boundary of class C1, (H2)

and

R is a ring of bounded, continuous functions v0 : R
M×N → R, such that

(i) R is a complete and separable subset of L∞(RM×N),

(ii) C0(R
M×N) ⊂ R and 1 ∈ R,

(iii) v0( ·Q) ∈ R for every v0 ∈ R and every Q ∈ SO(N), and

(iv) (1) holds for each v0 ∈ R,

(H3)

i.e.,

there exists α = α(v0) : [0,∞) → [0,∞) continuous with α(0) = 0 s.t.

|v0(s)− v0(t)| ≤ α

(

|s− t|

1 + |s|+ |t|

)

for every s, t ∈ R
M×N .

(1)

Remark 2.1. Neither (ii) nor (iii) are real restrictions, since we can always extend
a given ring to achieve this artificially.

Remark 2.2. A nontrivial example for a function v0 satisfying (1) is v0(s) :=
sin(log(1 + |s|2)), s ∈ R

M×N . We will use (1) usually in form of the equivalent
condition (6) derived in Lemma 4.1 below. Without the technical assumption (6),
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a lot of our arguments break down; in particular, it is then no longer clear if p-
qscb integrands (see Definition 2.6 below) are still precisely those that give rise
to functionals that are weakly lower semicontinuous along purely concentrating
sequences, which is the cornerstone of our discussion of the boundary.

2.2. DiPerna-Majda measures

In the context of DiPerna-Majda measures, we rely on the notation listed below.
For more background information, the reader is referred to [29, 13] and [19].

• Υp
R(R

M×N) :=
{

v : RM×N → R
∣

∣ v(s) = v0(s)(1 + |s|p) for a v0 ∈ R
}

.

• βRR
M×N denotes the compactification of RM×N corresponding to R, i.e., a

compact set into which R
M×N is embedded homeomorphically and densely,

such that each v0 ∈ R has a unique continuous extension onto βRR
M×N .

Since we assume R to be separable, the topology of βRR
M×N is metrizable.

For more details, the reader is referred to [9].

• rca(S) denotes the set of regular countably additive set functions on the Borel
σ-algebra on a metrizable set S (cf. [8]), and its subset rca+1 (S) denotes regular
probability measures on a set S.

• For v0 ∈ R and ν ∈ rca(βRR
M×N), we write

〈

ν, v0
〉

:=

∫

βRRM×N

v0(s) ν(ds),

〈

ν, v0
〉

∞
:=

∫

βRRM×N\RM×N

v0(s) ν(ds).

• σs and dσ, respectively, denote the singular part and the density of the abso-
lutely continuous part of σ ∈ rca(Ω), with respect to Lebesgue decomposition.

• For σ ∈ rca(Ω), the space L∞
w (Ω, σ; rca(βRR

M×N)) consists of those functions
x 7→ νx which are weak∗-measurable (i.e., x 7→

〈

νx, v0
〉

is Borel measurable
for every v0 ∈ R) and σ-essentially bounded.

• Let 1 ≤ p < ∞, let (Un) ⊂ Lp(Ω;RM×N) be a bounded sequence, and let
σ ∈ rca(Ω) and ν ∈ L∞

w (Ω, σ; rca(βRR
M×N)). We call (σ, ν) the DiPerna-

Majda measure generated by (Un), if

∫

Ω

ϕ(x)v(Un(x)) dx −→
n→∞

∫

Ω

ϕ(x)
〈

νx, v0
〉

σ(dx), (2)

for every ϕ ∈ C(Ω) and every v0 ∈ R, with v(·) := v0(·)(1 + |·|p). Ev-
ery bounded sequence in Lp(Ω;RM×N) has a subsequence which generates a
DiPerna-Majda measure, see [7].

• The set of all DiPerna-Majda-measures generated by a bounded sequence in
Lp(Ω;RM×N) is denoted by DMp

R(Ω;R
M×N).

• The set of all DiPerna-Majda-measures in DMp
R(Ω;R

M×N) generated by gra-
dients, i.e., by (∇un) for a bounded sequence (un) ⊂ W 1,p(Ω;RM), is denoted
by GDMp

R(Ω;R
M×N).
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In addition,we recall the following two general results on DiPerna-Majda-measures:

Proposition 2.3 ([21]). Let 1 ≤ p < ∞, let Ω ⊂ R
N be a bounded open domain

such that |∂Ω| = 0, let R be a separable complete subring of the ring of all continu-
ous bounded functions on R

M×N and let (σ, ν) ∈ rca(Ω)×L∞
w (Ω, σ; rca(βRR

M×N)).
Then (σ, ν) ∈ DMp

R(Ω;R
M×N) if and only if all of the following conditions are sat-

isfied:

(i) σ ≥ 0;

(ii) σ̄ ∈ rca(Ω), σ̄(dx) := νx(R
M×N)σ(dx), is absolutely continuous with respect

to the Lebesgue measure;

(iii) for a.a. x ∈ Ω,

νx(R
M×N) > 0, and dσ̄(x) =

(∫

RM×N

νx(ds)

1 + |s|p

)−1

νx(R
M×N);

(iv) for σ-a.a. x ∈ Ω, νx ≥ 0 and νx(βRR
M×N) = 1.

Remark 2.4. Proposition 2.3 (ii) implies that for σs-a.e. x ∈ Ω, νx(R
M×N) = 0.

In particular, νx(R
M×N) = 0 for σ-a.e. x ∈ ∂Ω (provided that |∂Ω| = 0), whence

〈

νx, v0
〉

=
〈

νx, v0
〉

∞
for σ-a.e. x ∈ ∂Ω and every v0 ∈ R.

Moreover, as a consequence of (ii) and (iii), the density of the absolutely contin-
uous part of σ with respect to the Lebesgue measure is given by

dσ(x) =

(∫

RM×N

νx(ds)

1 + |s|p

)−1

. (3)

2.3. Quasiconvexity and p-quasi-subcritical growth from below

Two notions related to the weak lower semicontinuity of integrals functionals on
W 1,p play an important role in our main result. The first one is the well-known
quasiconvexity of Morrey [26]:

Definition 2.5 (quasiconvexity and quasiconvex envelope, e.g. see [6]).
We say that a function f : RM×N → R is quasiconvex if for some bounded Lipschitz
domain Λ ⊂ R

N , the integrals below are defined and

∫

Λ

f(s+∇ϕ(y)) dy ≥

∫

Λ

f(s) dy

for every s ∈ R
M×N and every ϕ ∈ W

1,∞
0 (Λ;RM). The quasiconvex envelope Qf

of f is defined as the largest quasiconvex function below f , i.e., for s ∈ R
M×N ,

Qf(s) := sup
{

g(s)
∣

∣ g : RM×N → R is quasiconvex and g ≤ f
}

,

with Qf ≡ −∞ if there is no admissible g.
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If f is locally bounded, its quasiconvex envelope can be represented as

Qf(s) = inf

{

1

|Λ|

∫

Λ

f(s+∇ϕ(y)) dy

∣

∣

∣

∣

ϕ ∈ W
1,∞
0 (Λ;RM)

}

, (4)

see [6].

The following p-quasi-subcritical growth condition from below, related to weak lower
semicontinuity along purely concentrating sequences, first appeared in [18] (al-
though the term p-qscb was not used for it there). Its relevance comes from
the fact that integral functionals of the form u 7→

∫

Ω
f(x,∇u(x)) dx (assuming

a p-growth condition and some smoothness) are wlsc in W 1,p if and only if the
integrand is quasiconvex and p-qscb, by the main result of [18].

Definition 2.6 (p-iqscb, ν-p-bqscb, p-qscb at x, p-qscb). Let p ∈ [1,∞), and
f : RM×N → R be continuous. We say that f is p-inner quasi-subcritical from below
(p-iqscb) if

for every ε > 0, there exists Cε ≥ 0 such that
∫

B1

f(∇ϕ) dx ≥ −ε

∫

B1

|∇ϕ|p dx− Cε for every ϕ ∈ W
1,p
0 (B1;R

M).

Given a unit vector ν ∈ R
N , we say that f is ν-p-boundary quasi-subcritical from

below (ν-p-bqscb) if

for every ε > 0, there exists Cε ≥ 0 such that
∫

Dν

f(∇ϕ) dx ≥ −ε

∫

Dν

|∇ϕ|p dx− Cε for every ϕ ∈ W
1,p
0 (B1;R

M).

Here, B1 = B1(0) is the open unit ball in R
N and Dν := {x ∈ B1 | x · ν < 0}.

Moreover, given an open, bounded set Ω ⊂ R
N with boundary of class C1, we say

that f is called p-quasi-subcritical from below at x0 ∈ Ω (p-qscb at x0), if, in case
x0 ∈ Ω, f is p-iqscb, and, in case x0 ∈ ∂Ω, f is ν(x0)-p-bqscb, where ν(x0) denotes
the outer normal to ∂Ω at x0. Finally, we say that f is p-quasi-subcritical from
below (p-qscb) if f is p-iqscb and ν-p-bqscb for every ν ∈ SN−1.

Remark 2.7. Quasiconvex functions are automatically p-iqscb. However, there
exist functions that are p-qscb, but whose quasiconvex envelope is not. Take, for
instance,

f : R2×2 → R, f(s) := max
{

det(s), − |s|
3

2

}

.

In this case, f is 2-qscb, while Qf = det (which is not 2-qscb, see [18]):

f is 2-qscb: The trivial estimate f(s) ≥ − |s|
3

2 implies that for every ε > 0, there
exists Cε > 0 such that

f(s) ≥ −ε |s|2 − Cε, for every s ∈ R
2×2.

In particular, f is 2-qscb.
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Qf ≥ det: Since f(s) ≥ det(s), and the determinant is quasiconvex, we have that
Qf(s) ≥ det(s) for every s ∈ R

2×2.

Qf ≤ det: Let s = (s1|s2) ∈ R
2×2, with s1 and s2 denoting the first and second

column of s, respectively. If det(s) ≥ 0, f(s) = det(s) and thus Qf(s) ≤ det(s). In
particular, Qf(0|s2) ≤ det(0|s2) for arbitrary s2 ∈ R

2×1. If det(s) < 0, f(hs1|s2) =

det(hs1|s2) whenever h ≥ 0 is large enough, since det(hs1|s2) |(hs1|s2)|
− 3

2 =O(h− 1

2 )
→ 0 as h → ∞. Thus, Qf(hs1|s2) ≤ det(hs1|s2) both if h = 0 and if h is large.
Moreover, quasiconvexity implies rank-1-convexity, whence Qf is convex along the
line h 7→ (hs1|s2). Since the determinant is affine along this line, we infer that
Qf(hs1|s2) ≤ det(hs1|s2) for every h ∈ [0,∞), and for h = 1, this yields that
Qf(s) ≤ det(s).

3. Results

Our main result characterizes DiPerna-Majda measures generated by gradients:

Theorem 3.1. Assume that (H1)–(H3) hold, and let (σ, ν) ∈ DMp
R(Ω;R

M×N).
Then (σ, ν) ∈ GDMp

R(Ω;R
M×N) if and only if the following four conditions are

satisfied simultaneously:

(i) There exists u ∈ W 1,p(Ω;RM) such that for a.e. x ∈ Ω,

∇u(x) = dσ(x)

∫

βRRM×N

s

1 + |s|p
νx(ds);

(ii) With u from (i), for a.e. x ∈ Ω and every v ∈ Υp
R(R

M×N),

Qv(∇u(x)) ≤ dσ(x)

∫

βRRM×N

v(s)

1 + |s|p
νx(ds);

(iii) For σ-a.e. x ∈ Ω and every v ∈ Υp
R(R

M×N) such that Qv > −∞,

0 ≤

∫

βRRM×N\RM×N

v(s)

1 + |s|p
νx(ds);

(iv) For σ-a.e. x ∈ ∂Ω and every v ∈ Υp
R(R

M×N) which is p-qscb at x,

0 ≤

∫

βRRM×N\RM×N

v(s)

1 + |s|p
νx(ds).

Here, dσ denotes the density of the absolutely continuous part of σ with respect to
the Lebesgue measure, which is explicitly given by (3).

The proof is the content of Section 6 and Section 7.

The above theorem can be used to prove the following relaxation result similar to
[6, Th. 9.1, 9.8].



730 S.Krömer, M.Kruž́ık / Oscillations and Concentrations up to the Boundary

Theorem 3.2. Assume that (H1)–(H3) hold, let h0 ∈ C(Ω̄×βRR
M×N), let h(x, s)

:= h0(x, s)(1 + |s|p) and assume that h(x, ·) is p-qscb at x for all x ∈ ∂Ω. For
u ∈ W 1,p(Ω;RM) we define

H(u) :=

∫

Ω

h(x,∇u) dx and QH(u) :=

∫

Ω

Qh(x,∇u) dx,

with the quasiconvex envelope Qh(x, ·) of h(x, ·). Then the following holds:

(i) If un⇀u in W 1,p(Ω;RM), then

lim inf
n→∞

H(un) dx ≥ QH(u).

(ii) For every ε > 0 and for every ũ ∈ W 1,p(Ω;RM), there exists a sequence
(ũn) ⊂ ũ+W

1,p
0 (Ω;RM) such that ũn ⇀ ũ in W 1,p(Ω;RM),

lim
n→∞

∫

Ω

h(x,∇ũn) dx ≤







∫

Ω

Qh(x,∇ũ) dx+ ε if |E| = 0,

−ε−1 if |E| > 0,

where E := {x ∈ Ω |Qh(x, ·) ≡ −∞}.

The proof is given in Section 8.

Remark 3.3.

(i) Theorem 3.2 implies that infH = infQH on W 1,p(Ω;RM).

(ii) By Theorem 3.2 (ii), QH is an upper bound for the sequentially weakly
lower semicontinuous (swlsc) envelope of H in W 1,p(Ω;RM). Hence, if we
assume that QH is swlsc, then QH is the swlsc envelope of H. However, it
may happen that QH is not swlsc. Of course, Qh is always quasiconvex, but
even if it is a fairly regular finite-valued function, it can fail to be p-qscb as
illustrated in Remark 2.7.

(iii) In Theorem 3.2 (ii), it is not always possible to obtain an “exact� recovery
sequence, corresponding to ε = 0. However, this phenomenon can only occur
if we do not have p-coercivity, cf. [6, Ex. 9.3 and Th. 9.8].

(iv) If h(x, ·) is not p-qscb at some point x0 ∈ Ω, then the swlsc envelope of H in
W 1,p(Ω;RM) is identically −∞. More precisely, for every u ∈ W 1,p(Ω;RM)
and every K ∈ N, there exists a bounded sequence (un) ⊂ W 1,p(Ω;RM)
such that the support of un − u in Ω shrinks to x0 (in particular, un ⇀ u)
and limn→∞H(un) ≤ −K. This can be seen following the proof of [18,
Proposition 3.8]1.

1One has to change the dilation constant αn employed there by a fixed factor, to obtain
‖∇un‖Lp = K

ε
+ 1

2
instead of ‖∇un‖Lp = 1 (with our K and ε from the context in [18]).
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4. Auxiliary results for concentrating sequences and p-qscb functions

We recall that a function v : RM×N → R is called p-Lipschitz (p ≥ 1) if there is
α > 0 such that for every s1, s2 ∈ R

M×N

|v(s1)− v(s2)| ≤ α(1 + |s1|
p−1 + |s2|

p−1)|s1 − s2| .

A key problem for us is the treatment of non-affine parts of the boundary. Of
course, we can use local maps to transform a neighborhood of a boundary point
into a situation with locally affine boundary. However, in expressions involving
nonlinear integrands v (or f , as in the definition of p-qscb) and non-compact sets
of test functions or sequences with concentrations, this introduces an error that
(as far as we understand) cannot be controlled without suitable uniform continuity
properties of v. In [18], a p-Lipschitz condition was used for this purpose, but here,
we rely on the more general property (6) related to our assumption (1) in (H3) as
follows:

Lemma 4.1. Let 1 ≤ p < ∞, let v0 : RM×N → R be continuous and bounded,
and let v(s) := v0(s)(1 + |s|p) for s ∈ R

M×N . Then (1) holds if and only if there
exists β : [0,∞) → [0,∞) continuous and nondecreasing with β(0) = 0 such that
for every s ∈ R

M×N and every t ∈ R
M×N

|v(s)− v(t)| ≤ β

(

|s− t|

1 + |s|+ |t|

)

(1 + |s|p + |t|p). (5)

Moreover, if Λ ⊂ R
N is measurable with 0 < |Λ| < ∞, then (5) is equivalent to

the following uniform continuity of the Nemytskii operator U 7→ v ◦ U , Lp → L1,
on bounded subsets of Lp(Λ;RM×N):

there exists γ : [0,∞) → [0,∞) continuous with γ(0) = 0 such that

‖v ◦ U − v ◦W‖L1 ≤ γ (‖U −W‖Lp) (1 + ‖U‖pLp + ‖W‖pLp) ,

with all norms taken over Λ, for every U,W ∈ Lp(Λ;RM×N).

(6)

Remark 4.2. For instance, both (1) and (6) hold if either v is p-Lipschitz or
lim|s|→∞ v0(s) = 0.

Proof of Lemma 4.1.
(1) implies (5): Given (1), we have that

|v(s)− v(t)|

≤ |v0(s)− v0(t)| (1 + |s|p) + |v0(t)|
∣

∣ |t|p − |s|p
∣

∣

≤ α

(

|s− t|

1 + |s|+ |t|

)

(1 + |s|p) + C
|s− t|

1 + |s|+ |t|
(1 + |s|p + tp)

for some constant C, whence (5) holds with β(δ) := α(δ) + Cδ.
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(5) implies (1): Since both properties are symmetric in s and t, it suffices to
study the case |s| ≥ |t|. Given (5), we have that

|v0(s)− v0(t)| (1 + |s|p)

=
∣

∣v0(s)(1 + |s|p)− v0(t)(1 + |t|p) + v0(t)(1 + |t|p)− v0(t)(1 + |s|p)
∣

∣

≤
∣

∣v(s)− v(t)
∣

∣+ |v0(t)| (|s|
p − |t|p)

≤ β

(

|s− t|

1 + |s|+ |t|

)

(1 + 2 |s|p) + C
1 + |s|p

1 + 2 |s|
|s− t|

≤ 2β

(

|s− t|

1 + |s|+ |t|

)

(1 + |s|p) + C
|s− t|

1 + |s|+ |t|
(1 + |s|p)

for some constant C, whence (1) holds α(δ) := 2β(δ) + Cδ.

(6) implies (5): Since v is uniformly continuous on bounded sets, it suffices

to show (5) for 1 + |s| + |t| ≥ |Λ|−
1

p . Let Λs,t ⊂ Λ be a subset of measure
|Λs,t| = 1

(1+|s|+|t|)p
. By choosing U(x) := sχΛs,t

(x) and W (x) := tχΛs,t
(x), (6)

yields that

|Λs,t| |v(s)− v(t)| ≤ γ
(

|Λs,t|
1

p |s− t|
)

(1 + |Λs,t| |s|
p + |Λs,t| |t|

p),

and since |Λs,t|
−1 = (1 + |s| + |t|)p ≤ 3p−1(1 + |s|p + |t|p), this implies (5) with

β := (3p−1 + 1)γ.

(5) implies (6): Let U,W ∈ Lp(Λ;RM×N), let

Λ1 :=

{

x ∈ Λ

∣

∣

∣

∣

|U(x)−W (x)|

1 + |U(x)|+ |W (x)|
> ‖U −W‖

1

2

Lp(Λ;RM×N )

}

and let Λ2 := Λ \ Λ1. W.l.o.g., we may assume that β is nondecreasing. By
applying (5) under the integral, we thus get that

∫

Λ1

|v(U(x))− v(W (x))| dx

≤

∫

Λ1

β

(

|U(x)−W (x)|

1 + |U(x)|+ |W (x)|

)

(1 + |U(x)|p + |W (x)|p) dx

≤ β(1)

∫

Λ1

(1 + |U(x)|+ |W (x)|)p dx

< β(1) ‖U −W‖
p
2

Lp(Λ;RM×N )
,

since (1+|U(x)|+|W (x)|)p < ‖U −W‖
− p

2

Lp(Λ;RM×N )
|U(x)−W (x)|p for every x ∈ Λ1.

In addition, (5) and the definition of Λ2 immediately yield that
∫

Λ2

|v(U(x))− v(W (x))| dx

≤ β
(

‖U −W‖
1

2

Lp(Λ;RM×N )

)

∫

Λ2

(1 + |U(x)|p + |W (x)|p) dx.
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Combining, we obtain (6) with γ(δ) := β(δ
1

2 ) + β(1)δ
p
2 .

We now recall some results of [18] on weak lower semicontinuity along purely
concentrating sequences:

Theorem 4.3. Let Ω ⊂ R
N be open and bounded with boundary of class C1, let

1 < p < ∞, let ϕ ∈ C(Ω) with ϕ ≥ 0 on Ω, let u ∈ W 1,p(Ω;RM) and let
v ∈ Υp

R(R
M×N) satisfy (6). If v is p-qscb at every x ∈ Ω with ϕ(x) > 0, then

lim inf
n→∞

∫

Ω

v(∇wn(x) +∇u(x))ϕ(x) dx ≥

∫

Ω

v(∇u(x))ϕ(x) dx

for every sequence (wn) ⊂ W 1,p(Ω;RM) which is bounded in W 1,p and satisfies
|{wn 6= 0} ∪ {∇wn 6= 0}| → 0.

Proof. Step 1 : u = 0. If u = 0 and v satisfies a p-Lipschitz condition, the asser-
tion immediately follows from Theorem 3.5 and Proposition 3.7 in [18]. A closer
look at the proofs of these results reveals that the p-Lipschitz condition is only used
to show that v : Lp → L1 is uniformly continuous on bounded sets (cf. Proposition
2.4 in [18]), which we assumed in the form of (6). (In fact, in [18], the uniform
continuity is exclusively used for arguments in the spirit of step 2 below.)

Step 2 : The general case. Clearly, zn := χ{∇wn 6=0}∇u → 0 in Lp(Ω;RM×N), and

∫

Ω

v(∇wn(x) +∇u(x))ϕ(x) dx−

∫

Ω

v(∇u(x))ϕ(x) dx

=

∫

Ω

v(∇wn(x) + zn(x))ϕ(x) dx−

∫

Ω

v(zn(x))ϕ(x) dx

for every n. Hence, the general case reduces to the case for u = 0 as a consequence
of (6).

Proposition 4.4. Let Ω ⊂ R
N be open and bounded with boundary of class C1,

let 1 < p < ∞, let v ∈ Υp
R(R

M×N) satisfy (6), let x̄ ∈ Ω and define E := B1(0) if
x̄ ∈ Ω and E := Dν if x̄ ∈ ∂Ω, where ν = ν(x̄) is the outer normal to ∂Ω at x̄ and
Dν := {y ∈ B1(0) | y · ν < 0}. If

lim inf
n→∞

∫

E

v(∇wn(y)) dy ≥

∫

E

v(0) dy,

for every bounded sequence (wn) ⊂ W 1,p(B1;R
M) such that wn → 0 in Lp and

{wn 6= 0} ∪ {∇wn 6= 0} ⊂ B 1

n
(0) for every n, then v is p-qscb at x̄.

Proof. If v satisfies a p-Lipschitz condition, the assertion follows from Proposition
3.8 in [18] applied with Ω := E = E(x̄) and x0 := 0. Moreover, as remarked before,
the p-Lipschitz condition can be replaced by (6).

A closer look at the dependence of the definition of p-qscb at a point x ∈ ∂Ω on
the outer normal ν(x) to ∂Ω at this point reveals the following:
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Lemma 4.5. Let 1 < p < ∞, let f : RM×N → R be continuous, and let ν1, ν2 ∈
SN−1. If R21 ∈ R

N×N is an orthogonal matrix such that ν2 = R21ν1, then

s 7→ f(s) is ν1-p-bqscb if and only if s 7→ f(sR21) is ν2-p-bqscb.

Proof. Let ϕ1 ∈ W
1,p
0 (B1;R

M). Using the notation of Definition 2.6, we have that
∫

Dν1

f(∇ϕ1) dx ≥ −ε

∫

Dν1

|∇ϕ1|
p
dx− Cε

if and only if for ϕ2 ∈ W
1,p
0 (B1;R

M), ϕ2(y) := ϕ1

(

R−1
21 y

)

,
∫

Dν2

f ((∇ϕ2)R21) dy ≥ −ε

∫

Dν2

|∇ϕ2|
p
dy − Cε,

by the change of variables given by y = R21x. Here, note that Dν2 = R21Dν1 ,
|detR21| = 1 and |(∇ϕ2)R21| = |∇ϕ2|.

Proposition 4.6. Let 1 ≤ p < ∞, assume that (H3) holds, and let ν ∈ SN−1.
Then

Gν := {v0 ∈ R | v is ν-p-bqscb, where v(s) := v0(s)(1 + |s|p)}

is the closure of its interior in R (with respect to the maximum norm), i.e., Gν =
intGν. In particular, if R0 is a dense subset of R, then R0 ∩Gν is dense in Gν.

Proof. If v0 ∈ Gν and f0 ∈ R is such that ‖v0 − f0‖ := maxs∈RM×N |v0(s) −
f0(s)| < δ then s 7→ f(s) := f0(s)(1 + |s|p) is ν-p-bqscb, which easily follows from
Definition 2.6.

5. Separating boundary and interior

By means of a result of [18], any bounded sequence in W 1,p (up to a subsequence)
can be split into a sum of two parts, the first “purely concentrating� at the bound-
ary of the domain, while the second part does not charge the boundary in the sense
made precise below. This splitting has an analogon for DiPerna-Majda measures,
decomposing (σ, ν) ∈ DMp

R(Ω;R
M×N) into two parts (σb, νb) and (σi, νi) associated

to the boundary and the interior of Ω, respectively, as follows:

σb(dx) := χ∂Ω(x)σ(dx) + dx,

νb,x(ds) := χ∂Ω(x)νx(ds) + χΩ(x)δ0(ds),

σi(dx) := χΩ(x)σ(dx),

νi,x(ds) := χΩ(x)νx(ds),

(7)

where δ0 denotes the Dirac mass at 0 ∈ βRR
M×N . Assuming that |∂Ω| = 0, we

have in particular that
∫

Ω

ϕ(x)
〈

νx, v0
〉

σ(dx)

=

∫

∂Ω

ϕ(x)
〈

νb,x, v0
〉

σb(dx) +

∫

Ω

ϕ(x)
〈

νi,x, v0
〉

σi(dx)

(8)
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for every ϕ ∈ C(Ω) and every v0 ∈ R.

The decomposition (7) does not affect the properties we are interested in:

Proposition 5.1. Let Ω ⊂ R
N be open and bounded with boundary of class C1,

let 1 < p < ∞ and let (σ, ν) ∈ DMp
R(Ω;R

M×N). Then (σb, νb) ∈ DMp
R(Ω;R

M×N)
and (σi, νi) ∈ DMp

R(Ω;R
M×N). Moreover, the following assertions hold:

(a) (σ, ν) ∈ GDMp
R(Ω;R

M×N) if and only if both (σb, νb) ∈ GDMp
R(Ω;R

M×N)
and (σi, νi) ∈ GDMp

R(Ω;R
M×N).

(b) If (σ, ν) ∈ GDMp
R(Ω;R

M×N), then there exists u ∈ W 1,p(Ω;RM) and bounded
sequences (ub,n), (ui,n) ⊂ W 1,p(Ω;RM) such that

∇u(x) = dσi
(x)

∫

βRRM×N

s

1 + |s|p
νi,x(ds),

ub,n ⇀ 0 and ui,n ⇀ u weakly in W 1,p(Ω;RM),

{ub,n 6= 0} ⊂ (∂Ω) 1

n
and {ui,n 6= u} ⊂ Ω \ (∂Ω) 1

n
,

(∇ub,n) generates (σb, νb), (∇ui,n) generates (σi, νi)

and (∇ub,n +∇ui,n) generates (σ, ν).

(c) (σ, ν) satisfies (i)–(iii) in Theorem 3.1 if and only if (σi, νi) satisfies (i)–(iii).

(d) (σ, ν) satisfies (iv) in Theorem 3.1 if and only if (σb, νb) satisfies (iv).

The proof is given at the end of this section. Proposition 5.1 allows us to focus on
the discussion of the boundary in the proof of our main result, because the results
of [13] can be applied to (σi, νi) in a straightforward way.

For the proof of (a), we first recall some results of [18] involving the following
notion:

Definition 5.2. Given a sequence (un) ⊂ W 1,p(Ω;RM) and a closed set K ⊂ Ω,
we say that un does not charge K (in W 1,p), if

sup
n∈N

∫

(K)δ∩Ω

(|un|
p + |∇un|

p) dx −→
δ→0+

0.

Here, (K)δ :=
⋃

x∈K Bδ(x) denotes the open δ-neighborhood of K in R
N .

Lemma 5.3 (local decomposition in W 1,p, cf. Lemma 2.6 in [18]). Let Ω⊂
R

N be open and bounded, let 1 ≤ p < ∞ and let Kj ⊂ Ω, j = 1, . . . , J , be a finite
family of compact sets such that Ω ⊂

⋃

j Kj. Then for every bounded sequence

(un) ⊂ W 1,p(Ω;RM) with un → 0 in Lp, there exists a subsequence uk(n) which can
be decomposed as

uk(n) = u1,n + . . .+ uJ,n,

where for each j ∈ {1, . . . , J}, (uj,n)n is a bounded sequence in W 1,p(Ω;RM) con-
verging to zero in Lp such that the following three conditions hold:

(i) {uj,n 6= 0} ⊂ {un 6= 0}, {∇uj,n 6= 0} ⊂ {∇un 6= 0} (possibly ignoring a set

of measure zero) and {uj,n 6= 0} ⊂ (Kj) 1

n
\
⋃

i<jKi for every j, n,
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(ii) uj,n does not charge
⋃

i<jKi in W 1,p for each j.

(iii) On the “transition layer�

Tn := {x ∈ Ω |uj,n(x) 6= 0 for at least two different j } ,

we have that
∫

Tn

(|uj,n|
p + |∇uj,n|

p) dx −→
n→∞

0, for j = 1, . . . , J.

Here, (Kj) 1

n
denotes the open 1

n
-neighborhood of Kj in R

N as before.

For our purposes here, the case J = 2, K1 = ∂Ω and K2 = Ω in Lemma 5.3
suffices.

Proof of Lemma 5.3. See Lemma 2.6 in [18]. Condition (iii) is not stated in
[18], but it is an immediate consequence of the proof provided there.

Because of (iii), the component sequences above essentially do not interact, and
we are able to split nonlinear expressions as well, cf. Proposition 2.7 in [18]:

Proposition 5.4. Let Ω ⊂ R
N be open and bounded and let 1 ≤ p < ∞. In addi-

tion, assume that f : RM×N → R is continuous and satisfies a p-growth condition
(i.e., s 7→ (1 + |s|p)−1f(s) is bounded). Then for every U ∈ Lp(Ω;RM×N),

f(∇un + U)− f(U)−
J
∑

j=1

(f(∇uj,n + U)− f(U)) −→
n→∞

0 in L1(Ω),

for any decomposition un =
∑

j uj,n into a finite sum of bounded sequences in

W 1,p(Ω;RM) such that Lemma 5.3 (iii) holds.

Proof. Observe that since un =
∑

j uj,n, the definition of the set Tn in condition
(iii) of Lemma 5.3 yields that

f(∇un + U)− f(U)−
J
∑

j=1

(f(∇uj,n + U)− f(U)) = 0 a.e. on Ω \ Tn.

Hence, it suffices to show that f(χTn
∇un + U) → f(U) and f(χTn

∇uj,n + U) →
f(U) in L1(Ω), for j = 1, . . . , J . This is a consequence of (iii), since our assump-
tions on f imply that V 7→ f(V ), Lp(Ω;RM×N) → L1(Ω), is continuous.

Proof of Proposition 5.1. Using Proposition 2.3, it is not difficult to check that
(σb, νb), (σi, νi) ∈ DMp

R(Ω;R
M×N), and both (c) and (d) readily follow from (7). It

remains to show (a) and (b).

(a) “only if�: Suppose that (σ, ν) is generated by (∇un), for a bounded sequence
(un) ⊂ W 1,p(Ω;RM) such that un ⇀ u weakly in W 1,p for some u ∈ W 1,p(Ω;RM).
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By the compact embedding of W 1,p into Lp, we also have that un → u strongly in
Lp. We decompose (up to a subsequence, not relabeled)

un − u = u1,n + u2,n

according to Lemma 5.3, applied with J = 2, K1 := ∂Ω and K2 := Ω. Let
(σ1, ν1) and (σ2, ν2) denote the DiPerna-Majda measures generated by (∇u1,n)
and (∇u2,n +∇u), respectively (up to a subsequence). By construction, {u1,n 6=
0} ∪ {∇u1,n 6= 0} ⊂ (∂Ω) 1

n
for every n, and (∇u2,n) does not charge ∂Ω in Lp.

This implies that

σ1(dx) = dx on Ω, ν1,x = δ0 for a.e. x ∈ Ω and σ2(∂Ω) = 0. (9)

Moreover, χ{∇u1,n 6=0}∇u → 0 in Lp, whence
[

v(∇u1,n +∇u)− v(∇u)
]

−
[

v(∇u1,n)− v(0)
]

−→
n→∞

0 in L1(Ω) (10)

for every v ∈ Υp
R(R

M×N), due to the uniform continuity of the Nemytskii operator
associated to v on bounded subsets of Lp, cf (6). Proposition 5.4 applied with
f = v and U = ∇u additionally yields that

v(∇un)−
[

v(∇u1,n +∇u)− v(∇u)]− v(∇u2,n +∇u) −→
n→∞

0 in L1(Ω). (11)

Combining (9)–(11), we infer that

∫

Ω

ϕ(x)
〈

νx, v0
〉

σ(dx)

=

∫

Ω

ϕ(x)
〈

ν1,x, v0
〉

σ1(dx)−

∫

Ω

v(0) dx+

∫

Ω

ϕ(x)
〈

ν2,x, v0
〉

σ2(dx)

=

∫

∂Ω

ϕ(x)
〈

ν1,x, v0
〉

σ1(dx) +

∫

Ω

ϕ(x)
〈

ν2,x, v0
〉

σ2(dx)

for every ϕ ∈ C(Ω) and every v0 ∈ R, where v(s) := v0(s)(1 + |s|p). By
comparison with (8), we get that (σb, νb) = (σ1, ν1) ∈ GDMp

R(Ω;R
M×N) and

(σi, νi) = (σ2, ν2) ∈ GDMp
R(Ω;R

M×N) as claimed.

(a) “if�: Suppose that (σb, νb) is generated by (∇wb,n) and (σi, νi) is generated by
(∇wi,n), for some bounded sequences (wb,n)n, (wi,n)n ⊂ W 1,p(Ω;RM). In particu-
lar,

∫

Ω

ϕ(x) |∇wb,n(x)|
p
dx →

∫

Ω

∫

βRRM×N

|s|p

1 + |s|p
νb,x(ds)σb(dx) = 0

for every ϕ ∈ C0(Ω), whence ∇wb,n → 0 in L
p
loc(Ω;R

M×N). Passing to a subse-
quence and adding a suitable constant to wb,n (if necessary; this does not change
the gradient which is the only thing that matters for us), we also may assume that
wb,n → 0 in Lp by compact embedding. In addition,

∫

Ω

ϕ(x)∇wi,n(x) dx →

∫

Ω

∫

βRRM×N

s

1 + |s|p
νi,x(ds)σi(dx),
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whence (up to a subsequence)

wi,n ⇀ u weakly in W 1,p(Ω;RM),

where ∇u(x) = dσi
(x)

∫

βRRM×N

s

1 + |s|p
νi,x(ds).

A natural choice for a generating sequence of (σ, ν) is (∇un) with un = wb,n+wi,n;
however, this only works well if the interaction of the two component sequences,
which in principle could occur on the set {wb,n 6= 0} ∩ {wi,n 6= u}, is negligible.
We thus first modify wb,n and wi,n, in such a way that this set becomes empty.

For this purpose, choose two sequences (ϕn), (ηn) ⊂ C1
c (Ω; [0, 1]) such that ϕn = 1

on Ω \ (∂Ω) 1

n
, ηn = 0 on (∂Ω) 1

n
and ηn = 1 on Ω \ (∂Ω) 2

n
for every n. For every

fixed n, we have that ϕnwb,k → 0 in W 1,p and (∇(1− ηn))⊗ (wi,k − u) → 0 in Lp

as k → ∞. Due to the latter, we also obtain that

lim
k→∞

∫

Ω

|∇ ((1− ηn)(wi,k − u))|p dx

= lim
k→∞

∫

Ω

|1− ηn|
p |∇wi,k −∇u|p dx

≤ lim
k→∞

2p
∫

Ω

|1− ηn|
p (1 + |∇wi,k|

p) dx+ 2p
∫

Ω

|1− ηn|
p |∇u|p dx

= 2p
∫

Ω

|1− ηn(x)|
p νi,x(βRR

M×N)σi(dx) + 2p
∫

Ω

|1− ηn|
p |∇u|p dx,

whence

lim
n→∞

lim
k→∞

∫

Ω

|∇ ((1− ηn)(wi,k − u))|p dx ≤ 2pσi(∂Ω) = 0

by dominated convergence. As a consequence, there exists a subsequence k(n) of
n such that as n → ∞,

ϕnwb,k(n) → 0 in W 1,p and (1− ηn)(wi,k(n) − u) → 0 in W 1,p (12)

We define

ub,n := (1− ϕn) · wb,k(n) and ui,n := ηn · (wi,k(n) − u) + u.

Note that by (12) and (6), (∇ub,n) and (∇ui,n) still generate (σb, νb) and (σi, νi),
respectively. Moreover, for

un := ub,n + ui,n,

the decomposition un − u = ub,n + (ui,n − u) is admissible in Proposition 5.4 (note
that {ub,n 6= 0} ∩ {ui,n − u 6= 0} = ∅ by construction), and arguing as in the proof
of (i) “only if�, we obtain that

lim
n→∞

∫

Ω

ϕ(x)v(∇un(x)) dx =

∫

∂Ω

ϕ(x)
〈

νb,x, v0
〉

σb(dx) +

∫

Ω

ϕ(x)
〈

νi,x, v0
〉

σi(dx),
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for every ϕ ∈ C(Ω) and every v0 ∈ R, with v(s) := v0(s)(1 + |s|p). In view of (8),
this means that (∇un) generates (σ, ν).

(b): The function u and the sequences (ub,n) and (ui,n) obtained in the previous
step have all the asserted properties.

6. Necessary conditions

We now prove that each (σ, ν) ∈ GDMp
R(Ω;R

M×N) satisfies the conditions (i)–
(iv) of Theorem 3.1. The conditions in the interior of Ω follow from the associated
result of [13]:

Theorem 6.1 (cf. Theorem 2.8 in [13]). Assume that (H1)–(H3) hold, and let
(σ, ν) ∈ GDMp

R(Ω;R
M×N) be generated by (∇un) such that un ⇀ u weakly in

W 1,p(Ω;RM). Then (σ, ν) satisfies (i)–(iii) in Theorem 3.1.

Remark 6.2. In fact, Theorem 2.8 in [13] uses weaker assumptions: it suffices to
have that |∂Ω| = 0 instead of a boundary of class C1, and (1) is not needed there.

It remains to show (iv):

Proposition 6.3. Assume that (H1)–(H3) hold, and let (σ, ν)∈GDMp
R(Ω;R

M×N).
Then (σ, ν) satisfies (iv) in Theorem 3.1, i.e.,

〈

νx,
v(·)

1 + |·|p

〉

∞

=

∫

βRRM×N\RM×N

v(s)

1 + |s|p
νx(ds) ≥ 0 (13)

for σ-a.e. x0 ∈ ∂Ω and every v ∈ Υp
R(R

M×N) which is p-qscb at x0.

Proof. In view of (7), it suffices to show that (σb, νb) satisfies (13). By Propo-
sition 5.1, we have that (σb, νb) ∈ GDMp

R(Ω;R
M×N). Let x0 ∈ ∂Ω, let v ∈

Υp
R(R

M×N) be p-qscb at x0, and let (un) ⊂ W 1,p(Ω;RM) be a bounded sequence
such that {un 6= 0} ⊂ (∂Ω) 1

n
and(∇un) generates (σb, νb). In particular, un ⇀ 0

weakly in W 1,p(Ω;RM). For fixed ε > 0, due to (6), vε(·) := v(·)−v(0)+ε(1+ |·|p)
is even p-qscb at every x ∈ Uε∩ Ω̄ for a neighborhood Uε of x0 in R

N . If ϕ ∈ C(Ω),
ϕ ≥ 0 and {ϕ 6= 0} ⊂ Uε, Theorem 4.3 yields that

0 ≤ lim
n→∞

∫

Ω

ϕ(x)vε(∇un(x)) dx

=

∫

Ω

ϕ(x)

〈

νb,x,
vε(·)

1 + |·|p

〉

σb(dx)

=

∫

∂Ω

ϕ(x)

〈

νb,x,
vε(·)

1 + |·|p

〉

∞

σb(dx).

(14)

The last equality in (14) holds because νb,x = δ0 for σb-a.e. x ∈ Ω, vε(0) = 0
and νb,x(R

M×N) = 0 for σb-a.e. x ∈ ∂Ω by Remark 2.4. Since ϕ is arbitrary with
non-negative values on any Vε compactly contained in Uε, (14) implies that

0 ≤

∫

∂Ω∩Vε

〈

νb,x,
vε(·)

1 + |·|p

〉

∞

σb(dx)
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by dominated convergence. As a consequence, we have that

−ε ≤
1

σ(∂Ω ∩ Vε)

∫

∂Ω∩Vε

〈

νb,x,
v(·)

1 + |·|p

〉

∞

σb(dx) (15)

as long as σb(∂Ω ∩ Vε) > 0. In the limit ε → 0+, we infer that

0 ≤

〈

νb,x0
,

v(·)

1 + |·|p

〉

∞

, (16)

provided that x0 is a σb-Lebesgue point of the right hand side of (16), i.e., for the
function ∂Ω ∋ x 7→

〈

νb,x, v0
〉

∞
with v0 := v(·)(1 + |·|p)−1. Now choose a countable

subset R0 which is dense in R. There exists a set Z ⊂ ∂Ω such that σb(Z) = 0 and
for every v0 ∈ R0, ∂Ω \Z is a subset of the σb-Lebesgue points of x 7→

〈

νb,x, v0
〉

∞
.

In particular, (16) holds for every x0 ∈ ∂Ω\Z and every v ∈ Υp
R(R

M×N) such that
v is p-qscb at x and v(·)(1 + |·|p)−1 ∈ R0. By density, also using Proposition 4.6,
this implies the assertion.

7. Sufficient conditions

By Proposition 5.1, (σ, ν) ∈ GDMp
R(Ω;R

M×N) provided that (σb, νb) ∈ GDMp
R(Ω;

R
M×N) and (σi, νi) ∈ GDMp

R(Ω;R
M×N). For this reason, the interior part and the

boundary part can be studied separately.

7.1. Sufficient conditions in the interior

As in the case of necessary conditions, we rely on a corresponding result of [13],
which, besides the conditions we stated as (i)–(iii) in Theorem 3.1, also uses the
following condition for (σ, ν) ∈ DMp

R(Ω;R
M×N) on the boundary, which is slightly

stronger than (iv):

0 ≤

〈

νx,
v(·)

1 + |·|p

〉

∞

=

∫

βRRM×N\RM×N

v(s)

1 + |s|p
νx(ds)

for σ-a.e. x ∈ ∂Ω and every v ∈ Υp
R(R

M×N) with Qv > −∞.

(17)

Theorem 7.1 (cf. Theorem 2.7 in [13]). Assume that (H1)–(H3) hold and let
(σ, ν) ∈ DMp

R(Ω;R
M×N). Then

there exists a bounded sequence (un) ⊂ W 1,p(Ω;RM) with fixed boundary
values (i.e., un = um on ∂Ω in the sense of trace for every n,m ∈ N) such
that (∇un) generates (σ, ν)

if and only if

(i)–(iii) in Theorem 3.1 and (17) hold.

Remark 7.2. For Theorem 2.7 in [13], it suffices to have a bounded domain with
the extension property in W 1,p (instead of C1-boundary), and our assumption (1)
is not needed in [13], either.
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In particular, Theorem 7.1 tells us in which cases the interior part (σi, νi) of (σ, ν),
as defined in (7), is generated by gradients:

Corollary 7.3. Assume that (H1)–(H3) hold. If (σ, ν) ∈ DMp
R(Ω;R

M×N) satis-
fies (i)–(iii) in Theorem 3.1, then (σi, νi) ∈ GDMp

R(Ω;R
M×N).

Proof. By Proposition 5.1, (σi, νi) satisfies (i)–(iii), and (17) trivially holds for
(σi, νi) since σi(∂Ω) = 0. Theorem 7.1 thus yields the assertion.

7.2. Sufficient conditions at the boundary

Recall that condition (iv) in Theorem 3.1 states that

0 ≤

〈

ν,
v(·)

1 + |·|p

〉

∞

=

∫

βRRM×N\RM×N

v(s)

1 + |s|p
νx(ds)

for σ-a.e. x ∈ ∂Ω and every v ∈ Υp
R(R

M×N) which is p-qscb at x.

(18)

Below, the set of all DiPerna-Majda measures with this property (“boundary gra-
dient DiPerna-Majda measures�) is denoted by

BGDMp
R(Ω;R

M×N) :=
{

(σ, ν) ∈ DMp
R(Ω;R

M×N)
∣

∣ (σ, ν) satisfies (18)
}

.

In two steps, we now prove for each (σ, ν) ∈ BGDMp
R(Ω;R

M×N), its boundary
part (σb, νb) as defined in (7) is generated by a sequence of gradients, throughout
assuming that (H1)–(H3) hold.

Theorem 7.4. Let (σ, ν) ∈ DMp
R(Ω;R

M×N) and suppose that (σ, ν)∈ BGDMp
R(Ω;

R
M×N), i.e., (σ, ν) satisfies (iv) in Theorem 3.1. Then (σb, νb)∈GDMp

R(Ω;R
M×N).

Step 1: Measures supported on a single point on the boundary

If σ charges a single boundary point, i.e., σ(∂Ω \ {x}) = 0 for some x ∈ ∂Ω, it
suffices to study σ({x})νx instead of (σ, ν) on ∂Ω. Moreover, only the behavior on
βRR

M×N \RM×N matters since σ({x})νx(R
M×N) = 0 by Remark 2.4. For x ∈ ∂Ω,

we define two sets of measures of this kind:

Ax :=

{

µ ∈ rca(βRR
M×N)

∣

∣

∣

∣

µ ≥ 0, µ(RM×N) = 0 and
〈

µ, v0
〉

∞
≥ 0

for every v ∈ Υp
R(R

M×N) which is p-qscb at x

}

,

where v0 :=
v(·)

1+|·|p
as usual. The second set Hx, defined below, consists of measures

generated by certain “purely concentrating� sequences:

Definition 7.5. Let x ∈ Ω. We say that δ = δx ∈ rca(βRR
M×N) is a gradi-

ent point concentration measure at x if there exists a bounded sequence (un) ⊂
W 1,p(Ω;RM) such that the following two properties hold:

(a) {un 6= 0} ⊂ Brn(x) for some sequence rn → 0+, and

(b) for every v ∈ Υp
R(R

M×N), the limit below exists and satisfies

〈

δ, v0
〉

=

∫

βRRM×N

v0(s) δ(ds) = lim
n→∞

∫

Ω

v(∇un(y)) dy − |Ω| v(0),
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where v0 :=
v(·)

1+|·|p
.

In this case, we say that δ is generated by (∇un).

For x ∈ ∂Ω we now set

Hx :=
{

δ ∈ rca(βRR
M×N)

∣

∣

∣

δ is a gradient point concentration measure at x
}

.

In the present context, the desired sufficient condition amounts to proving that
Ax ⊂ Hx. The proof is carried out in a series of propositions, the first of which
provides an equivalent formulation of Definition 7.5 which is technically more con-
venient for us.

Proposition 7.6. Let x ∈ ∂Ω, let D = D(x) := {y ∈ B1(0) | y · ν(x) < 0}, where
ν(x) is the outer normal to ∂Ω at x ∈ ∂Ω and let δ ∈ rca(βRR

M×N). Then δ is a
gradient point concentration measure at x if and only if if there exists a bounded
sequence (ũn) ⊂ W 1,p(D;RM) with the following two properties:

(a) {ũn 6= 0} ⊂ Brn(0) for some sequence rn → 0+, and

(b) for every v ∈ Υp
R(R

M×N), the limit below exists and

〈

δ, v0
〉

=

∫

βRRM×N

v0(s) δ(ds) = lim
n→∞

∫

D

v(∇ũn(y)) dy − |D| v(0),

where v0 :=
v(·)

1+|·|p
.

Proof. Since ∂Ω is of class C1, there exists a C1-diffeomorphism Φ mapping a
neighborhood V ⊂ B1(0) of the origin onto a neighborhood U of x in R

N such that
Φ(0) = x, DΦ(0) = I, Φ(V ∩D) = U ∩Ω, and Φ({y ∈ V | y · ν(x) = 0}) = U ∩ ∂Ω.
If (un) ⊂ W 1,p(Ω;RM) is a bounded sequence with support shrinking to x such
that (∇un) generates δ in the sense of Definition 7.5 (b), then

ũn(z) := u(Φ(z)), z ∈ V,

defines a bounded sequence (ũn) ⊂ W 1,p(D;RM) with support shrinking to the
origin. We claim that (∇ũn) generates δ in the sense of (b) above: For any v ∈
Υp

R(R
M×N) and ṽ := v(·)− v(0), a change of variables yields that
∫

D

ṽ(∇ũn(z)) dz =

∫

Ω

ṽ
(

∇un(y)DΦ(Φ−1(y))
) ∣

∣detD(Φ−1)(y)
∣

∣ dy,

and since DΦ(Φ−1(y)) → I and D(Φ−1)(y) → I as y → x (recall that the support
of un shrinks to x as n → ∞), (6) implies that

lim
n→∞

∫

Ω

ṽ
(

∇un(y)DΦ(Φ−1(y))
) ∣

∣detD(Φ−1)(y)
∣

∣ dy = lim
n→∞

∫

Ω

ṽ(∇un(y))) dy.

As a consequence, we get that

lim
n→∞

∫

D

v(∇ũn(z)) dz − |D| v(0) = lim
n→∞

∫

Ω

v(∇un(y))) dy − |Ω| v(0),
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and Definition 7.5 (b) implies (b) as stated in the assertion. Analogously, we can
define (un) starting from (ũn) without changing the measure that is generated by
the respective gradients.

Proposition 7.7. For every x ∈ ∂Ω, Hx is convex.

Proof. Let δ1 and δ2 be two point concentrations at x, and let λ ∈ (0, 1). By
Proposition 7.6, δ1 and δ2, respectively, are generated by (∇un) and (∇wn), where
(un) and (wn) are suitable bounded sequences inW 1,p(D;RM) with support shrink-
ing to the origin. With a fixed unit vector e tangential to ∂Ω at x ∈ ∂Ω (perpen-
dicular to ν(x)), we define

qn(y) := λ
1

N un

(

λ− 1

N y + rne
)

+ (1− λ)
1

N wn

(

(1− λ)−
1

N y − rne
)

, y ∈ D.

Note that two summands of qn have disjoint support, and the support of qn is also
shrinking to the origin as n → ∞. For every v ∈ Υp

R(R
M×N) and ṽ := v(·)− v(0),

a change of variables yields that

∫

D

ṽ(∇qn(y)) dy = λ

∫

D

ṽ(∇un(z)) dz + (1− λ)

∫

D

ṽ(∇wn(z)) dz

for every n large enough so that the support of qn is contained in D. Thus,

lim
n→∞

∫

D

v(∇qn(y)) dy − |D| v(0) =
〈

λδ1 + (1− λ)δ2, v0
〉

, where v0 :=
v(·)

1 + |·|p
,

whence λδ1 + (1− λ)δ2 ∈ Hx by Proposition 7.6.

Proposition 7.8. For every x ∈ ∂Ω, Ax is contained in the weak∗-closure of Hx.

Proof. Let v ∈ Υp
R(R

M×N) and a ∈ R, define v0 :=
v(·)

1+|·|p
∈ R, and suppose that

〈µ, v0〉 = 〈µ, v0〉∞ ≥ a for every µ ∈ Hx. By the Hahn-Banach theorem and the
fact that Hx is convex, it suffices to show that in this case, we also have that
〈π, v0〉 = 〈π, v0〉∞ ≥ a for every π ∈ Ax. We may assume w.l.o.g. that v(0) = 0
(replacing v0 with ṽ0(s) := v0(s)−v0(0) does not affect the assertion). As before, we
rely on Proposition 7.6 to work with sequences on D instead of Ω in the definition
of Hx. For any bounded sequence (un) ⊂ W

1,p
0 (B1;R

M) with support shrinking
to the origin such that limn→∞

∫

D
w(∇un(y)) dy exists for every w ∈ Υp

R(R
M×N)

with w(0) = 0, we have that

α ≤ lim
n→∞

∫

D

v(∇un(y)) dy. (19)

If we fix one such sequence (un), then for each h > 0, the sequence (uh,n)n,

uh,n(y) :=
1

h
un(hy),
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is admissible, too, whence

α ≤ lim
n→∞

∫

D

v(∇uh,n(y)) dy =
1

hN
lim
n→∞

∫

D

v(∇un(y)) dy, (20)

for every h > 0. In the limit as h → ∞, (20) entails that α ≤ 0.

Next, we claim that v is p-qscb at x. By Proposition 4.4, it suffices to check that

0 =

∫

D

v(0) dy ≤ lim
n→∞

∫

D

v(∇un(y)) dy,

for every sequence (un) ⊂ W
1,p
0 (B1;R

M) with support shrinking to the origin such
that the limit above exists. Suppose by contradiction that

0 > b := lim
n→∞

∫

D

v(∇un(y)) dy, (21)

for one such sequence (un). Up to a subsequence, (not relabeled), (∇un)n generates
a DiPerna-Majda measure, whence limn→∞

∫

D
w(∇un(y)) dy exists for every w ∈

Υp
R(R

M×N). Moreover, if we use this subsequence of un to define um,n as before,
then for every fixed h > 0, the support is also shrinking to zero. Hence, un and uh,n

are admissible in (19) and (20), respectively, contradicting (21) if h is sufficiently
small.

In summary, we have shown that a ≤ 0 and that v is p-qscb, whence 〈π, v〉 ≥ 0 ≥ a

for every π ∈ Ax, by the definition of Ax.

To complete the proof of Theorem 7.4 in the present special case, we would have to
show that Hx is weak∗-closed. We skip this here as similar arguments are needed
in the next step, anyway.

Step 2: General measures on the boundary

Ultimately, we reduce the general case to the first step by approximating a general
measure with a finite sum of measures, each of which only charges one point on
the boundary. The construction of these is based on Lemma 4.5, which allows us
to calculate a suitable average of a measure in a neighborhood of a point x0 on
the boundary while preserving (18):

Proposition 7.9. Let 1 < p < ∞, let Ω ⊂ R
N be open and bounded with boundary

of class C1, let ν(x) denote the outer normal to ∂Ω for x ∈ ∂Ω, let (σ, ν) ∈
DMp

R(Ω;R
M×N) and let x0 ∈ ∂Ω. Moreover, let {R(x)}x∈∂Ω ⊂ SO(N) be a family

of rotation matrices such that x 7→ R(x) is continuous and bounded on a set
U ⊂ ∂Ω and for each x ∈ ∂Ω, ν(x) = R(x)ν(x0). Given a measurable set E ⊂ U
such that σ(E) > 0, we define ηx0

= ηx0,E ∈ rca(βRR
M×N) as the measure that

satisfies
∫

βRRM×N

v0(s) ηx0
(ds) =

1

σ(E)

∫

E

〈

νx, v0( ·R
−1
x )

〉

σ(dx).
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for every v0 ∈ R. If (σ, ν) ∈ BGDMp
R(Ω;R

M×N), then

0 ≤

∫

βRRM×N\RM×N

v(s)

1 + |s|p
ηx0

(ds)

for every v ∈ Υp
R(R

M×N) which is p-qscb at x0.

(22)

Proof. For every v ∈ Υp
R(R

M×N) which is p-qscb at x0, s 7→ v(sR−1
x ) is p-qscb

at x by Lemma 4.5. Hence, (18) implies (22) by the definition of ηx with v0(s) :=
v(s)

1+|s|p
.

Using this averaging procedure, we can weak∗-approximate general measures in
BGDMp

R(Ω;R
M×N) by measures whose restriction to the boundary is supported

on a finite number of points:

Proposition 7.10. Let (σ, ν) ∈ BGDMp
R(Ω;R

M×N). Then for every n ∈ N,
there exists a finite set J(n) ⊂ N and (θn, ηn) ∈ BGDMp

R(Ω;R
M×N) such that

θn|Ω = σ|Ω, ηn,x = νx for σ-a.e. x ∈ Ω,

θn|∂Ω =
∑

j∈J(n)

an,jδxn,j
|∂Ω,

with suitably chosen points xn,j ∈ ∂Ω and coefficients an,j ≥ 0, j ∈ J(n), where
δxn,j

denotes the Dirac mass at xn,j in Ω, and

∫

Ω

ϕ(x)
〈

ηn,x, v0
〉

θn(dx) −→
n→∞

∫

Ω

ϕ(x)
〈

νx, v0
〉

σ(dx)

for every ϕ ∈ C(Ω) and every v0 ∈ R.

Proof. For each n ∈ N cover RN with a family of pairwise disjoint cubes of side
length 2−n, translates of Qn,0 := [0, 2−n)N , and let Qn,j, j ∈ J(n), be the collection
of those cubes Q in the family that satisfy σ(Q ∩ ∂Ω) > 0. Moreover, for each n

and each j ∈ J(n) let En,j := Qn,j ∩ ∂Ω, (arbitrarily) choose a point xn,j ∈ En,j,
and choose a family of rotations (Rn,j(x))x∈En,j

⊂ R
N×N such that Rn,j(xn,j) = I,

ν(x) = Rn,j(x)ν(xn,j) for every x ∈ En,j, where ν(x) denotes the outer normal at
x ∈ ∂Ω, x 7→ Rn,j(x) is continuous on En,j and

sup
j∈J(n)

sup
x∈En,j

∣

∣Rn,j(x)
−1 − I

∣

∣ −→
n→∞

0, (23)

which is possible since ∂Ω is of class C1, at least if n is large enough. We define

θn(dx) := χ∂Ω(x)





∑

j∈J(n)

σ(En,j)δxn,j
(dx)



+ χΩ(x)σ(dx),
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and, for every v0 ∈ R,

〈

ηn,x, v0
〉

:=







1

σ(En,j)

∫

En,j

〈

νy, v0( ·Rn,j(y)
−1)

〉

σ(dy) if x = xn,j,

〈νx, v0〉 elsewhere.

Here, note that for x ∈ ∂Ω \ {xn,j | j ∈ J(n)}, the definition of ηn,x does not
matter since θn (∂Ω \ {xn,j | j ∈ J(n)}) = 0. Clearly, (θn, ηn) ∈ DMp

R(Ω;R
M×N),

and (θn, ηn) ∈ BGDMp
R(Ω;R

M×N) by Proposition 7.9. Finally, observe that by
(23), also using that ϕ is uniformly continuous on ∂Ω and that v0 is uniformly
continuous in the sense of (1),

∫

∂Ω

ϕ(x)
〈

ηx, v0
〉

θn(dx)

=

∫

∂Ω





∑

j∈J(n)

ϕ(xn,j)χEn,j
(y)

〈

νy, v0( ·R
−1
n,j,y)

〉



 σ(dy),

→

∫

∂Ω

ϕ(y)
〈

νy, v0
〉

σ(dy)

as n → ∞.

Our final ingredient is the following result of [13], which states that subsets of
DMp

R(Ω;R
M×N) defined by constraints on the generating sequences are always

(sequentially) weak∗-closed (essentially because one can always choose an appro-
priate diagonal subsequence).

Proposition 7.11 (Lemma 3.3 in [13]). Let S ⊂ Lp(Ω;RM×N) be an arbitrary
bounded subset, and let DMp

R,S(Ω;R
M×N) denote the subset of DMp

R(Ω;R
M×N)

that consists of all DiPerna-Majda measures generated by a sequence (Un) ⊂ S. If
(σ, ν) ∈ DMp

R(Ω;R
M×N) and (σk, νk) is a sequence in DMp

R,S(Ω;R
M×N) such that

(σk, νk) ⇀
∗ (σ, ν), i.e.,

∫

Ω

ϕ(x)
〈

νk, v0
〉

σk(dx) −→
k→∞

∫

Ω

ϕ(x)
〈

ν, v0
〉

σ(dx)

for every ϕ ∈ C(Ω) and every v0 ∈ R, then (σ, ν) ∈ DMp
R,S(Ω;R

M×N).

Remark 7.12. Note that since both C(Ω) and R are separable, the weak∗ topol-
ogy is metrizable on bounded subsets of DMp

R(Ω;R
M×N), and weak∗-closed is

equivalent to weak∗-sequentially closed. Moreover, Proposition 7.11 also holds if
S is not bounded (e.g., A := {∇u | u ∈ W 1,p(Ω;RM)}): If for each k, (σk, νk) is
generated by (Uk,n)n ⊂ A, then

lim
k→∞

lim
n→∞

∫

Ω

(1 + |Uk,n|
p) dx = lim

k→∞

∫

O

〈

νk, 1
〉

σk(dx) =

∫

O

〈ν, 1〉σ(dx) < ∞.

Hence, passing to subsequences if necessary, we may assume that the generating
sequences are equibounded, and we can apply Proposition 7.11 with an appropriate
bounded subset of A.
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We are now ready to prove the anticipated sufficient condition for gradient struc-
ture of the boundary part of a DiPerna-Majda measure, as defined in (7):

Proof of Theorem 7.4. Let (σ, ν) ∈ BGDMp
R(Ω;R

M×N). We have to show that
(σb, νb) ∈ GDMp

R(Ω;R
M×N). In view of Proposition 5.1, we may assume w.l.o.g.

that (σ, ν) = (σb, νb), i.e., that σ(dx) = dx in Ω and νx(ds) = δ0(ds) for x ∈ Ω. All
the other DiPerna-Majda measure introduced below are understood to have this
property as well, and for this reason, we will only define them on ∂Ω.

By Proposition 7.11 and Remark 7.12, it suffices to show that for each n, (θn, ηn) ∈
GDMp

R(Ω;R
M×N), where (θn, ηn) ∈ BGDMp

R(Ω;R
M×N) is defined in Proposi-

tion 7.10. Recall that

θn(dx) =
∑

j∈J(n)

an,jδxn,j
(dx) on ∂Ω,

with a finite set J(n), coefficients an,j > 0 and points xn,j ∈ ∂Ω. In particular,
ηn,x is fully determined (i.e., for σn-a.e. x) by ηn,xn,j

, j ∈ J(n). Since (θn, ηn) ∈
BGDMp

R(Ω;R
M×N), for each j ∈ J(n), we have that

µn,j := an,jνxn,j
∈ Axn,j

,

by definition of BGDMp
R(Ω;R

M×N) and the set Ax introduced in Step 1. By

Proposition 7.8, there exists a sequence (δn,j,k)k ⊂ Hxn,j
which weak∗-converges

to δn,j in rca(βRR
M×N) as k → ∞. Accordingly, the corresponding sequence of

DiPerna-Majda measures (θn,k, ηn,k)k ⊂ DMp
R(Ω;R

M×N), defined by

θn,k(dx) :=
∑

j∈J(n)

δn,j,k(βRR
M×N)δxn,j

(dx) on ∂Ω,

ηn,k,x(ds) :=
1

δn,j,k(βRR
M×N)

δn,j,k(ds) if x = xn,j for some j ∈ J(n),

weak∗-converges to (θn, ηn) in DMp
R(Ω;R

M×N). Hence, by Propositon 7.11 and
Remark 7.12, it suffices to show that (θn,k, ηn,k) ∈ GDMp

R(Ω;R
M×N).

By definition of Hxn,j
, for each j ∈ J(n) there exists a bounded sequence (uj,m)m ⊂

W 1,p(Ω;RM) (also depending on n and k) with support shrinking to xn,j such that

(∇uj,m)m generates δn,j,k, which implies that

lim
m→∞

∫

Ω

ϕ(x)
[

v(∇uj,m(x))− v(0)
]

dx = ϕ(xnj
)
〈

δn,j,k, v0
〉

=

∫

∂Ω

ϕ(x)
〈

ηn,k,x, v0
〉

δxn,j
(dx),

(24)

for every ϕ ∈ C(Ω) and every v ∈ Υp
R(R

M×N), where v0 :=
v(·)

1+|·|p
. We define

um :=
∑

j∈J(n)

uj,m ∈ W 1,p(Ω;RM),
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which is a sum of functions with pairwise disjoint support (at least for large m).
Summing over j in (24) yields that

lim
m→∞

∫

Ω

ϕ(x)
[

v(∇um(x))− v(0)
]

dx

= lim
m→∞

∑

j∈J(n)

∫

Ω

ϕ(x)
[

v(∇uj,m(x))− v(0)
]

dx

=

∫

∂Ω

ϕ(x)
〈

ηn,k,x, v0
〉

θn,k(dx).

(25)

Since θn,k(dx) = dx in Ω, ηn,k,x(ds) = δ0(ds) for x ∈ Ω and v0(0) = v(0),

∫

Ω

ϕ(x)v(0) dx =

∫

Ω

ϕ(x) 〈ηn,k,x, v0〉 θn,k(dx). (26)

Plugging (26) into (25), we obtain that

lim
m→∞

∫

Ω

ϕ(x)v(∇um(x)) dx =

∫

Ω

ϕ(x) 〈ηn,k,x, v0〉 θn,k(dx).

This means that (∇um)m generates (θn,k, ηn,k), and consequently, (θn,k, ηn,k) ∈
GDMp

R(Ω;R
M×N).

8. Proof of the relaxation result

Proof of Theorem 3.2. (i): Suppose that {un} already realizes the lim inf. Fix
x ∈ Ω̄, apply Theorem 3.1 to v := h(x, ·) and integrate over Ω̄. In view of (ii),
(iii), and (iv) in Theorem 3.1 we get

∫

Ω

Qh(x,∇u(x)) dx

≤

∫

Ω

∫

βRRM×N

h(x, s)

1 + |s|p
νx(ds)dσ(x) dx+

∫

Ω̄

∫

βRRM×N\RM×N

h(x, s)

1 + |s|p
νx(ds)σs(dx)

=

∫

Ω̄

∫

βRRM×N

h(x, s)

1 + |s|p
νx(ds)σ(dx)

= lim
n→∞

∫

Ω

h(x,∇un(x)) dx.

Here, note that for each x ∈ Ω, either Qh(x, ·) ≡ −∞ or Qh(x, ·) > −∞. In
the former case, we cannot use Theorem 3.1 (ii), but the corresponding estimate
above then becomes trivial.

(ii): Below, we use the shorthand f ∨ g := max{f, g}, pointwise for real-valued
functions. Let ε > 0. For m ∈ N set

Vm(x, s) :=
1

m
|s|p −m for x ∈ Ω and s ∈ R

M×N .
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Since h ∨ Vm is p-coercive for each m, there exists a sequence (ũm,n)n ⊂ ũ +
W

1,p
0 (Ω;RM) such that ũm,n ⇀ ũ in W 1,p as n → ∞ and

∫

Ω

(Vm ∨ h)(x,∇ũm,n) dx −→
n→∞

∫

Ω

Q(Vm ∨ h)(x,∇ũ) dx,

by the standard relaxation result, see for instance [6, Th. 9.8]. By the trivial
estimate h ≤ Vm ∨ h, this implies that

lim sup
n→∞

∫

Ω

h(x,∇ũm,n) dx ≤

∫

Ω

Q(Vm ∨ h)(x,∇ũ) dx (27)

Case 1: |E| = 0, i.e., Qh(x, ·) > −∞ for a.e. x ∈ Ω. We split the integral on the
right hand side of (27) into integrals over the set

G(m, ε) :=

{

x ∈ Ω

∣

∣

∣

∣

Q(Vm ∨ h)(x,∇ũ(x)) ≤ Qh(x,∇ũ(x)) +
ε

2 |Ω|

}

,

and its complement. Thus, we get that

lim sup
n→∞

∫

Ω

h(x,∇ũm,n) dx

≤

∫

G(m,ε)

Qh(x,∇ũ) dx+
ε

2
+

∫

Ω\G(m,ε)

C(|∇ũ|p + 1) dx,

(28)

where we also used that h(x, s) ≤ C(|s|p + 1) for some constant C > 0, and
Q(Vm∨h) inherits this upper bound, at least for large m. Observe that G(m, ε) ⊂
G(m + 1, ε). Moreover, by the representation formula for quasiconvex envelopes
(4), there exists a function ϕ ∈ W

1,∞
0 (Ω;RM) such that

1

|Ω|

∫

Ω

h(x,∇ũ(x) +∇ϕ(y)) dy ≤ Qh(x,∇ũ(x)) + ε.

In particular, x ∈ G(m, ε) if m is large enough so that (Vm ∨ h)(x,∇ũ(x) + s) =
h(x,∇ũ(x) + s) for every |s| ≤ ‖∇ϕ‖∞. Hence, we have that

⋃

m∈N G(m, ε) = Ω,
and

∫

G(m,ε)

Qh(x,∇ũ) dx −→
m→∞

∫

Ω

Qh(x,∇ũ) dx (29)

by monotone/dominated convergence (for the negative and the positive part of the
integrand, respectively). For the same reason,

∫

Ω\G(m,ε)

C(|∇ũ|p + 1) dx −→
m→∞

0. (30)

Combined, (28)–(30) imply that there exists M(ε) ∈ N such that

lim sup
n→∞

∫

Ω

h(x,∇ũm,n) dx ≤

∫

Ω

Qh(x, ũ) dx+ ε,
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for every m ≥ M(ε).

Case 2: |E| > 0 for E = {x ∈ Ω | Qh(x, ·) = −∞}. We now define

G(m, ε) :=

{

x ∈ E

∣

∣

∣

∣

Q(Vm ∨ h)(x,∇ũ(x)) ≤ −
4

ε |E|

}

Once more splitting the integral on the right hand side of (27), we now get that

lim sup
n→∞

∫

Ω

h(x,∇ũm,n) dx

≤

∫

G(m,ε)

−
4

ε |E|
dx+

∫

Ω\G(m,ε)

C(|∇ũ|p + 1) dx.

(31)

As before, G(m, ε) ⊂ G(m+1, ε), and due to (4),
⋃

m∈N G(m, ε) = E. For m large
enough, we thus have that |G(m, ε)| ≥ 1

2
|E|, and consequently,

lim sup
n→∞

∫

Ω

h(x,∇ũm,n) dx ≤ −
2

ε
+

∫

Ω

C(|∇ũ|p + 1) dx.

This implies the assertion if ε is sufficiently small.
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